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AN EFFICIENT THREE-TERM CONJUGATE GRADIENT-TYPE ALGORITHM
FOR MONOTONE NONLINEAR EQUATIONS

Jamilu Sabi’u and Abdullah Shah∗

Abstract. In this article, we proposed two Conjugate Gradient (CG) parameters using the modified
Dai–Liao condition and the descent three-term CG search direction. Both parameters are incorporated
with the projection technique for solving large-scale monotone nonlinear equations. Using the Lipschitz
and monotone assumptions, the global convergence of methods has been proved. Finally, numerical
results are provided to illustrate the robustness of the proposed methods.
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1. Introduction

This paper will address the problem

F (x) = 0, (1.1)

where F : Rn → Rn is continuous and monotone function. The nonlinear monotone equations arise in different
applications, such as Bregman distances [17], chemical equilibrium systems [22], financial forecasting problems
[9] and signal reconstruction problems in compressive sensing [12]. Also, some variational inequality problems
can be transformed into a system of monotone nonlinear equations [31].

The Newton method, the quasi-Newton methods and their variants are considered to be efficient methods
for solving (1.1) despite the Jacobian inverse or its approximate requirement, see [10,25,33,34]. However, these
methods are not suitable for large-scale problems due to the computing and storage of the Jacobian matrix or
its approximate for each iteration [8, 20, 29]. Nevertheless, in an effort to solve large-scale monotone nonlinear
equations, Zhang and Zhou [30] proposed a spectral approach for (1.1) that combines the two-point gradient
method [3] with the projection method [27]. The global convergence of the method [30] is provided using the
monotone and Lipschitz continuous assumptions. The spectral method [30] has fairly low computational costs
because it does not require the computing and storage of the Jacobian matrix or its approximation at each
iteration.

Conjugate gradient methods are considered to be the most reliable numerical methods for solving large-scale
problems due to their low memory requirements and good global convergence properties. They are iterative
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methods that generate a sequence of solutions

xk = xk−1 + αkdk−1, (1.2)

where xk−1 is the initial approximation, αk is the positive step length to be determine using an appropriate line
search and dk is the CG search direction defined by

dk = −F (xk), k = 0, dk = −F (xk) + βkdk−1 k ≥ 1, (1.3)

with βk known as the CG update and it is the parameter that characterizes the CG method. The widely known
CG update included the Hestenes–Stiefel (HS) formula [15], i.e.,

βHS
k =

FTk yk−1

dTk−1yk−1
, (1.4)

where Fk = F (xk) and yk−1 = Fk − Fk−1. However, the numerical performance of the CG methods depended
on the appropriate choice of the parameter βk [6]. Some important results on the global convergence of the CG
methods were reviewed in [14,23]. Dai and Liao [5] incorporated the second-order information into CG method
and proposed the following condition

dTk yk−1 = −tFTk sk−1, (1.5)

where t is a nonnegative scalar and sk = xk − xk−1. However, in order to guarantee that the search direction
dk satisfies condition (1.5), they used the CG direction (1.3) into (1.5) and derived the following update

βDL
k =

FTk (yk−1 − tsk−1)
dTk−1yk−1

· (1.6)

The choice of the parameter t ≥ 0 is considered by Andrei [1] to be an open problem for nonlinear CG
method. This motivated Babaie-Kafaki and Ghanbari [2], and they proposed the following optimal choices for
the nonnegative parameter “t” in the βDL

k :

t1k =
‖yk−1‖
‖sk−1‖

, (1.7)

and

t2k =
yTk−1sk−1

‖sk−1‖2
+
‖yk−1‖
‖sk−1‖

· (1.8)

By several numerical tests, it has proved that the choices t1k and t2k are robust compared to some other CG
algorithms. Narushima et al. [24] suggested a descent three-term CG method with the search direction defined
by

dk = −Fk, k = 0, dk = −Fk + βk
(
FTk pk

)† {(
FTk pk

)
dk−1 −

(
FTk dk−1

)
pk
}
, k ≥ 1, (1.9)

where pk is any vector in Rn, and

A† =

{
1
A , if A 6= 0
0, otherwise.

(1.10)

Furthermore, among the nice properties of the search direction (1.9) is that, it satisfies the following condition

FTk dk = −‖Fk‖2, ∀k ≥ 0, (1.11)

which is independent of the line search and choices of βk and pk. This shows that the sufficient descent condition
is always satisfied for r = 1, i.e.,

FTk dk ≤ −r‖Fk‖2, ∀k ≥ 0. (1.12)
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Many other conjugate gradient methods have been combined with the projection method [27] to solve the
large-scale monotone nonlinear equations [4, 7, 8, 19–21,26,29].

The main aim of this paper is to develop a robust three-term conjugate gradient method such that the βk
update can be derived by using the Dai–Liao condition (1.5) with the three-term CG search direction (1.9). The
resulting CG update will be used to develop an effective CG method for monotone nonlinear equations using
the projection technique.

The rest of the paper is structured as follows: In Section 2, we suggest a new βk for the three-term (1.9)
method based on the Dai–Liao condition. The convergence of algorithms is shown in Section 3. The numerical
results are presented in Section 4. Section 5 is the conclusion.

2. Three-term conjugate gradient-type algorithm

This section will present two formulas for the update βk based on the second Dai–Liao condition (1.5) and
the three-term CG method (1.9). Now, by incorporating the optimal value (1.7) into the condition (1.5), we get

dTk yk−1 = −Wk, (2.1)

where Wk = ‖yk−1‖
‖sk−1‖F

T
k sk−1. Now substituting (1.9) into (2.1), we have

(
−Fk + βkdk−1 − βk

FTk dk−1

FTk pk
pk

)T
yk−1 = −Wk. (2.2)

Then the above equation (2.2) can be rewritten as

βk

(
dk−1 −

FTk dk−1

FTk pk
pk

)T
yk−1 = FTk yk−1 −Wk, (2.3)

where yk−1 = Fk − Fk−1. Now, by using the definition of yk−1 in (2.3) gives

βk

(
−FTk−1dk−1 +

FTk−1pk

FTk pk
FTk dk−1

)
= FTk yk−1 −Wk. (2.4)

Applying condition (1.11) into (2.4) we have

βk =
FTk yk−1 −Wk

‖Fk−1‖2 +Qk
, (2.5)

where Qk = FT
k−1pk

FT
k pk

FTk dk−1. We avoided an undefined denominator by modifying (2.5) as

β1
k =

FTk yk−1 −Wk

‖Fk−1‖2 + ξkQk
· (2.6)

Similarly, using the optimal choice (1.8) into the condition (1.5) and following the same procedure we obtain

β2
k =

FTk yk−1 −Hk

‖Fk−1‖2 + ξkQk
, (2.7)

where

H =

(
yTk−1sk−1

‖sk−1‖2
+
‖yk−1‖
‖sk−1‖

)
FTk sk−1. (2.8)
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We chose the parameter ξk such that

ξk =

{
min

{
1,−(1− ξ0)‖Fk−1‖2

Qk

}
, if Qk < 0

1, otherwise,
(2.9)

where ξ0 ∈ (0, 1). Kobayashi et al. [18] guaranteed that the denominator of β1
k and β2

k always satisfy

‖Fk−1‖2 + ξkQk ≥ ξ0‖Fk−1‖2. (2.10)

Now, we assume that:

(i) Function F is monotone, that is,

(F (x)− F (y))T (x− y) ≥ 0, ∀x, y ∈ Rn. (2.11)

(ii) Function F is Lipschitz continuous, that is, for some m > 0:

‖F (x)− F (y)‖ ≤ m ‖x− y‖ , ∀x, y ∈ Rn. (2.12)

Furthermore, we adopted the concept of Solodov and Svaiter [27] to let the next iterate

xk+1 = xk −
F (wk)T (xk − wk)
‖F (wk)‖2

F (wk), (2.13)

where wk = xk + αkdk. Finally, the proposed algorithm is as follows:

Algorithm 2.1 (Efficient three-term CG (ETCG)).

Step 0. Select the starting point x0 ∈ Rn, and initialize the constants γ ∈ (0, 1), ε, τ, δ ≥ 0. Set k = 0 and
pk = Fk.

Step 1. If ‖Fk‖ ≤ ε, stop, if not go to Step 2.
Step 2. Calculate the search direction

dk = −Fk, k = 0, dk = −Fk + β1
k

(
FTk pk

)† {(
FTk pk

)
dk−1 −

(
FTk dk−1

)
pk
}
, k ≥ 1,

or
dk = −Fk, k = 0, dk = −Fk + β2

k

(
FTk pk

)† {(
FTk pk

)
dk−1 −

(
FTk dk−1

)
pk
}
, k ≥ 1.

Step 3. Determine αk = max
{
τγj : j = 0, 1, 2, . . .

}
such that

−F (xk + αkdk)T dk ≥ δαk ‖F (xk + αkdk)‖ ‖dk‖2 . (2.14)

Step 4. Let wk = xk + αkdk, if ‖F (wk)‖ = 0 stop, otherwise go to Step 5.
Step 5. Compute the projection of xk+1 using (2.13).
Step 6. Set k = k + 1 and go to Step 1.

3. Convergence analysis

This section will provide the global convergence of Algorithms (2.1) using the monotonicity and Lipschitz
assumptions. Since the search direction (1.9) satisfied the sufficient descent condition irrespective of the choice
βk, we proceed with our proof as follows
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Lemma 3.1 ([27]). Assume that F is monotone and x,w ∈ Rn satisfy F (y)T (x− y) > 0. Let

x+ = x− F (w)T (x− w)
‖F (w)‖2

F (w). (3.1)

For any x∗ ∈ Rn such that F (x∗) = 0,∥∥x+ − x∗
∥∥2 ≤ ‖x− x∗‖2 −

∥∥x+ − x
∥∥2
. (3.2)

Lemma 3.2. Let F be monotone and Lipschitz continuous and {xk} be generated by the Algorithm 2.1. Assume
that the solution set of equation (1.1) is nonempty, for any x∗ such that F (x∗) = 0, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 . (3.3)

In fact, {xk} is bounded. This also holds that either {xk} is finite and the last iterate is a solution, or the
sequence is infinite and limk→∞ ‖xk+1 − xk‖ = 0. In addition, {xk} converges to some x∗ such that F (x∗) = 0.

Proof. First of all, if the Algorithm 2.1 ends at some k iteration, then dk = 0, and we get F (xk) = 0, which
means that xk is the solution. Now suppose dk 6= 0 for all k, and then an infinite {xk} is generated. It is obvious
from equation (2.14) that

F (wk)T (xk − wk) = −αkF (wk)T dk ≥ δα2
k ‖F (wk)‖ ‖dk‖2 > 0. (3.4)

Let x∗ be any point such that F (x∗) = 0. By (2.13), (3.4) and Lemma 3.1, we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 . (3.5)

Therefore the sequence {‖xk − x∗‖} is non-increasing and convergent, hence the sequence {xk} is bounded, and
also

lim
k→∞

‖xk+1 − xk‖ = 0. (3.6)

Now, from (2.13) and (3.4) we have

‖xk+1 − xk‖ =

∣∣F (wk)T (xk − wk)
∣∣

‖F (wk)‖
≥ δα2

k ‖dk‖
2
. (3.7)

Hence, from the inequality (3.7) and (3.6) we have

lim
k→∞

αk ‖dk‖ = 0. (3.8)

From the continuity of F and the boundedness of {xk}, it is clear that {xk} has some accumulation point x̂ such
that F (x̂) = 0. Also by choosing x∗ = x̂ in (3.5), since x∗ is arbitrary, then the sequence {‖xk − x̂‖} converges.
Hence, {xk} converges to x̂. �

It follows from assumption (ii) that there is a positive constant κ > 0 such that

‖F (xk)‖ ≤ κ, ∀k ≥ 0. (3.9)



S1118 J. SABI’U AND A. SHAH

Remarks

(1) Using the definition of yk and the Lipschitz continuity of F , we have

‖yk‖ = ‖F (xk+1)− F (xk)‖ ≤ m ‖xk+1 − xk‖ . (3.10)

(2) Also by using the definition of yk, sk and the Lipschitz continuity assumption on F , we get∣∣yTk sk∣∣ =
∣∣(F (xk+1)− F (xk))T (xk+1 − xk)

∣∣
≤ ‖Fk+1 − Fk‖ ‖xk+1 − xk‖ = m ‖xk+1 − xk‖2 .

(3.11)

It follow from (3.9) to (3.11) that

|Wk| =
‖yk−1‖
‖sk−1‖

∣∣FTk sk−1

∣∣ ≤ ‖yk−1‖
‖sk−1‖

‖Fk‖ ‖sk−1‖ ≤ mκ ‖xk − xk−1‖ , (3.12)

and

|Hk| =

∣∣∣∣∣
(
yTk−1sk−1

‖sk−1‖2
+
‖yk−1‖
‖sk−1‖

)
FTk sk−1

∣∣∣∣∣
≤
(
‖yk−1‖ ‖sk−1‖
‖sk−1‖2

+
‖yk−1‖
‖sk−1‖

)
‖Fk‖ ‖sk−1‖

≤ 2mκ ‖xk − xk−1‖ .

(3.13)

Lemma 3.3. Let our assumptions be maintained, and {xk} be generated by our Algorithm 2.1. If there exists
a constant θ > 0 such that ‖Fk‖ ≥ θ, then there exist M > 0 such that

‖dk‖ ≤M, ∀k. (3.14)

Proof. Considering the choices of pk = Fk, β
1
k and β2

k, then from (2.10), (3.9), (3.12), (3.13) and the definition
of our direction, we have

‖dk‖ =
∥∥∥∥−Fk + β1

kdk−1 − β1
k

FTk dk−1

FTk Fk
Fk

∥∥∥∥
≤ ‖Fk‖+

‖Fk‖ ‖yk−1‖+ |Wk|
ξ0‖Fk−1‖2

‖dk−1‖+
‖Fk‖ ‖yk−1‖+ |Wk|

ξ0‖Fk−1‖2
‖Fk‖ ‖dk−1‖
‖Fk‖2

‖Fk‖

= ‖Fk‖+ 2
‖Fk‖ ‖yk−1‖+ |Wk|

ξ0‖Fk−1‖2
‖dk−1‖

≤ κ+
4mκ ‖xk − xk−1‖

ξ0θ2
‖dk−1‖ .

(3.15)

Now, from (3.6) there exist c ∈ (0, 1) such that

4mκ ‖xk − xk−1‖
ξ0θ2

< c. (3.16)

Therefore, for k > k0 we have

‖dk‖ ≤ κ+ c ‖dk−1‖
≤ κ(1 + c+ c2 + . . .+ ck−k0+1) ‖dk0‖

≤ κ

1− c
+ ‖dk0‖ .

(3.17)
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Setting M = {‖d1‖ , ‖d2‖ , . . . , ‖dk0‖ , κ
1−c + ‖dk0‖}, we get (3.14). It also follows, in a similar way, that our

direction is also bounded by the choice of β2
k. �

Theorem 3.4. Suppose that {xk} is generated using Algorithm 2.1. Then

lim inf
k→∞

‖Fk‖ = 0. (3.18)

Proof. Suppose that (3.18) does not hold, that is, there exists a positive constant θ such that

‖Fk‖ > θ, ∀k ≥ 0. (3.19)

Observe that, from the sufficient descent condition (1.12) and the Cauchy–Schwarz inequality we have

‖Fk‖ ‖dk‖ ≥ −Fkdk ≥ ‖Fk‖2 . (3.20)

Therefore, from (3.20) we get
‖dk‖ ≥ ‖Fk‖ > θ > 0. (3.21)

This together with result in (3.8) implies that

lim
k→∞

αk = 0. (3.22)

From the definition of the line search procedure, αkγ−1 does not satisfy (2.14), i.e.,

−F (xk + αkγ
−1dk)T dk < δαkγ

−1
∥∥F (xk + αkγ

−1dk)
∥∥ ‖dk‖2 . (3.23)

It is therefore obvious from the boundedness of {xk} that {xk} has some accumulation point x̂ and an infinite
index set Z1 such that limk∈Z1 xk = x̂. It follows from (3.14) that {dk}k∈Z1

is bounded as well. Therefore, there
exist an infinite index set Z2 ⊂ Z1 and some accumulation point d̂ such that limk∈Z2 dk = d̂. Now, if we take
the limit in (3.23), we get

−F (x̂)T d̂ ≤ 0. (3.24)

Also taking the limit in sufficient descent condition (1.12), we get

−F (x̂)T d̂ ≥ 0. (3.25)

This gives rise to a contradiction, so (3.18) holds, and the proof is complete. �

4. Numerical experiment

This section provide the numerical tests using the proposed Algorithm 2.1. The algorithm is coded in Matlab
and comparison is provided in term efficiency with the NHZ derivative-free method [7] and the Self adaptive
spectral conjugate gradient method for solving nonlinear monotone equations (SASCG) [19]. However, for the
proposed algorithms we selected τ = 1, γ = 0.9, δ = 0.0001 and ξ0 = 0.06. Although for both the NHZ and
SASCG methods, we implemented the default parameters used in the respective papers. In addition, iteration
is terminated if ‖F (xk)‖ ≤ 10−11 or the number of iteration is higher than 1000 on the following test problems:

Problem 4.1 ([21]). The precise description of the F (x) function is described as

F (xi) = exp(xi)− 1, for i = 1, 2, 3, . . . , n.
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Problem 4.2 ([19]). The precise description of the function F (x) is described as

F1(x) = hx1 + x2 − 1,
Fi(x) = xi−1 + hxi + xi−1 − 1, for i = 2, 3, . . . , n− 1, h = 2.5,
Fn(x) = xn−1 + hxn − 1.

Problem 4.3 ([26]). The precise description of the function F (x) is described as

F (xi) = xi − sin |xi − 1| , for i = 1, 2, 3, . . . , n.

Problem 4.4 ([26]). The precise description of the function F (x) is described as

F (xi) = 2xi − sin |xi| , for i = 1, 2, 3, . . . , n.

Problem 4.5 ([16]). The precise description of the function F (x) is described as

F1(x) = x1

(
x2

1 + x2
2

)
− 1,

Fi(x) = xi
(
x2
i−1 + 2x2

i + x2
i+1

)
− 1, for i = 2, 3, . . . , n− 1,

Fn(x) = xn
(
x2
n−1 + x2

n

)
.

Problem 4.6 ([13]). The precise description of the function F (x) is described as

Fi(x) = xi −

1− c

2n

n∑
j=1

µixj
µi + µj

−1

, for i = 1, 2, . . . , n, µ =
i− 0.5
n

, c = 0.9.

Problem 4.7 ([28]). The precise description of the function F (x) is described as

F (x1) = x1 − exp
(

cos(x1 + x2)
n+ 1

)
,

F (xi) = xi − exp
(

cos(xi−1 + xi + xi+1)
n+ 1

)
, for i = 2, 3, . . . , n− 1,

F (xn) = xn − exp
(

cos(xn−1 + xn)
n+ 1

)
·

Problem 4.8 ([32,33]). The precise description of the function F (x) is described as

F (x) =



5
2 1
1 5

2 1
. . . . . . . . .

. . . . . . 1
1 5

2





x1

x2

...

xn

+



1
1
...

1

 ·

Tables 1–4 showed the numerical efficiency of the proposed methods compared to the NHZ method [7] and the
SASCG method [19]. In our comparison, ITER is set to represent the number of iterations, TIME for the CPU
time in the second, FVL for the number of function evaluations, and NORM to indicate the norm of the function
evaluation at the stopping point. On the following initial guesses, we considered eight test problems, namely,
x1 = (1, 1, . . . , 1), x2 =

(
1, 1

2 ,
1
3 , . . . ,

1
n

)
, x3 = (0.1, 0.1, . . . , 0.1), x4 =

(
1
n ,

2
n , . . . , 1

)
, x5 =

(
1− 1

n , 1−
2
n , . . . , 0

)
,

x6 = (−1,−1, . . . ,−1), x7 =
(
n− 1

n , n−
2
n , . . . , n− 1

)
and x8 =

(
1
2 , 1,

2
3 , . . . ,

2
n

)
.
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Figure 1. Performance of Algorithm 2.1 versus NHZ method [7] and SASCG method [19]
(with respect to number of iteration).
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Figure 2. Performance of Algorithm 2.1 versus NHZ method [7] and SASCG method [19]
(with respect to CPU time).

The Algorithm 2.1 with the choice β1
k has a relatively minimal number of iterations for the Table 1 compared

to the Algorithm 2.1 with the choice of β2
k, the NHZ method [7] and the SASCG method [19]. However, the

Algorithm 2.1 with choice β2
k has a minimum number of the CPU time compared to the remaining methods. In

addition, for Table 2, the Algorithm 2.1 with two choices of the βk has a minimal number of iterations compared
to the other two methods. For the CPU time, the second-choice algorithm wins over the problems with almost
99%.

In contrast, from Tables 3 and 4, our proposed algorithms also have fewer iterations and CPU time than the
remaining methods, especially for Problems 4.7 and 4.8. Nevertheless, the SASCG method [19] has on average
shown some impact on the minimum number of iterations for Problems 4.5 and 4.6. However, the overall perfor-
mance in terms of less number of iterations and CPU time is based on our proposed methods with more than 70%
for all the problems considered. However, with regard to the number of function evaluations, the two βk choices
in our algorithm often compete with the NHZ method [7] and the SASCG method [19]. We also plotted the three
figures to illustrate the performance of our methods using the performance profiles of Dolan and Moré [11]. It is
remarkable to note that, based on the Dolan and Moré procedure, the top curve in the figure has advantages over
the remaining curves (Figs. 1–3).
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Figure 3. Performance of Algorithm 2.1 versus NHZ method [7] and SASCG method [19]
(with respect to number of function evaluations).

5. Conclusion

We presented promising three-term CG-type methods to solve large-scale monotone nonlinear equations.
Based on the idea of modifying the Dai–Liao conjugacy condition using the optimal choices of the non-negative
parameter t, we suggested two new CG updates. However, to demonstrate the effectiveness of the suggested
CG updates, we incorporated them into the Solodov and Svaiter projection techniques and solved monotone
nonlinear equations. We proved the global convergence result of the proposed method and lastly used some
test problems for the numerical efficacy of our methods compared to the NHZ Algorithm [7] and the SASCG
method [19].
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