An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations
RAIRO. Operations Research, Tome 55 (2021), pp. S1113-S1127

In this article, we proposed two Conjugate Gradient (CG) parameters using the modified Dai–Liao condition and the descent three-term CG search direction. Both parameters are incorporated with the projection technique for solving large-scale monotone nonlinear equations. Using the Lipschitz and monotone assumptions, the global convergence of methods has been proved. Finally, numerical results are provided to illustrate the robustness of the proposed methods.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2020061
Classification : 90C30, 90C26
Keywords: Monotone equations, three-term conjugate gradient method, conjugacy condition, descent condition
@article{RO_2021__55_S1_S1113_0,
     author = {Sabi{\textquoteright}u, Jamilu and Shah, Abdullah},
     title = {An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations},
     journal = {RAIRO. Operations Research},
     pages = {S1113--S1127},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020061},
     mrnumber = {4223189},
     zbl = {1472.90130},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020061/}
}
TY  - JOUR
AU  - Sabi’u, Jamilu
AU  - Shah, Abdullah
TI  - An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1113
EP  - S1127
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020061/
DO  - 10.1051/ro/2020061
LA  - en
ID  - RO_2021__55_S1_S1113_0
ER  - 
%0 Journal Article
%A Sabi’u, Jamilu
%A Shah, Abdullah
%T An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations
%J RAIRO. Operations Research
%D 2021
%P S1113-S1127
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020061/
%R 10.1051/ro/2020061
%G en
%F RO_2021__55_S1_S1113_0
Sabi’u, Jamilu; Shah, Abdullah. An efficient three-term conjugate gradient-type algorithm for monotone nonlinear equations. RAIRO. Operations Research, Tome 55 (2021), pp. S1113-S1127. doi: 10.1051/ro/2020061

N. Andrei, Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34 (2011) 319–330. | MR | Zbl

S. Babaie-Kafaki and R. Ghanbari, The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234 (2014) 625–630. | MR | Zbl | DOI

J. Barzilai and J. M. Borwein, Two point stepsize gradient methods. IMA J. Numer. Anal. 8 (1988) 141–148. | MR | Zbl | DOI

W. Cheng, A PRP type method for systems of monotone equations. Math. Comput. Model. 50 (2009) 15–20. | MR | Zbl | DOI

Y. H. Dai and L. Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001) 87–101. | MR | Zbl | DOI

Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10 (1999) 177–182. | MR | Zbl | DOI

Z. Dai and H. Zhu, A modified Hestenes–Stiefel-type derivative-free method for large-scale nonlinear monotone equations. Mathematics 8 (2020) 168. | DOI

Z. F. Dai, X. Chen and F. Wen, A modifed Perry’s conjugate gradient method-based derivative-free method for solving largescale nonlinear monotone equations. Appl. Math. Comput. 270 (2015) 378–386. | MR | Zbl

Z. Dai, H. Zhou, F. Wen and S. He, Efficient predictability of stock return volatility: the role of stock market implied volatility. North Am. J. Econ. Finance 52 (2020) 101174. | DOI

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ (1983). | MR | Zbl

E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. | MR | Zbl | DOI

M. Figueiredo, R. Nowak and S. J. Wright, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1 (2007) 586–597. | DOI

P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints. Calcolo 55 (2018) 53. | MR | Zbl | DOI

W. W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2 (2006) 35–58. | MR | Zbl

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49 (1952) 409–436. | MR | Zbl | DOI

Y. Hu and Z. Wei, A modified Liu–Storey conjugate gradient projection algorithm for nonlinear monotone equations. Int. Math. Forum 9 (2014) 1767–1777. | DOI

A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optimization. Optimization 41 (1997) 257–278. | MR | Zbl | DOI

H. Kobayashi, Y. Narushima and H. Yabe, Descent three-term conjugate gradient methods based on secant conditions for unconstrained optimization. Optim. Methods Softw. 32 (2017) 1313–1329. | MR | Zbl | DOI

M. Koorapetse and P. Kaelo, Self adaptive spectral conjugate gradient method for solving nonlinear monotone equations. J. Egypt. Math. Soc. 28 (2020) 4. | MR | Zbl | DOI

Q. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31 (2011) 1625–1635. | MR | Zbl | DOI

J. Liu and S. Li, Spectral DY-type projection method for nonlinear monotone systems of equations. J. Comput. Math. 33 (2015) 341–354. | MR | Zbl | DOI

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22 (1987) 333–361. | MR | Zbl

Y. Narushima and H. Yabe, A survey of sufficient descent conjugate gradient methods for unconstrained optimization. SUT J. Math. 50 (2014) 167–203. | MR | Zbl | DOI

Y. Narushima, H. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21 (2011) 212–230. | MR | Zbl | DOI

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia, PA (1970). | MR

J. Sabi’U, A. Shah and M. Y. Waziri, Two optimal Hager–Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl. Numer. Math. 153 (2020) 217–233. | MR | Zbl | DOI

M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations. Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, edited by M. Fukushima and L. Qi. In Vol. 22 of Applied Optimization. Springer (1998) 355–369. | MR | Zbl | DOI

S. Wang and H. Guan, A scaled conjugate gradient method for solving monotone nonlinear equations with convex constraints. J. Appl. Math. 2013 (2013) 286486. | MR | Zbl | DOI

M. Y. Waziri, K. A. Hungu and J. Sabi’U, Descent Perry conjugate gradient methods for systems of monotone nonlinear equations. Numer. Algorithms 85 (2020) 763–785. | MR | Zbl | DOI

L. Zhang and W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196 (2006) 478–484. | MR | Zbl | DOI

Y. B. Zhao and D. H. Li, Monotonicity of fixed point and normal mapping associated with variational inequality and its application. SIAM J. Optim. 4 (2001) 962–973. | MR | Zbl | DOI

W. J. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25 (2007) 89–96. | MR

W. J. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77 (2008) 2231–2240. | MR | Zbl | DOI

G. Zhou and K. C. Toh, Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory App. 125 (2005) 205–221. | MR | Zbl | DOI

Cité par Sources :