Merging decision-making units with interval data
RAIRO. Operations Research, Tome 55 (2021), pp. S1605-S1631

This paper deals with the problem of merging units with interval data. There are two important problems in the merging units. Estimation of the inherited inputs/outputs of the merged unit from merging units is the first problem while the identification of the least and most achievable efficiency targets from the merged unit is the second one. In the imprecise or ambiguous data framework, the inverse DEA concept and linear programming models could be employed to solve the first and second problem, respectively. To identify the required inputs/outputs from merging units, the merged entity is enabled by the proposed method. This provides a predefined efficiency goal. The best and worst attainable efficiency could be determined through the presented models. The developed merging theory is evaluated through a banking sector application.

DOI : 10.1051/ro/2020029
Classification : 90C05, 90C29, 90C39, 90C90, 90B50, 47N10
Keywords: Data envelopment analysis (DEA), inverse DEA, merging DMUs, interval data, multiple-objective programming (MOP)
@article{RO_2021__55_S1_S1605_0,
     author = {Ghobadi, Saeid},
     title = {Merging decision-making units with interval data},
     journal = {RAIRO. Operations Research},
     pages = {S1605--S1631},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020029},
     mrnumber = {4223133},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020029/}
}
TY  - JOUR
AU  - Ghobadi, Saeid
TI  - Merging decision-making units with interval data
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1605
EP  - S1631
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020029/
DO  - 10.1051/ro/2020029
LA  - en
ID  - RO_2021__55_S1_S1605_0
ER  - 
%0 Journal Article
%A Ghobadi, Saeid
%T Merging decision-making units with interval data
%J RAIRO. Operations Research
%D 2021
%P S1605-S1631
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020029/
%R 10.1051/ro/2020029
%G en
%F RO_2021__55_S1_S1605_0
Ghobadi, Saeid. Merging decision-making units with interval data. RAIRO. Operations Research, Tome 55 (2021), pp. S1605-S1631. doi: 10.1051/ro/2020029

G. R. Amin and S. Al-Muharrami, A new inverse data envelopment analysis model for mergers with negative data. IMA J. Manage. Math. 29 (2018) 137–149. | MR

G. R. Amin and A. Oukil, Flexible target setting in mergers using inverse data envelopment analysis. Int. J. Oper. Res. 35 (2019) 301–317. | DOI

G. R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal. 48 (2017) 51–61. | DOI

G. R. Amin, S. Al-Muharrami and M. Toloo, A combined goal programming and inverse DEA method for target setting in mergers. Expert Syst. App. 115 (2019) 412–417. | DOI

X. Bai, J. Zeng and Y. Chiu, Pre-evaluating efficiency gains from potential mergers and acquisitions based on the resampling DEA approach: evidence from China’s railway sector. Trans. Policy 76 (2019) 46–56. | DOI

C. Bernad, L. Fuentelsaz and J. Gómez, The effect of mergers and acquisitions on productivity: an empirical application to Spanish banking. Omega 38 (2010) 283–293. | DOI

P. Bogetoft and D. X. Wang, Estimating the potential gains from mergers. J. Prod. Anal. 23 (2005) 145–171. | DOI

A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. | MR | Zbl | DOI

W. D. Cook and L. M. Seiford, Data envelopment analysis (DEA)-Thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. | MR | Zbl | DOI

W. W. Cooper, K. S. Park and G. Yu, IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manage. Sci. 45 (1999) 597–607. | Zbl | DOI

W. W. Cooper, L. M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, Applications, References and DEA-Solver Software, Second edition. Springer US, New York, NY (2007). | Zbl

D. Despotis and Y. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36. | MR | Zbl | DOI

L. Dong-Joon, Inverse DEA with frontier changes for new product target setting. Eur. J. Oper. Res. 254 (2016) 510–516. | MR | DOI

M. Ehrgott, Multicriteria Optimization. Springer, Berlin-Heidelberg (2005). | MR | Zbl

A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Soc. Econ. Plan. Sci. 61 (2018) 4–8. | DOI

A. Emrouznejad, B. Parker and G. Tavares, Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. J. Socio Econ. Plan. Sci. 42 (2008) 151–157. | DOI

A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini, M. Tavana and N. Aghayi, An overall profit Malmquist productivity index with fuzzy and interval data. Math. Comput. Model. 54 (2011) 2827–2838. | MR | Zbl | DOI

A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini and M. Tavana, General and multiplicative non-parametric corporate performance models with interval ratio data. Math. Comput. Model. 36 (2012) 5506–5514. | Zbl

A. Emrouznejad, G.-L. Yang and G. R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. J. Oper. Res. Soc. 70 (2018) 1–12.

T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data. Eur. J. Oper. Res. 136 (2002) 32–45. | MR | Zbl | DOI

S. Gattoufi, G. R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014) 73–87. | Zbl

S. Ghobadi, Inputs and outputs estimation in inverse DEA. Iran. J. Optim. 9 (2017) 119–129.

S. Ghobadi, Inverse DEA using enhanced Russell measure in the presence of fuzzy data. Int. J. Ind. Math. 10 (2018) 1–16.

S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO: OR 53 (2019) 1791–1805. | MR | Zbl | Numdam | DOI

S. Ghobadi and S. Jahangiri, Optimal allocation of resources using the ideal-solutions. J. New Res. Math. 5 (2019) 121–134.

S. Ghobadi, G. R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Dynamic inverse DEA in the presence of fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151.

S. Ghobadi, G. R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Efficiency measure under inter-temporal dependence. Int. J. Technol. Decis. Making 17 (2018) 657–675. | DOI

A. Hadi-Vencheh, A. A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008) 983–993. | DOI

G. R. Jahanshahloo, F. Hosseinzadeh Lofti and M. Moradi, Sensitivity and stability analysis in DEA with interval data. Appl. Math. Comput. 156 (2004) 463–477. | MR | Zbl

G. R. Jahanshahloo, F. Hosseinzadeh Lofti, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA models. Appl. Math. Comput. 169 (2005) 905–916. | MR | Zbl

G. R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-Malkhalifeh and M. Ahadzadeh Namin, A generalized model for data envelopment analysis with interval data. Appl. Math. Model. 33 (2009) 3237–3244. | MR | Zbl | DOI

G. R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-Malkhalifeh and S. Ghobadi, Using enhanced Russell model to solve inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 1–10. | DOI

G. R. Jahanshahloo, M. Soleimani-Damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. | MR | DOI

C. Kao, Interval efficiency measures in data envelopment analysis with imprecise data. Eur. J. Oper. Res. 174 (2006) 1087–1099. | Zbl | DOI

H. Leleu, J. Moises and V. Valdmanis, Optimal productive size of hospitals intensive care units. Int. J. Prod. Econ. 136 (2012) 297–305. | DOI

F. Li, L. Liang, L. Yongjum and A. Emrouznejad, An alternative approach to decompose the potential gains from mergers. J. Oper. Res. Soc. 69 (2018) 1793–1802. | DOI

H. T. Lin, An efficiency-driven approach for setting revenue target. Decis. Support Syst. 49 (2010) 311–317. | DOI

H. H. Liu, T. Y. Chen and L. Y. Pai, The influence of merger and acquisition activities on corporate performance in the Taiwanese telecommunications industry. Serv. Ind. J. 27 (2007) 1041–1051. | DOI

P. Molyneux, K. Schaeck and T. Mi Zhou, Too systemically important to fail in banking – evidence from bank mergers and acquisitions. J. Int. Money Finance 49 (2014) 258–282. | DOI

V. Moonesian, S. Jahangiri and S. Ghobadi, Efficiency and super-efficiency under inter-temporal dependence. RAIRO:OR 54 (2020) 1385–1400. | MR | Numdam | DOI

J. Motis, Mergers and acquisitions motives, Working Papers 0730. University of Crete, Department of Economics (2007).

J. K. Sengupta, A fuzzy systems approach in data envelopment analysis. Comput. Math. App. 24 (1992) 259–266. | MR | Zbl

X. Shi, Y. Li, A. Emrouznejad, J. Xie and L. Liang, Estimation of potential gains from bank mergers: a novel two-stage cost efficiency DEA model. J. Oper. Res. Soc. 9 (2017) 1045–1055. | DOI

A. H. Shokouhi, A. Hatami-Marbini, M. Tavana and S. Saati, A robust optimization approach for imprecise data envelopment analysis. Comput. Ind. Eng. 59 (2010) 387–397. | DOI

Y. Wang, R. Greatbanks and J. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. | MR | Zbl | DOI

P. Wanke, A. Maredza and R. Gupta, Merger and acquisitions in South African banking: a network DEA model. Res. Int. Bus. Finance 41 (2017) 362–376. | DOI

J. A. Weber and U. M. Dholakia, Including marketing synergy in acquisition analysis: a step-wise approach. Ind. Market. Manage. 29 (2000) 157–177. | DOI

M. Wegener and G. R. Amin, Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert Syst. App. 122 (2019) 369–375. | DOI

E. Zeinodin and S. Ghobadi, Merging DMUs based on of the idea inverse DEA. Iran. J. Optim. 11 (2019) 77–84.

E. Zeinodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manage. Math. 31 (2020) 139–166. | MR | Zbl

X. Zhang and J. Cui, A project evaluation system in the state economic information system of China: an operation research practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452. | DOI

Cité par Sources :