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OPTIMALITY AND DUALITY IN NONSMOOTH VECTOR OPTIMIZATION
WITH NON-CONVEX FEASIBLE SET

Sunila Sharma1 and Priyanka Yadav2,∗

Abstract. For a convex programming problem, the Karush–Kuhn–Tucker (KKT) conditions are nec-
essary and sufficient for optimality under suitable constraint qualification. Recently, Suneja et al. [Am.
J. Oper. Res. 6 (2013) 536–541] proved KKT optimality conditions for a differentiable vector optimiza-
tion problem over cones in which they replaced the cone-convexity of constraint function by convexity
of feasible set and assumed the objective function to be cone-pseudoconvex. In this paper, we have
considered a nonsmooth vector optimization problem over cones and proved KKT type sufficient op-
timality conditions by replacing convexity of feasible set with the weaker condition considered by Ho
[Optim. Lett. 11 (2017) 41–46] and assuming the objective function to be generalized nonsmooth cone-
pseudoconvex. Also, a Mond–Weir type dual is formulated and various duality results are established
in the modified setting.
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1. Introduction

Most of the real world problems require simultaneous optimization of two or more objectives. Such prob-
lems are classified as Multiobjective optimization problems. Several authors have studied these problems under
convexity and generalized convexity assumptions. Mishra [17] and Mishra et al. [20] have obtained first-order
optimality conditions and duality results for differentiable multiobjective optimization problems under gener-
alized type I univexity assumptions. Similar results have also been proved by Mishra et al. [18, 19, 21, 22] for
nonsmooth multiobjective optimization problems wherein the functions involved are either locally Lipschitz or
directionally differentiable, using V -invex and (F, α, η, ρ, d)-type I functions along with their generalizations.

When ordering in the multiobjective optimization problems is defined by general cones rather than the
positive orthant, these problems are referred to as Vector optimization problems. Such problems are encountered
in many upcoming fields like game theory, variational inequalities, aircraft and automobile design, mechanical
engineering and many more [3,24–26]. The general ordering cones in vector optimization problem help to adjust
the set of efficient solutions. By choosing general cones of different sizes, we can modify the size of the set of
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efficient solutions. Since differentiability is a restrictive condition in nature, it is important to develop theory
for nonsmooth optimization problems.

Given differentiable functions f, gj : Rn −→ R, j = 1, 2, . . . ,m, consider the minimization problem:

min f(x) (CP)
subject to x ∈ S,

where S = {x ∈ Rn : gj(x) ≤ 0, j = 1, 2, . . . ,m}.
If f and gj ’s are convex, then (CP) reduces to the convex programming problem that has been studied

by various researchers [2, 13]. Constantin [6] has proved second-order necessary conditions for a nonsmooth
nonconvex nonlinear programming problem in terms of second-order directional derivatives of the functions
involved, using some new constraint qualification introduced by the author in the same paper. Ivanov [15]
obtained higher-order necessary and sufficient optimality conditions for the same problem in terms of n-th
order upper and lower Dini directional derivatives. The sufficient optimality conditions are proved by assuming
the objective function to be pseudoinvex and constraint function to be prequasiinvex with respect to same η.
Recently, Constantin [7–9] has also studied nonconvex nonsmooth multiobjective optimization problems with
both equality and inequality constraints and set constraints, its particular case problems like the ones with
equality and inequality constraints only and ones with inequality constraint (or equality constraint) and set
constraints only. The functions involved are either locally Lipschitz or Gâteaux differentiable and optimality
conditions have been obtained under some regularity conditions and constrain qualifications introduced by the
author.

A crucial feature of convex programming is that, the KKT optimality conditions are necessary and sufficient
under Slater’s constraint qualification1. However, Lasserre [16] replaced the convexity of gj ’s with convexity of
the feasible set S and obtained KKT necessary and sufficient optimality conditions for minimization problem
(CP) when f is a convex function and Slater’s constraint qualification holds along with following nondegeneracy
assumption on gj ’s:

Definition 1.1. For every j = 1, 2, . . . ,m,∇gj(x) 6= 0, whenever x ∈ S and gj(x) = 0.

Giorgi [12] generalized Lassere’s results using suitable generalized convex functions. Dutta and Lalitha [11]
studied nondifferentiable minimization problem (CP) wherein f is nondifferentiable convex function and gj ’s are
locally Lipschitz. They proved that, under Slater’s constraint qualification and nonsmooth degeneracy condition
on gj ’s, KKT type optimality conditions are necessary and sufficient when f is a convex function, S is a convex
set and gj ’s are regular in the sense of Clarke.

Suneja et al. [28] extended Lasserre’s work to the vector optimization case. They considered the following
vector optimization problem over cones.

K-Minimize f(x) (VP)
subject to − g(x) ∈ Q,

where f : Rn −→ Rp, g : Rn −→ Rm are differentiable vector valued functions, K and Q are closed, convex and
pointed cones with non-empty interiors in Rp and Rm respectively. X = {x ∈ Rn : −g(x) ∈ Q} denotes the set
of all feasible solutions of (VP).

In the absence of cone-convexity condition on g, Suneja et al. [28] proved KKT necessary and sufficient
optimality conditions for (VP) under the assumption that f is cone-convex (cone-pseudoconvex) function, X
is a convex set and Slater-type cone constraint qualification holds. Unlike Lasserre [16] they did not impose
any nondegeneracy assumption on gj ’s. However, they introduced the following non-degeneracy condition with
respect to cones for (VP) and showed that Slater-type cone-constraint qualification implies non-degeneracy
condition with respect to cones.

1Slater’s constraint qualification holds for S if there exists x0 ∈ S, gj (x0) < 0 for all j = 1, 2, . . . , m.
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Definition 1.2 ([28]). The problem (VP) is said to satisfy non-degeneracy condition if for all µ ∈ Q+ \ {0},
µT∇g(z) 6= 0, whenever z ∈ X and µT g(z) = 0.

Recently, Ho [14] considered the minimization problem (CP) with non-convex feasible set. They replaced
convexity of feasible set S by following weaker condition on S at some feasible point x:

∀ y ∈ S ∃ tn ↓ 0 such that x+ tn(y − x) ∈ S. (1.1)

By imposing the weaker condition (1.1) on S and without convexity of f and gj ’s, KKT optimality conditions
were proved to be necessary and sufficient for the minimization problem (CP) when nondegeneracy assumption
(see Def. 1.1) holds at a feasible point and Slater’s constraint qualification holds.

In 2019, Suneja et al. [29] extended Ho’s work to the differentiable vector optimization problem (VP) with
non-convex feasible set. Without cone-convexity (cone-pseudoconvexity) of the objective as well as constraint
functions, KKT optimality conditions are obtained under condition (1.1) on the feasible set X and using the
non-degeneracy condition with respect to cones (see Def. 1.2). The KKT sufficient optimality conditions are
proved by replacing cone-convexity (cone-pseudoconvexity) of the objective function with convexity of strict
level set of the objective function. Also, Mond–Weir type duality results are studied for the problem (VP).

The present paper is motivated by the works of Dutta and Lalitha [11], Suneja et al. [28] and Ho [14]. In this
paper, we consider the following nonsmooth vector optimization problem (VOP):

K-Minimize f(x) (VOP)
subject to − g(x) ∈ Q,

where f = (f1, f2, . . . , fp)T : Rn −→ Rp, g = (g1, g2, . . . , gm)T : Rn −→ Rm are locally Lipschitz functions
on Rn, K and Q are closed, convex and pointed cones with non-empty interiors in Rp and Rm respectively.
F0 = {x ∈ Rn : −g(x) ∈ Q} denotes the set of all feasible solutions of (VOP).

The paper extends the work of Dutta and Lalitha [11]. In this paper, KKT type sufficient optimality conditions
are obtained for (VOP) under the assumption that f is (strictly, strongly) nonsmooth cone-pseudoconvex and
each gj , j = 1, 2, . . . ,m is regular in the sense of Clarke. The convexity of feasible set F0 is replaced by the
weaker condition (1.1). Unlike Dutta and Lalitha [11], we do not assume any nonsmooth degeneracy assumption.
Further, we have associated a Mond–Weir type dual with (VOP) and proved duality theorems in the modified
setting. Examples are given to substantiate the results proved.

2. Notations and definitions

Let B ⊆ Rp be a closed, convex and pointed (B ∩ (−B) = {0}) cone with non-empty interior (intB 6= ∅). We
denote B \ {0} by B0. The positive dual cone B+ is defined as follows:

B+ :=
{
b ∈ Rp : zT b ≥ 0, ∀ z ∈ B

}
.

We recall the notions of locally Lipschitz function, Clarke generalized directional derivative and Clarke gen-
eralized gradient in the form of following definitions [4].

A real valued function φ : Rn −→ R is said to be locally Lipschitz at a point x ∈ Rn if there exists k > 0
such that |φ(q)− φ (q̄) | ≤ k‖q − q̄‖ ∀ q, q̄ in a neighbourhood of x.

The real valued function φ is said to be locally Lipschitz on Rn if it is locally Lipschitz at each point of Rn.
Let f = (f1, f2, . . . , fp) : Rn −→ Rp be a vector valued function where each fi is a real valued function

defined on Rn. If each component fi is locally Lipschitz on Rn, then f is locally Lipschitz on Rn and for all
λ ∈ B+, λT f =

∑p
i=1 λifi is locally Lipschitz on Rn.
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Definition 2.1. Let φ : Rn −→ R be locally Lipschitz at x ∈ Rn. Then, the Clarke generalized directional
derivative of φ at x in the direction v ∈ Rn is given by

φ◦(x, v) = lim sup
y→x,t↓0

φ(y + tv)− φ(y)
t

·

Definition 2.2. Let φ : Rn → R be locally Lipschitz at x ∈ Rn. Then, the Clarke generalized gradient of φ at
x is defined as

∂cφ(x) = {ξ ∈ Rn : φ◦(x, v) ≥ 〈ξ, v〉 , ∀ v ∈ Rn} .

It follows that φ◦(x, v) = max {〈ξ, v〉 : ξ ∈ ∂cφ(x)}, for any v ∈ Rn.
Let f = (f1, f2, . . . , fp) : Rn −→ Rp be a vector valued function such that each fi is locally Lipschitz at

x ∈ Rn. The Clarke generalized directional derivative of f at x in the direction v ∈ Rn is given by f◦(x, v) =(
f◦1 (x, v), f◦2 (x, v), . . . , f◦p (x, v)

)
where for each i = 1, 2, . . . , p, f◦i (x, v) is the Clarke generalized directional

derivative of fi at x in the direction d. The Clarke generalized gradient of f at x is the set ∂cf(x) = ∂cf1(x)×
. . .× ∂cfp(x) where ∂cfi(x) is the Clarke generalized gradient of fi at x for i = 1, 2, . . . , p. Any y ∈ ∂cf(x) is a
p× n matrix of the form y = [ξ1, ξ2, . . . , ξp]T where ξi ∈ ∂cfi(x) for all i = 1, 2, . . . , p.

In our results, we assume gj ’s to be regular in the sense of Clarke [4], so we briefly state the notion of
regularity.

Definition 2.3. Let φ : Rn −→ R be a real valued function. The directional derivative of φ at x ∈ Rn in the
direction of v ∈ Rn is given by

φ′(x, v) = lim
t↓0

φ(x+ tv)− φ(x)
t

,

provided limit exists.

Definition 2.4. Let φ : Rn −→ R be a locally Lipschitz function. The function φ is said to be regular in the
sense of Clarke if

(i) φ′(x, v) exists for all x ∈ Rn and for every direction v ∈ Rn.
(ii) φ′(x, v) = φ◦(x, v).

The solution concepts of weak minimum, minimum and strong minimum for (VOP) and Karush–Kuhn–Tucker
(KKT) point of (VOP) are defined as follows:

Definition 2.5 ([5]). A point u∗ ∈ F0 is called a

(i) weak minimum of (VOP) if f (u∗)− f(z) /∈ intK, ∀ z ∈ F0.
(ii) minimum of (VOP) if f (u∗)− f(z) /∈ K0, ∀ z ∈ F0.

(iii) strong minimum of (VOP) if f(z)− f (u∗) ∈ K, ∀ z ∈ F0.

Definition 2.6 ([10]). A point u∗ ∈ F0 is said to be a Karush–Kuhn–Tucker or a KKT point of (VOP) if

0 ∈ ∂c
(
λT f + µT g

)
(u∗) and µT g (u∗) = 0, for some λ ∈ K+ \ {0} , µ ∈ Q+.

Suneja et al. [27] defined generalizations of cone-invex functions namely K-nonsmooth pseudo-invex,
strongly K-nonsmooth pseudo-invex and strictly K-nonsmooth pseudo-invex functions with respect to
η : Rn×Rn −→ Rn. We are giving below these definitions by taking η(x, u) = x−u and call them K-nonsmooth
pseudoconvex, strongly K-nonsmooth pseudoconvex and strictly K-nonsmooth pseudoconvex functions.

Let f : Rn −→ Rp be a locally Lipschitz function, u ∈ Rn and K ⊆ Rp be a closed convex cone with non
empty interior.
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Definition 2.7. f is said to be K-nonsmooth pseudoconvex at u, if for every x ∈ Rn,

−f◦(u, x− u) /∈ intK =⇒ −(f(x)− f(u)) /∈ intK.

Definition 2.8. f is said to be strongly K-nonsmooth pseudoconvex at u, if for every x ∈ Rn,

−f◦(u, x− u) /∈ intK =⇒ f(x)− f(u) ∈ K.

Definition 2.9. f is said to be strictly K-nonsmooth pseudoconvex at u, if for every x ∈ Rn,

−f◦(u, x− u) /∈ intK =⇒ −(f(x)− f(u)) /∈ K0.

3. Optimality conditions

Suneja et al. [28] obtained KKT optimality conditions for (VP) under the convexity of feasible set and cone-
convexity (cone-pseudoconvexity) of the objective function along with Slater-type cone constraint qualification.
We prove KKT type sufficient optimality conditions for (VOP) by replacing the convexity of feasible set F0

with the weaker condition (1.1) and the objective function f is assumed to be (strictly, strongly) nonsmooth
cone-pseudoconvex.

We begin by proving the following lemma which will be used to establish KKT type sufficient optimality
conditions later.

Lemma 3.1. Suppose that the feasible set F0 of (VOP) satisfies condition (1.1) at u∗ ∈ F0 and each gj , j =
1, 2, . . . ,m is regular in the sense of Clarke. If µ ∈ Q+ satisfying µT g (u∗) = 0, then µT g◦ (u∗, x− u∗) ≤ 0 for
all x ∈ F0.

Proof. The result trivially holds for µ = 0. Let µ ∈ Q+ \ {0} such that µT g (u∗) = 0. Assume on contrary that
for some x ∈ F0

µT g◦ (u∗, x− u∗) > 0. (3.1)

Since gj ’s are regular in the sense of Clarke, we obtain

m∑
j=1

µjg
′
j (u∗, x− u∗) > 0.

Using definition of directional derivative, we get

lim
t↓0

µT g (u∗ + t (x− u∗))− µT g (u∗)
t

> 0.

This means that there exists some ε > 0 such that µT g (u∗ + t (x− u∗))− µT g (u∗) > 0, for all 0 < t < ε. From
µT g (u∗) = 0, we get

µT g (u∗ + t (x− u∗)) > 0, for all 0 < t < ε. (3.2)

�

Since F0 satisfies condition (1.1) at u∗, for x ∈ F0 there exists a sequence tn ↓ 0 such that u∗+tn (x− u∗) ∈ F0.
Then, µT g (u∗ + tn (x− u∗)) ≤ 0. In particular for sufficiently small tn, we have

µT g (u∗ + tn (x− u∗)) ≤ 0.

This contradicts equation (3.2). Hence the result.
In the following example we show that, condition (1.1) on the feasible set can not be relaxed in the above

lemma.
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Example 3.2. Let g = (g1, g2) : R −→ R2 be defined as

g1(x) =

{
−x, x ≥ 0
−2x, x < 0

and g2(x) = sinx+ x.

For Q =
{

(p, q) ∈ R2 : p ≥ 0, p ≥ −q
}

, the feasible set F0 = {x ∈ R : −g(x) ∈ Q} =
{0}

⋃
∪∞k=0 [(2k + 1)π, (2k + 2)π] . Let u∗ = 0. Clearly, F0 is a non-convex set and does not satisfy con-

dition (1.1) at u∗. Moreover, g1 and g2 are regular in the sense of Clarke.
We have Q+ =

{
(p, q) ∈ R2 : p ≥ q ≥ 0

}
and µT g(0) = 0 for all µ ∈ Q+. We calculate g◦(0, x).

Since ∂cg1(0) = [−2,−1], we get

g◦1(0, x) =

{
−x, x ≥ 0
−2x, x < 0.

Also, g2 is continuously differentiable so ∂cg2(0) = {2} and g◦2(0, x) = 2x. Hence,

g◦(0, x) = (g◦1(0, x), g◦2(0, x))

=

{
(−x, 2x)T , x ≥ 0
(−2x, 2x)T , x < 0.

Now,

µT g◦(0, x) =

{
(2µ2 − µ1)x, x ≥ 0
(µ2 − µ1) 2x, x < 0.

For (µ1, µ2) = (1, 1) ∈ Q+, µT g◦(0, x) = x � 0 for all x ∈ F0 \ {0}. Thus, conclusion of Lemma 3.1 does not
hold.

Theorem 3.3. Let u∗ be a KKT point of (VOP). Assume that f is K-nonsmooth pseudoconvex at u∗ and F0

satisfies condition (1.1) at u∗. Further, if gj’s, j = 1, 2, . . . ,m are regular in the sense of Clarke and Rp
+ ⊆ K,

Rm
+ ⊆ Q, then u∗ is a weak minimum of (VOP).

Proof. It is given that u∗ is a KKT point of (VOP), therefore there exist λ ∈ K+ \ {0} , µ ∈ Q+ such that

0 ∈ ∂c
(
λT f + µT g

)
(u∗) and µT g (u∗) = 0. (3.3)

From (3.3), we get

0 ∈

 p∑
i=1

λi∂
cfi (u∗) +

m∑
j=1

µj∂
cgj (u∗)

 .

Further Rp
+ ⊆ K,Rm

+ ⊆ Q yields

λT f◦ (u∗, h) + µT g◦ (u∗, h) ≥ 0, for all h ∈ Rn. (3.4)

Assume on contrary, that u∗ is not a weak minimum of (VOP). Then,

f (u∗)− f (û) ∈ intK, for some û ∈ F0.

Since f is K-nonsmooth pseudoconvex at u∗, −f◦ (u∗, û− u∗) ∈ intK which implies

λT f◦ (u∗, û− u∗) < 0. (3.5)

Using (3.4) for h = û− u∗, we get

λT f◦ (u∗, û− u∗) + µT g◦ (u∗, û− u∗) ≥ 0.

Using Lemma 3.1 above reduces to λT f◦ (u∗, û− u∗) ≥ 0 which is a contradiction to (3.5). Hence, our assumption
is wrong and u∗ is a weak minimum of (VOP). �
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Next we prove KKT type sufficient optimality conditions for a feasible point to be a minimum and strong
minimum of (VOP).

Theorem 3.4. Let u∗ be a KKT point of (VOP). Assume that f is strictly K-nonsmooth pseudoconvex at u∗

and F0 satisfies condition (1.1) at u∗. Further, if gj’s, j = 1, 2, . . ., m are regular in the sense of Clarke and
Rp

+ ⊆ K, Rm
+ ⊆ Q, then u∗ is a minimum of (VOP).

Proof. Assume on contrary, that u∗ is not a minimum of (VOP). Then,

f (u∗)− f (û) ∈ K0, for some û ∈ F0.

Since f is strictly K-nonsmooth pseudoconvex at u∗, −f◦ (u∗, û− u∗) ∈ intK. This implies

λT f◦ (u∗, û− u∗) < 0.

This is same as equation (3.5). Proceeding on the lines of Theorem 3.3, we get a contradiction. Thus, u∗ is a
minimum of (VOP). �

Theorem 3.5. Let u∗ be a KKT point of (VOP). Assume that f is strongly K-nonsmooth pseudoconvex at u∗

and F0 satisfies condition (1.1) at u∗. Further, if gj’s, j = 1, 2, . . ., m are regular in the sense of Clarke and
Rp

+ ⊆ K, Rm
+ ⊆ Q, then u∗ is a strong minimum of (VOP).

Proof. Assume on contrary, that u∗ is not a strong minimum of (VOP). Then,

f (û)− f (u∗) /∈ K, for some û ∈ F0.

Since f is strongly K-nonsmooth pseudoconvex at u∗, −f◦ (u∗, û− u∗) ∈ intK. This implies

λT f◦ (u∗, û− u∗) < 0.

This is same as equation (3.5). Proceeding on the lines of Theorem 3.3, we get a contradiction. Thus, u∗ is a
strong minimum of (VOP). �

Remark 3.6. Theorem 3.3 related to nonsmooth vector optimization problem (VOP) generalizes (Dutta and
Lalitha [11] Thm. 2.4) for the nonsmooth nonlinear programming problem (CP). Also, Suneja et al. [28] derived
optimality results for the vector optimization problem (VP) involving differentiable functions whereas we have
derived optimality results for the nonsmooth vector optimization problem (VOP) involving nondifferentiable
functions. Suneja et al. [27] proved the above sufficient optimality results by assuming f to be (strictly, strongly)
K-nonsmooth pseudo-invex and g to be Q-nonsmooth quasi-invex with respect to same η : Rn × Rn −→ Rn.
We have proved these results by assuming f to be (strictly, strongly) K-nonsmooth pseudoconvex and replacing
the Q-nonsmooth quasiconvexity of g by condition (1.1) on the feasible set F0.

In the following examples we have shown that if f is (strictly, strongly) K-nonsmooth pseudo-invex with
respect to η(x, u) = x − u but g is not Q-nonsmooth quasi-invex with respect to same η, still the problem
(VOP) has weak minimum, minimum and strong minimum, provided condition (1.1) is satisfied.

Example 3.7. Consider the following vector optimization problem (VOP) where
f = (f1, f2) : R −→ R2, g = (g1, g2) : R −→ R2 are defined as

f1(x) = sin | x |, f2(x) = −2 sin | x |,

g1(x) =

{
(1− x)(x− 2), x ≥ 0
−2, x < 0

and g2(x) =

{
0, x ≥ 0
−2x, x < 0.
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K =
{

(p, q) ∈ R2 : p ≥ 0, p ≥ −q
}
, Q =

{
(p, q) ∈ R2 : q ≥ 0, p ≥ −q

}
. The feasible set F0 = {x ∈ R :

−g(x) ∈ Q} = [0, 1]
⋃

[2,∞). Let u∗ = 0. Clearly, F0 is a non-convex set and satisfies condition (1.1) at
u∗. It is easy to see that g1 and g2 are regular in the sense of Clarke.

Here, K+ =
{

(p, q) ∈ R2 : p ≥ q ≥ 0
}
, Q+ =

{
(p, q) ∈ R2; q ≥ p ≥ 0

}
. For λ = (1, 0) ∈ K+ \ {0} ,

µ = (0, 1) ∈ Q+, let h(x) =
(
λT f + µT g

)
(x). Then

h(x) =

{
sinx, x ≥ 0
− sinx− 2x, x < 0.

As 0 ∈ ∂ch(0) = [−3, 1] and µT g(0) = 0, therefore u∗ = 0 is a KKT point of (VOP). Next, we calculate
−f◦ (u∗, x− u∗) at u∗ = 0. Since ∂cf1(0) = [−1, 1] and ∂cf2(0) = [−2, 2],

f◦1 (0, x) =| x | and f◦2 (0, x) = 2 | x |

and we get,

−f◦(0, x) = − (f◦1 (0, x), f◦2 (0, x))

=

{
(−x,−2x), x ≥ 0
(x, 2x), x < 0.

Also,

−(f(x)− f(0)) =

{
(− sinx, 2 sinx), x ≥ 0
(sinx,−2 sinx), x < 0.

f is K-nonsmooth pseudoconvex at u∗ = 0 because, ∀x ∈ R

−f◦(0, x) /∈ intK =⇒ −(f(x)− f(0)) /∈ intK.

From Theorem 3.3, u∗ is a weak minimum of (VOP).

Example 3.8. Consider the following vector optimization problem (VOP) where
f : R −→ R2, g : R −→ R2 are defined as

f1(x) =

{
x, x > 0
−ex + 1, x < 0,

f2(x) =

{
x, x > 0
− sinx, x < 0,

g1(x) =

{
(1− x)(x− 2), x > 0
−2, x < 0

and g2(x) =

{
0, x ≥ 0
−2x, x < 0.

K =
{

(p, q) ∈ R2 : p > 0, p > −q
}
, Q =

{
(p, q) ∈ R2 : q > 0, p > −q

}
.

As shown in Example 3.7, g1 and g2 are regular in the sense of Clarke and the feasible set F0 = [0, 1]
⋃

[2,∞)
satisfies condition (1.1) at u∗ = 0.

Choose λ = (1, 0)T ∈ K+ \ {0}, µ = (0, 1)T ∈ Q+ and set h(x) =
(
λT f + µT g

)
(x). Then,

0 ∈ ∂ch(0) = [−3, 1] and µT g(0) = 0.

Thus, u∗ = 0 is a KKT point of (VOP).
Since ∂cf1(0) = ∂cf2(0) = [−1, 1], f◦1 (0, x) = f◦2 (0, x) =| x | and we get,

−f◦(0, x) = − (f◦1 (0, x), f◦2 (0, x))

=

{
(−x,−x), x ≥ 0
(x, x), x < 0.
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Also,

−(f(x)− f(0)) =

{
(−x,−x), x ≥ 0
(ex − 1, sinx) , x < 0.

f is strictly K-nonsmooth pseudoconvex at u∗ = 0 because, ∀x ∈ R

−f◦(0, x) /∈ intK =⇒ −(f(x)− f(0)) /∈ K0.

From Theorem 3.4, u∗ is a minimum of (VOP).

Example 3.9. Consider the following vector optimization problem (VOP) where f : R −→ R2, g : R −→ R2

are defined as

f1(x) = f2(x) =

{
x, x > 0
−ex + 1, x < 0

, g1(x) =

{
(1− x)(x− 2), x > 0
−2, x < 0

and

g2(x) =

{
0, x ≥ 0
−2x, x < 0.

K =
{

(p, q) ∈ R2 : p > 0, p > −q
}
, Q =

{
(p, q) ∈ R2 : q > 0, p > −q

}
.

As shown in Example 3.7, g1 and g2 are regular in the sense of Clarke and the feasible set F0 = [0, 1]
⋃

[2,∞)
satisfies condition (1.1) at u∗ = 0.

Choose λ = (1, 0)T ∈ K+ \ {0}, µ = (0, 1)T ∈ Q+ and set h(x) =
(
λT f + µT g

)
(x). Then,

0 ∈ ∂ch(0) = [−3, 1] and µT g(0) = 0.

Thus, u∗ = 0 is a KKT point of (VOP).
Since ∂cf1(0) = ∂cf2(0) = [−1, 1], f◦1 (0, x) = f◦2 (0, x) =| x | and we get,

−f◦(0, x) = − (f◦1 (0, x), f◦2 (0, x))

=

{
(−x,−x), x ≥ 0
(x, x), x < 0.

Also,

f(x)− f(0) =

{
(x, x), x ≥ 0
(−ex + 1,−ex + 1) , x < 0.

f is strongly K-nonsmooth pseudoconvex at u∗ = 0 because, ∀x ∈ R

−f◦(0, x) /∈ intK =⇒ f(x)− f(0) ∈ K.

From Theorem 3.5, u∗ is a strong minimum of (VOP).

4. Duality

In this section, we associate a Mond–Weir type dual with (VOP) and establish duality results. Mond–Weir
dual was proposed by Mond and Weir [23] for the nonlinear programming problem. This dual has same objective
function as that of primal problem and duality theorems hold under weaker notions of convexity. Weir and Mond
[30] extended duality results for Mond–Weir dual of nonlinear programming problem to the multiobjective
optimization problem. Aggarwal [1] formulated a Mond–Weir type dual for the vector optimization problem
over cones.



S1204 S. SHARMA AND P. YADAV

On the lines of Suneja et al. [27], we consider the following Mond–Weir type dual problem for (VOP).

K-Maximize f(z) (MWD)

subject to 0 ∈ ∂c
(
λT f + µT g

)
(z), (4.1)

µT g(z) ≥ 0 (4.2)

λ ∈ K+ \ {0} , µ ∈ Q+, z ∈ F0.
Let FD be the feasible set of (MWD).

Definition 4.1. A point
(
z̄, λ̄, µ̄

)
∈ FD is called a weak maximum of (MWD) if f(z)−f (z̄) /∈ intK, ∀ (z, λ, µ) ∈

FD.

We now prove Weak and Strong Duality results for the dual (MWD).

Theorem 4.2 (Weak Duality). Let x ∈ F0 and (z, λ, µ) ∈ FD. Assume that f is K-nonsmooth pseudoconvex
at z and F0 satisfies condition (1.1) at z. Further, if gj’s, j = 1, 2, . . . ,m are regular in the sense of Clarke and
Rp

+ ⊆ K, Rm
+ ⊆ Q ,then f(z)− f(x) /∈ intK.

Proof. The proof follows on the lines of Theorem 3.3. �

Example 4.3. Consider the same vector optimization problem as in Example 3.7 and call it (P1). Let (D1) be
the corresponding Mond–Weir type dual for (P1).

Consider (z, λ, µ) = (0, (1, 0), (0, 1)) where z ∈ F0, λ ∈ K+ \ {0} and µ ∈ Q+. As shown in Example 3.7,
0 ∈ ∂c

(
λT f + µT g

)
(0) and µT g(0) = 0. Therefore, (z, λ, µ) ∈ FD. It was deduced in Example 3.7 that f is

K-nonsmooth pseudoconvex at z and F0 satisfies condition (1.1) at z. Also, g1, g2 are regular in the sense of
Clarke and R2

+ ⊆ K,R2
+ ⊆ Q. Consider x = 3π/2 ∈ F0. Then f(z) − f(x) = (1,−2)T /∈ intK. Hence, Weak

Duality holds for feasible point x of (P1) and feasible point (z, λ, µ) of (D1).

To prove Strong Duality result, we utilize the following Fritz John type necessary optimality conditions for
a nonsmooth vector optimization problem from the work of Craven [10].

Theorem 4.4. Let u∗ be a weak minimum of (VOP), then there exists (0, 0) 6= (λ, µ) ∈ K+ ×Q+ such that

0 ∈ ∂c
(
λT f + µT g

)
(u∗) and µT g (u∗) = 0.

KKT type necessary optimality conditions can be obtained under the assumption of following Slater-type
constraint qualification for the set ∂cg(·).

Definition 4.5 ([10]). The problem (VOP) is said to satisfy Slater-type constraint qualification at u∗ if for all
y ∈ ∂cg (u∗), there exists u ∈ Rn such that yu ∈ −intQ.

Theorem 4.6 (Strong Duality). Let u∗ be a weak minimum of (VOP). If (VOP) satisfies Slater-type constraint
qualification at u∗, then there exist λ∗ ∈ K+ \{0} , µ∗ ∈ Q+ such that (u∗, λ∗, µ∗) is feasible for the dual problem
(MWD) and the values of the objective functions of (VOP) and (MWD) are equal. Further, if Rp

+ ⊆ K, Rm
+ ⊆ Q

and conditions of Weak Duality Theorem 4.2 hold for all (z, λ, µ) ∈ FD, then (u∗, λ∗, µ∗) is a weak maximum
of (MWD).

Proof. Since u∗ is a weak minimum of (VOP), by Theorem 4.4 and Slater-type constraint qualification there
exist λ∗ ∈ K+ \ {0} , µ∗ ∈ Q+ such that Definition 4.1 and Theorem 4.2 are satisfied. Thus, (u∗, λ∗, µ∗) is
feasible for the dual problem (MWD) and objective function values of (VOP) and (MWD) are equal. Assume
by contradiction that (u∗, λ∗, µ∗) is not a weak maximum of (MWD). Then, there exists (z, λ, µ) ∈ FD such that
f(z)− f (u∗) ∈ intK, which contradicts the Weak Duality. Hence, (u∗, λ∗, µ∗) is a weak maximum of (MWD).
�
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Remark 4.7. Suneja et al. [27] obtained the Strong Duality result for feasibility of the dual problem by
assuming f to be K-generalized invex and g to be Q-generalized invex with respect to η whereas in the above
Strong Duality result, we have not used any condition on f and g in order to obtain the dual feasible point. In
the following example, f is not K-generalized invex with respect to η(x, u) = x − u, still we have obtained a
dual feasible point.

Example 4.8. Consider the following vector optimization problem (VOP) where f : R −→ R2, g : R −→ R2

are defined as

f1(x) = sin | x |, f2(x) = −2 sin | x | and

g1(x) = g2(x) =

{
− sinx, x > 0
−2x, x < 0.

K =
{

(p, q) ∈ R2 : p > 0, p > −q
}
, Q =

{
(p, q) ∈ R2 : q > 0, p > −q

}
.

The feasible set F0 = {x ∈ R : −g(x) ∈ Q} =
⋃∞

k=0 [2kπ, (2k + 1)π] . Let u∗ = 0. Then,

−(f(x)− f(0)) =

{
(− sinx, 2 sinx), x ≥ 0
(sinx,−2 sinx), x < 0

/∈ intK, ∀x ∈ F0.

Thus, u∗ = 0 is a weak minimum of (VOP).
Clearly, ∂cg(0) = ∂cg1(0)×∂cg2(0) =

{
(ξ1, ξ2)T : ξ1, ξ2 ∈ [−2,−1]

}
. Therefore, for all y ∈ ∂cg(0) there exists

u = 1 ∈ R such that yu ∈ −intQ. Thus, (VOP) satisfies Slater-type constraint qualification at u∗.
Using Theorem 4.6, we can find λ∗ = (1, 0)T ∈ K+ \ {0} and µ∗ = (0, 1)T ∈ Q+ such that

0 ∈ ∂c
(
λ∗T f + µ∗T g

)
(0) and µ∗T g(0) = 0.

Thus, (u∗ = 0, λ∗ = (1, 0), µ∗ = (0, 1)) is feasible for the corresponding Mond–Weir dual (MWD).

5. Conclusion

We have obtained KKT type sufficient optimality conditions and duality theorems for (VOP) by assuming
f to be (strictly, strongly) nonsmooth cone-pseudoconvex function. Also, convexity of the feasible set F0 is
replaced by a weaker condition. We have not used any degeneracy assumption to prove the results. It will be
interesting to derive aforesaid results without the condition of regularity.

Acknowledgements. The authors would like to express their sincere thanks to anonymous referees and the editor for
valuable suggestions and comments for the paper which have considerably improved the presentation of the paper.

References

[1] S. Aggarwal, Optimality and duality in mathematical programming involving generalized convex functions. Ph.D. thesis,
University of Delhi, Delhi (1998).

[2] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming. Wiley, New Jersey (2006).

[3] A. Chinchuluun, A. Migdalas, P.M. Pardalos and L. Pitsoulis, Pareto Optimality: Game Theory and Equilibria. Springer,
New York (2008).

[4] F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, Inc., New York (1983).

[5] L. Coladas, Z. Li and S. Wang, Optimality conditions for multiobjective and nonsmooth minimisation in abstract spaces. Bull.
Aust. Math. Soc. 50 (1994) 205–218.

[6] E. Constantin, Second-order necessary conditions in locally Lipschitz optimization with inequality constraints. Optim. Lett. 9
(2015) 245–261.

[7] E. Constantin, First-order necessary conditions in locally Lipschitz multiobjective optimization. Optimization 67 (2018)
1447–1460.



S1206 S. SHARMA AND P. YADAV

[8] E. Constantin, Necessary conditions for weak efficiency for nonsmooth degenerate multiobjective optimization problems.
J. Global Optim. 75 (2019) 111–129.

[9] E. Constantin, Higher-order sufficient conditions for optimization problems with Gâteaux differentiable data. Rev. Roum.
Math. Pures Appl. 64 (2019) 25–41.

[10] B.D. Craven, Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989) 49–64.

[11] J. Dutta and C.S. Lalitha, Optimality conditions in convex optimization revisited. Optim. Lett. 7 (2013) 221–229.

[12] G. Giorgi, Optimality conditions under generalized convexity revisited. Ann. Univ. Buchar. (Math. Ser.) 4(LXII) (2013)
479–490.

[13] J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993).

[14] Q. Ho, Necessary and sufficient KKT optimality conditions in non-convex optimization. Optim. Lett. 11 (2017) 41–46.

[15] V.I. Ivanov, Higher-order optimality conditions for inequality-constrained problems. Appl. Anal. 92 (2013) 2152–2167.

[16] J.B. Lasserre, On representations of the feasible set in convex optimization. Optim. Lett. 4 (2010) 1–5.

[17] S.K. Mishra, On multiple-objective optimization with generalized univexity. J. Math. Anal. App. 224 (1998) 131–148.

[18] S.K. Mishra and R.N. Mukherjee, On generalised convex multi-objective nonsmooth programming. J. Aust. Math. Soc. Ser.
B 38 (1996) 140–148.

[19] S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality in nondifferentiable and multiobjective programming under
generalized d-invexity. J. Global Optim. 29 (2004) 425–438.

[20] S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for multiple-objective optimization under generalized type I
univexity. J. Math. Anal. App. 303 (2005) 315–326.

[21] S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for V -invex non-smooth multiobjective programming problems.
Optimization 57 (2008) 635–641.

[22] S.K. Mishra, S.Y. Wang and K.K. Lai, Optimality and duality for a nonsmooth multiobjective optimization involving gener-
alized type I functions. Math. Methods Oper. Res. 67 (2008) 493–504.

[23] B. Mond and T. Weir, Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, edited
by S. Schaible and W. Ziemba. Academic Press, New York (1981) 263–279.

[24] A.A. Schy and D.P. Giesy, Multicriteria optimization methods for design of aircraft control systems, edited by W. Stadler. In:
Multicriteria Optimization in Engineering and in the Sciences. Plenum, New York (1981) 225–262.

[25] W. Stadler, Multicriteria optimization in mechanics: a survey. Appl. Mech. Rev. 37 (1984) 277–286.

[26] W. Stadler, Multicriteria Optimization in Engineering and in the Sciences. Plenum Press, New York (1988).

[27] S.K. Suneja, S. Khurana and Vani, Generalized nonsmooth invexity over cones in vector optimization. Eur. J. Oper. Res. 186
(2008) 28–40.

[28] S.K. Suneja, S. Sharma, M. Grover and M. Kapoor, A different approach to cone-convex optimization. Am. J. Oper. Res. 6
(2013) 536–541.

[29] S.K. Suneja, S. Sharma and P. Yadav, Optimality and duality for vector optimization problem with non-convex feasible set.
OPSEARCH 57 (2020) 1–12.

[30] T. Weir and B. Mond, Generalised convexity and duality in multiple objective programming. Bull. Aust. Math. Soc. 39 (1989)
287–299.


	Introduction
	Notations and definitions
	Optimality conditions
	Duality
	Conclusion
	References

