Optimality and duality in nonsmooth vector optimization with non-convex feasible set
RAIRO. Operations Research, Tome 55 (2021), pp. S1195-S1206

For a convex programming problem, the Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient for optimality under suitable constraint qualification. Recently, Suneja et al. [Am. J. Oper. Res. 6 (2013) 536–541] proved KKT optimality conditions for a differentiable vector optimization problem over cones in which they replaced the cone-convexity of constraint function by convexity of feasible set and assumed the objective function to be cone-pseudoconvex. In this paper, we have considered a nonsmooth vector optimization problem over cones and proved KKT type sufficient optimality conditions by replacing convexity of feasible set with the weaker condition considered by Ho [Optim. Lett. 11 (2017) 41–46] and assuming the objective function to be generalized nonsmooth cone-pseudoconvex. Also, a Mond–Weir type dual is formulated and various duality results are established in the modified setting.

DOI : 10.1051/ro/2020050
Classification : 90C29, 90C46, 90C30, 90C26
Keywords: Vector optimization, cones, generalized nonsmooth cone-pseudoconvex, KKT type optimality conditions, duality
@article{RO_2021__55_S1_S1195_0,
     author = {Sharma, Sunila and Yadav, Priyanka},
     title = {Optimality and duality in nonsmooth vector optimization with non-convex feasible set},
     journal = {RAIRO. Operations Research},
     pages = {S1195--S1206},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020050},
     mrnumber = {4223142},
     zbl = {1511.90383},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020050/}
}
TY  - JOUR
AU  - Sharma, Sunila
AU  - Yadav, Priyanka
TI  - Optimality and duality in nonsmooth vector optimization with non-convex feasible set
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1195
EP  - S1206
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020050/
DO  - 10.1051/ro/2020050
LA  - en
ID  - RO_2021__55_S1_S1195_0
ER  - 
%0 Journal Article
%A Sharma, Sunila
%A Yadav, Priyanka
%T Optimality and duality in nonsmooth vector optimization with non-convex feasible set
%J RAIRO. Operations Research
%D 2021
%P S1195-S1206
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020050/
%R 10.1051/ro/2020050
%G en
%F RO_2021__55_S1_S1195_0
Sharma, Sunila; Yadav, Priyanka. Optimality and duality in nonsmooth vector optimization with non-convex feasible set. RAIRO. Operations Research, Tome 55 (2021), pp. S1195-S1206. doi: 10.1051/ro/2020050

[1] S. Aggarwal, Optimality and duality in mathematical programming involving generalized convex functions. Ph.D. thesis, University of Delhi, Delhi (1998).

[2] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming. Wiley, New Jersey (2006). | MR | Zbl

[3] A. Chinchuluun, A. Migdalas, P. M. Pardalos and L. Pitsoulis, Pareto Optimality: Game Theory and Equilibria. Springer, New York (2008). | MR | Zbl | DOI

[4] F. H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, Inc., New York (1983). | MR | Zbl

[5] L. Coladas, Z. Li and S. Wang, Optimality conditions for multiobjective and nonsmooth minimisation in abstract spaces. Bull. Aust. Math. Soc. 50 (1994) 205–218. | MR | Zbl | DOI

[6] E. Constantin, Second-order necessary conditions in locally Lipschitz optimization with inequality constraints. Optim. Lett. 9 (2015) 245–261. | MR | Zbl | DOI

[7] E. Constantin, First-order necessary conditions in locally Lipschitz multiobjective optimization. Optimization 67 (2018) 1447–1460. | MR | Zbl | DOI

[8] E. Constantin, Necessary conditions for weak efficiency for nonsmooth degenerate multiobjective optimization problems. J. Global Optim. 75 (2019) 111–129. | MR | Zbl | DOI

[9] E. Constantin, Higher-order sufficient conditions for optimization problems with Gâteaux differentiable data. Rev. Roum. Math. Pures Appl. 64 (2019) 25–41. | MR | Zbl

[10] B. D. Craven, Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989) 49–64. | MR | Zbl | DOI

[11] J. Dutta and C. S. Lalitha, Optimality conditions in convex optimization revisited. Optim. Lett. 7 (2013) 221–229. | MR | Zbl | DOI

[12] G. Giorgi, Optimality conditions under generalized convexity revisited. Ann. Univ. Buchar. (Math. Ser.) 4(LXII) (2013) 479–490. | MR | Zbl

[13] J. B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993). | Zbl | DOI

[14] Q. Ho, Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. 11 (2017) 41–46. | MR | Zbl | DOI

[15] V. I. Ivanov, Higher-order optimality conditions for inequality-constrained problems. Appl. Anal. 92 (2013) 2152–2167. | MR | Zbl | DOI

[16] J. B. Lasserre, On representations of the feasible set in convex optimization. Optim. Lett. 4 (2010) 1–5. | MR | Zbl | DOI

[17] S. K. Mishra, On multiple-objective optimization with generalized univexity. J. Math. Anal. App. 224 (1998) 131–148. | MR | Zbl | DOI

[18] S. K. Mishra and R. N. Mukherjee, On generalised convex multi-objective nonsmooth programming. J. Aust. Math. Soc. Ser. B 38 (1996) 140–148. | MR | Zbl | DOI

[19] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality in nondifferentiable and multiobjective programming under generalized d -invexity. J. Global Optim. 29 (2004) 425–438. | MR | Zbl | DOI

[20] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for multiple-objective optimization under generalized type I univexity. J. Math. Anal. App. 303 (2005) 315–326. | MR | Zbl | DOI

[21] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for V -invex non-smooth multiobjective programming problems. Optimization 57 (2008) 635–641. | MR | Zbl | DOI

[22] S. K. Mishra, S. Y. Wang and K. K. Lai, Optimality and duality for a nonsmooth multiobjective optimization involving generalized type I functions. Math. Methods Oper. Res. 67 (2008) 493–504. | MR | Zbl | DOI

[23] B. Mond and T. Weir, Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W. Ziemba. Academic Press, New York (1981) 263–279. | Zbl

[24] A. A. Schy and D. P. Giesy, Multicriteria optimization methods for design of aircraft control systems, edited by W. Stadler. In: Multicriteria Optimization in Engineering and in the Sciences. Plenum, New York (1981) 225–262. | MR | Zbl

[25] W. Stadler, Multicriteria optimization in mechanics: a survey. Appl. Mech. Rev. 37 (1984) 277–286.

[26] W. Stadler, Multicriteria Optimization in Engineering and in the Sciences. Plenum Press, New York (1988). | MR | Zbl | DOI

[27] S. K. Suneja, S. Khurana and Vani, Generalized nonsmooth invexity over cones in vector optimization. Eur. J. Oper. Res. 186 (2008) 28–40. | MR | Zbl | DOI

[28] S. K. Suneja, S. Sharma, M. Grover and M. Kapoor, A different approach to cone-convex optimization. Am. J. Oper. Res. 6 (2013) 536–541.

[29] S. K. Suneja, S. Sharma and P. Yadav, Optimality and duality for vector optimization problem with non-convex feasible set. OPSEARCH 57 (2020) 1–12. | MR | Zbl | DOI

[30] T. Weir and B. Mond, Generalised convexity and duality in multiple objective programming. Bull. Aust. Math. Soc. 39 (1989) 287–299. | MR | Zbl | DOI

Cité par Sources :