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MERGING DECISION-MAKING UNITS WITH INTERVAL DATA

Saeid Ghobadi∗

Abstract. This paper deals with the problem of merging units with interval data. There are two
important problems in the merging units. Estimation of the inherited inputs/outputs of the merged
unit from merging units is the first problem while the identification of the least and most achievable
efficiency targets from the merged unit is the second one. In the imprecise or ambiguous data framework,
the inverse DEA concept and linear programming models could be employed to solve the first and second
problem, respectively. To identify the required inputs/outputs from merging units, the merged entity
is enabled by the proposed method. This provides a predefined efficiency goal. The best and worst
attainable efficiency could be determined through the presented models. The developed merging theory
is evaluated through a banking sector application.
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1. Introduction

The data envelopment analysis (DEA) is known as a non-parametric technique for measuring the relative
efficiencies of a set of decision-making units (DMUs) with multiple input and output levels. This technique is
a powerful mathematical tool that has been employed in different applications like management and economics.
In this technique, each unit looks for most desirable set of weights to maximize its efficiency. Therefore, the
efficiency of the DMUs could be measured by DEA technique from the optimistic viewpoint. DEA was initially
introduced by Charnes et al. [8] and developed from both theoretical and practical aspects by many schol-
ars, see e.g. Cook and Seiford [9], Cooper et al. [11], Emrouznejad et al. [16], Emrouznejad and Yang [15],
Ghobadi et al. [27], and Moonesian et al. [40] for some reviews.

In the conventional DEA models, it is assumed that the input and output levels are known exactly. However,
this assumption may not be realized in some realistic situations. In other words, the input and output levels in
actual problems (such as the efficiency of different bank branches) are often imprecise or ambiguous. Although
the stochastic DEA (SDEA) approach has been proposed to deal with imprecise or ambiguous data, due to small
sample sizes and specific error distribution assumption, this approach could not be employed for performance
evaluation of the DMUs [42]. Therefore, to deal with imprecise or ambiguous data, two main approaches including
the fuzzy DEA (FDEA) and the interval DEA (IDEA) have been utilized for performance evaluation of DMUs
in the literature. The FDEA and IDEA approaches have been proposed by Sengupta [42] and Cooper et al. [10],
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respectively. In Cooper et al. [10], an interval approach based method has been developed by transforming the
DEA model into a linear programming (LP) one in the presence of both imprecise and precise data. This paper
deals with the IDEA approach based models to achieve their goals. Although, the proposed method could be
extended to deal with the FDEA approach, this is not studied in this paper.

Estimation of the lower and upper bounds of the unit’s efficiencies is known as an important issue in the
interval approach. This issue has been studied by some researchers to present various results, including Despotis
and Smirlis [12], Entani et al. [20], Kao [34], and Wang et al. [45]. According to the pessimistic and optimistic
viewpoints, an appropriate method has been proposed by Entani et al. [20] to estimate the efficiency and
inefficiency intervals for each DMU with imprecise data. Despotis and Smirlis [12] presented a pair of LP models
to estimate the upper and lower bounds of efficiency in the presence of interval data. They employed different
production technologies to estimate the efficiency score of DMUs that makes their comparison impossible.
In fact, using different production possibility sets (PPS) is a drawback of the models proposed by Despotis and
Smirlis [12]. To overcome this drawback, these models have been revisited by employing the unique production
technology that provides the possibility of measuring the lower and upper bounds of efficiency for each unit
[45]. The models proposed by Wang et al. [45] are utilized to achieve the objectives of this paper. Various
theoretical and practical aspects of the IDEA approach have been investigated in the literature, including
Shokouhi et al. [44], Jahanshahloo et al. [29, 31], and Emrouznejad et al. [17, 18].

The inverse DEA idea has been initially introduced by Zhang and Cui [51]. In inverse DEA, an efficiency
level is considered as a strategic target and the main goal is to estimate the required input and output levels
to achieve this pre-determined efficiency level while the goal in the traditional DEA models is to measure the
efficiency score of a DMU with known input and output levels. According to the DEA literature, the various
theoretical and practical aspects of the inverse DEA have been studied by some researchers, including sensitivity
analysis [30], setting revenue target [13,37], resource allocation [19,22,25,28], investment analysis [32,48], under
inter-temporal dependence of data [24,33], with imprecise data [23,26], and firms restructuring [3].

In the business world, several companies are usually merged to generate a new company with superior
performance. Generally, a merger is formed when at least two DMUs combine their activities to generate
a new merged unit with better performance. Moreover, these companies acquire other businesses to obtain
novel technologies or decrease competition. These companies could be converted to more effective, beneficial
and strong companies by means of the mentioned mergers and acquisitions (M&As). According to Motis [41]
studies, the proposed motives for M&As are based on the shareholder gains (such as efficiency and synergy)
or based on the managerial gains (such as empire building or managerial discretion). In this paper, obtaining
the maximum benefit by saving inputs or maximizing outputs is the main motive for M&A. According to the
consummated or proposed acquisitions, Weber and Dholakia [47] provided a method to identifying, valuing, and
prioritizing opportunities for marketing synergy. This method can help improve the chances for more successful
M&As. The performance of the effects of M&As is examined through a banking empirical application [6]. The
research results show that the productivity has not been fully improved due to inefficient mergers. According
to the M&A literature, the effects of M&A have been studied in many theoretical and applied publications,
including telecommunications [38], agriculture [7], healthcare [35], railway [5] and banking [39,46].

The DEA technique is a powerful mathematical tool that can be used to evaluate of the mergers performance
in different field. Estimation of the inherited inputs and outputs from merging DMUs is an important topic. The
inverse DEA has been firstly employed in the merging DMUs problem to identify the inherited input/output
levels from merging units to achieve the pre-defined target level by Gattoufi et al. [21]. Zeinodin and Ghobadi
[49] provided a new approach to answer the problem of merging units using Pareto solutions of linear multiple-
objective programming (MOLP) problems. An important advantage of the proposed approach, compared to the
inverse DEA models proposed in Gattoufi et al. [21], decreases the number of the variables of the model strongly.
This leads to reduced computational complexity. According to the inverse DEA and goal programming, Amin
et al. [4] have proposed a new model for target setting of a merger. This study is an important practical method
that allows managers to incorporate their priority in target setting of a merger to reach the maximum benefit
either by saving inputs or maximizing outputs. Amin and Oukil [2] presented the inverse DEA based method
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for flexible target setting of a merger. The presented method allows the decision maker to prioritize specific
input in the target settings. A two-phase method suggested to estimate of the potential merger efficiency of
a hypothetical unit from the cost viewpoint by Shi et al. [43]. Also, a new method is proposed for analyzing the
potential overall gains from mergers into technical, size, and harmony effects by Li et al. [36]. According to this
study, it was concluded that the technical and harmony effects would work favor mergers, while the size effect
would work against most mergers. According to the DEA literature, the inverse DEA has been adopted to solve
the problem of merging DMUs with negative data and under inter-temporal dependence data by Amin and
Al-Muharrami [1] and Zenodin and Ghobadi [50], respectively. However, the proposed models in these studies
could not solve the merging DMUs problem in the presence of interval data. Therefore, the following questions
in the IDEA framework are raised:

Question 1. If a subset of DMUs is required for merging and creating a new DMU with a definite input/output
level and a predetermined efficiency target, what should be the output/input level of the merged DMU?
Question 2. What are the least and most achievable efficiency targets through a given merging?

To answer Question 1, an inverse DEA method is proposed. In other words, novel inverse DEA models are
provided to achieve a pre-defined efficiency target of a merger with interval data. The proposed models enables
the merged DMU to estimate the required values of inputs/outputs from merging DMUs to achieve a pre-
specified efficiency level. Sufficient conditions for estimating the upper and lower bounds of the input/output
levels of the merged DMU are established through the Pareto and weak Pareto solutions of multiple-objective
linear programming problems. The paper also provides insightful models to answer Question 2. In other words,
a method proposed to determine the least and most achievable efficiency values through a given merging.
Although the proposed method could be utilized in several applications, its performance is investigated through
a banking sector example.

The current paper proceeds as follows: Section 2 provides some preliminaries from multiple-objective opti-
mization and DEA with interval data. The main results of the paper are presented in Sections 3 and 4.
In Section 3, identification of the inherited input/output levels are dealt with. In Section 4, a method is pro-
posed for determining the minimum and maximum attainable values of the upper and lower performance through
a merger. In Section 5, a banking sector application is presented to demonstrate the developed merging theory.
Section 6 gives a brief conclusion and future research directions.

2. Preliminaries

2.1. Multiple-objective programming

A general multiple-objective programming (MOP) problem is as

max F (x)
s.t. X = {x ∈ Rm : G(x) ≤ 0}, (2.1)

where F (x) = (f1(x), f2(x), . . . , fn(x)) , G(x) = (g1(x), g2(x), . . . , gp(x)).
x ∈ X is called a feasible solution to MOP (2.1). fjs are the objective functions of this MOP. There is usually

no feasible solution that simultaneously maximizes all objective functions. Therefore, (weak) Pareto solutions
are defined instead of optimal solutions.

Definition 2.1 (Ehrgott [14]). Let x̄ be a feasible solution to MOP (2.1).

(i) If there does not exist x ∈ X such that

fj(x̄) ≤ fj(x) for each j = 1, 2, . . . , n,
fj(x̄) < fj(x) for some j = 1, 2, . . . , n,

then x̄ is called a Pareto solution to MOP (2.1).
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(ii) If there does not exist x ∈ X such that

fj(x̄) < fj(x) for each j = 1, 2, . . . , n,

then x̄ is called a weak Pareto solution to MOP (2.1).

2.2. DEA with interval data

Suppose that there is a set of n DMUs, {DMUj : j ∈ J = {1, 2, . . . , n}}, to be evaluated. Assume that the
DMUj consumes m inputs xij in order to produce s outputs yrj , for all i = 1, 2, . . . ,m, r = 1, 2, . . . , s, and
j = 1, 2, . . . , n. Unlike the conventional DEA, suppose that the input and output levels of DMUj are not known
exactly. In other words, the true input and output levels of DMUj are known to lie within bounded intervals,
i.e. xij = [xl

ij , x
u
ij ] and yrj = [yl

rj , y
u
rj ], where the lower and upper bounds of intervals given as constants and

assumed positive. Also, xl
ij ≤ xu

ij and yl
rj ≤ yu

rj . In this case, the efficiency score of DMUo, o ∈ J can be an
interval as θo = [θl

o, θ
u
o ], where θl

o and θu
o are the lower and upper bounds of the efficiency interval DMUo,

respectively. According to the pessimistic and optimistic viewpoints, Despotis and Smirlis [12] presented a pair of
LP models to estimate the upper and lower bounds of efficiency. In these models, variable production possibility
set (PPS) is employed to measure the efficiencies of DMUs. Accordingly, their comparison becomes impossible.
To measure the efficiencies of all DMUs, the models proposed by Despotis and Smirlis [12] have been modified
by Wang et al. [45] by using a fixed and unified PPS. In order to the unit assessment of DMUo, the envelopment
form of these DEA models under variable returns to scale (VRS) assumption are formulated as follows:

θl
o = min θ (2.2)

s.t.
n∑

j=1

λjx
l
ij ≤ θxu

io, i = 1, 2, . . . ,m,

n∑
j=1

λjy
u
rj ≥ yl

ro, r = 1, 2, . . . , s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , n.

θu
o = min θ (2.3)

s.t.
n∑

j=1

λjx
l
ij ≤ θxl

io, i = 1, 2, . . . ,m,

n∑
j=1

λjy
u
rj ≥ yu

ro, r = 1, 2, . . . , s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , n.

In models (2.2) and (2.3), (λ, θ) is the variables vector. It is not difficult to see that θl
o ≤ θu

o ≤ 1. These models
are in the input-oriented. Wang et al. [45] defined the efficient unit as follows:

Definition 2.2. DMUo is called input-oriented efficient if and only if θu
o = 1; otherwise, it is inefficient.
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The output-oriented version of the models (2.2) and (2.3) are as follows:

ϕu
o = max ϕ (2.4)

s.t.
n∑

j=1

λjx
l
ij ≤ xu

io, i = 1, 2, . . . ,m,

n∑
j=1

λjy
u
rj ≥ ϕyl

ro, r = 1, 2, . . . , s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , n.

ϕl
o = max ϕ (2.5)

s.t.
n∑

j=1

λjx
l
ij ≤ xl

io, i = 1, 2, . . . ,m,

n∑
j=1

λjy
u
rj ≥ ϕyu

ro, r = 1, 2, . . . , s,

n∑
j=1

λj = 1,

λj ≥ 0, j = 1, 2, . . . , n.

(λ, ϕ) is the variables vector of the models (2.4) and (2.5). Here, ϕu
o and ϕl

o are called upper and lower bounds of
the efficiency scores of DMUo, respectively. It is not difficult to see that 1 ≤ ϕl

o ≤ ϕu
o . Therefore, ϕo =

[
ϕl

o, ϕ
u
o

]
can be considered as the efficiency interval of DMUo.

Definition 2.3. DMUo is called output-oriented efficient if and only if ϕl
o = 1; otherwise, it is inefficient.

3. Merging DMUs in the presence of interval data

According to the M&A literature [41], the proposed motives for M&As are based on the shareholder gains
(such as efficiency and synergy) or based on the managerial gains (such as empire building or managerial
discretion). According to the DEA literature, the methods for modelling a merger based on the inverse DEA
concept are proposed to achieve the most benefits either by maximizing outputs or saving inputs [1, 21, 50].
However, the proposed methods in all of the mentioned studies fail for merging DMUs with interval data. This
could be due to the limitations of the basic DEA models used in their modeling. In this section based on the
achieve approach to the maximum benefit, we propose a method for treating the interval data in the problem
of merging DMUs.

Assume that there is a set of selected units to merge such as {DMUj , j ∈ Λ ⊂ J}. In fact, Λ is the set of
selected units to create synergy through merging and generate a new unit to achieve given efficiency targets
that is shown with DMUq. It is clear that the set of selected units for merge removed after merge. Moreover,
Π = J − Λ is the set of units that have not participated in merger. According to the achieve approach to the
maximum benefit in the process of merging units, it is assumed that DMUq keeps the amount of input/output
levels of set of the merging units and looks for the maximum/minimum amount of the inherited output/input
levels to achieve given efficiency target.

Sections 3.1 and 3.2 demonstrated that identification of the inherited input and output levels could be
achieved through the merged DMU, respectively.
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3.1. Estimation of input

Suppose that DMUq keeps the amount of outputs of set of the merging DMUs and looks for the minimum
amount of the inherited sources of these DMUs in order to reach the pre-defined target level, θ̄q =

[
θ̄l

q, θ̄
u
q

]
.

Therefore, the output levels of merged DMU (DMUq) is yrq =
[
yl

rq, y
u
rq

]
, where yl

rq =
∑

j∈Λ y
l
rj and

yu
rq =

∑
j∈Λ y

u
rj for all r ∈ O = {1, 2, . . . , s}; are the lower and upper limit of the inherited output levels

of the merging DMUs, respectively. We need to estimate the inputs xiq =
[
xl

iq, x
u
iq

]
provided that the interval

efficiency of DMUq is θ̄q =
[
θ̄l

q, θ̄
u
q

]
. In fact,

xiq =
[
xl

iq, x
u
iq

]
=
∑
j∈Λ

αij =
∑
j∈Λ

[
αl

ij , α
u
ij

]
=

∑
j∈Λ

αl
ij ,
∑
j∈Λ

αu
ij

 ,
where, αij =

[
αl

ij , α
u
ij

]
is the inherited input level from merging units of DMUj , for all i ∈ I = {1, 2, . . . ,m}

and j ∈ Λ.
In the problem of merging units, if the identification of the maximum receivable merger gains is the main

target of the merger, then these gains could be calculated by minimizing the sum of the inherited input levels
provided that the there is no priority in saving various inputs. In other words, the corresponding model can
be a single objective. However, if there is various objectives for a merger, then the relevant model must be
a MOP. In this paper, unlike the approach of Gattoufi et al. [21], we assume that the decision maker seeks
various objectives. Therefore, to estimate of the lower limit of the input levels of DMUq to achieve the upper
desired given efficiency target θ̄u

q , the following MOP model is proposed:

min
(
αl

ij ; ∀i ∈ I, ∀j ∈ Λ
)

(3.1)

s.t.
∑
j∈Π

λjx
l
ij +

∑
j∈Λ

αl
ij

λq ≤ θ̄u
q

∑
j∈Λ

αl
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj + yu

rqλq ≥ yu
rq, ∀r ∈ O,

∑
j∈Π

λj + λq = 1,

0 ≤ αl
ij ≤ xl

ij , ∀i ∈ I, ∀j ∈ Λ,
λj ≥ 0, ∀j ∈ Π ∪ {q}.

In model (3.1),
(
λj ; j ∈ Π ∪ {q}, αl

ij ; ∀i ∈ I, ∀j ∈ J
)

is the variables vector. In the above model, the expected
efficiency upper bound for DMUq is denoted by θ̄u

q . The goals of the model (3.1) guarantees that the inputs
inherited by the merged unit from the participating units in the merger are minimized, in order to achieve the
desired efficiency target θ̄u

q . In other words, the main motive for M&A is to reach the maximum benefit by
saving inputs in the present section. The following theorem shows how the above MOP can be linearized.

Theorem 3.1. If DMUq is within the current PPS, then model (3.1) can be converted to the following MOLP
problem:

min
(
αl

ij ; ∀i ∈ I, ∀j ∈ Λ
)

(3.2)

s.t.
∑
j∈Π

λjx
l
ij ≤ θ̄u

q

∑
j∈Λ

αl
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ yu

rq, ∀r ∈ O,
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j∈Π

λj = 1,

0 ≤ αl
ij ≤ xl

ij , ∀i ∈ I, ∀j ∈ Λ,
λj ≥ 0, ∀j ∈ Π.

Proof. If DMUq is within the current PPS, then DMUq is interior or upon frontier of the current PPS. If DMUq

is interior of the current PPS, then the generated new unit (DMUq) can be stated by a convex combination
of some units that have not participated in merger. Therefore, in each Pareto solution of model (3.1), we have
λ∗q = 0. Accordingly, model (3.1) can be converted to MOLP (3.2). Also, if DMUq is upon frontier of the current
PPS, it can be presented in terms of the other efficient DMUs, and therefore in this case, we can still suppose
that λ∗q = 0 in optimality. Note that in this case, considering λ∗q = 0 means ignoring only one optimal solution
from the set of optimal solutions to problem (3.1). Hence, the MOP model (3.1) will be simplified to the same
MOLP (3.2). This completes the proof of theorem. �

In this paper, according to the above theorem, we limit our development to the case of the consolidation
where the merged unit (DMUq) is within the current PPS. Therefore, without consideration this assumption,
the topic discussed in this paper can be worth studying as well, though we do not pursue it in the present study.

According to the following theorem, the input-oriented model (3.2) could be utilized to determine the lower
limit of the DMUq input levels.

Theorem 3.2. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆l =

(
λ∗, αl∗

ij : ∀i ∈ I, ∀j ∈ Λ
)

is a Pareto solution to model (3.2);
(iii) xl

iq =
∑

j∈Λ α
l∗
ij for each i ∈ I.

Then, the obtained efficiency upper bound of DMUq is equal to θ̄u
q .

Proof. See Appendix A. �

Now, to estimate of the upper limit of the input levels of DMUq to achieve the lower desired given efficiency
target θ̄l

q, the following MOLP model is proposed:

min
(
αu

ij ; ∀i ∈ I, ∀j ∈ Λ
)

(3.3)

s.t.
∑
j∈Π

λjx
l
ij +

∑
j∈Λ

ᾱl
ij

λq ≤ θ̄l
q

∑
j∈Λ

αu
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj + yu

rqλq ≥ yl
rq, ∀r ∈ O,

∑
j∈Π

λj + λq = 1,

ᾱl
ij ≤ αu

ij ≤ xu
ij , ∀i ∈ I, ∀j ∈ Λ,

λj ≥ 0, ∀j ∈ Π ∪ {q}.

In the above Model,
(
λj ; j ∈ Π ∪ {q}, αu

ij ; ∀i ∈ I, ∀j ∈ Λ
)

is the variables vector. In this model, the expected
efficiency upper bound for DMUq is denoted by θ̄l

q. Also,
(
ᾱl

ij ;∀j ∈ Λ, ∀i ∈ I
)

is a Pareto solution of model
(3.2). Theorem 3.3 shows how the above MOP can be converted to the MOLP (3.4).
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Theorem 3.3. If DMUq is within the current PPS, then model (3.3) can be converted to the following MOLP
problem:

min
(
αu

ij ; ∀i ∈ I, ∀j ∈ Λ
)

(3.4)

s.t.
∑
j∈Π

λjx
l
ij ≤ θ̄l

q

∑
j∈Λ

αu
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ yl

rq, ∀r ∈ O,

∑
j∈Π

λj = 1,

ᾱl
ij ≤ αu

ij ≤ xu
ij , ∀i ∈ I, ∀j ∈ Λ,

λj ≥ 0, ∀j ∈ Π.

Proof. The proof is similar to the proof of Theorem 3.1. Note that the best situation of DMUq(
xl

iq =
∑

j∈Λ ᾱ
l
ij , y

u
rq

)
could be described by a convex combination of the best situation of units that have

not participated in merger. �

Theorem 3.4 shows how MOLP (3.4) could be used to estimate of the upper limit of the DMUq input levels.

Theorem 3.4. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆u =

(
λ∗, αu∗

ij : ∀i ∈ I, ∀j ∈ Λ
)

is a Pareto solution to MOLP (3.4) in which αu∗
ij 6= ᾱl

ij for some i ∈ I
and j ∈ Λ;

(iii) xu
iq =

∑
j∈Λ

αu∗
ij for each i ∈ I.

Then, the obtained efficiency lower bound of DMUq is equal to θ̄l
q.

Proof. See Appendix B. �

3.2. Estimation of output

In this section, a method is proposed for the identification of the inherited output levels from merging DMUs
to attain a pre-defined efficiency target when the data are considered to lie within bounded intervals.

In order to, suppose that DMUq keeps the amount of inputs of set of the merging DMUs and looks
for the maximum amount of the inherited outputs of these DMUs to reach the pre-defined target level,
ϕ̄q =

[
ϕ̄l

q, ϕ̄
u
q

]
. Therefore, the input levels of merged DMU (DMUq) is xiq =

[
xl

iq, x
u
iq

]
, where xl

iq =
∑

j∈Λ x
l
ij

and xu
iq =

∑
j∈Λ x

u
ij for all i ∈ I; are the lower and upper limit of the inherited input levels of the merging

DMUs, respectively. We need to estimate the outputs yrq =
[
yl

rq, y
u
rq

]
provided that the efficiency interval of

DMUq is ϕ̄q =
[
ϕ̄l

q, ϕ̄
u
q

]
. In fact,

yrq =
[
yl

rq, y
u
rq

]
=
∑
j∈Λ

βrj =
∑
j∈Λ

[βl
rj , β

u
rj ] =

∑
j∈Λ

βl
rj ,

∑
j∈Λ

βu
rj

 ,
where, βrj =

[
βl

rj , β
u
rj

]
is the inherited output levels from merging units of DMUj , for all r = 1, 2, . . . , s and

j ∈ Λ.
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To estimate of the upper limit of the output levels of DMUq to achieve the lower desired given efficiency
target ϕ̄l

q, the following MOP model is proposed:

max
(
βu

rj ; ∀r ∈ O, ∀j ∈ Λ
)

(3.5)

s.t.
∑
j∈Π

λjx
l
ij + xl

iqλq ≤ xl
iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj +

∑
j∈Λ

βu
rj

λq ≥ ϕ̄l
q

∑
j∈Λ

βu
rj , ∀r ∈ O,

∑
j∈Π

λj + λq = 1,

βu
rj ≥ yu

rj , ∀i ∈ I, ∀j ∈ Λ,
λj ≥ 0, j ∈ Π ∪ {q}, ∀j ∈ Π.

In model (3.5),
(
λj ; j ∈ Π ∪ {q}, βu

rj ; ∀r ∈ O, ∀j ∈ J
)

is the variables vector. In the above model, the expected
efficiency lower bound for DMUq is denoted by ϕ̄l

q. The objectives of the MOP (3.5) guarantees that the outputs
inherited by the merged DMU from the participating units in the merger are maximized, in order to realize
the desired efficiency target ϕ̄l

q. In other words, the main motive for M&A is to reach the maximum benefit
by maximizing outputs in the current section. According to a similar reasoning for converting model (3.1) to
model (3.2), model (3.5) could be converted to model (3.6), as well. The proof of the following theorem is
omitted because it is similar to the proof of Theorem 3.1.

Theorem 3.5. If DMUq is within the current PPS, then model (3.5) can be converted to the following MOLP
problem:

max
(
βu

rj ; ∀r ∈ O, ∀j ∈ Λ
)

(3.6)

s.t.
∑
j∈Π

λjx
l
ij ≤ xl

iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ ϕ̄l

q

∑
j∈Λ

βu
rj , ∀r ∈ O,

∑
j∈Π

λj = 1,

βu
rj ≥ yu

rj , ∀i ∈ I, ∀j ∈ Λ,
λj ≥ 0, ∀j ∈ Π.

Theorem 3.6 shows how the above model could be utilized to identification of the upper limit of the DMUq

output levels.

Theorem 3.6. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆u = (λ∗, βu∗

rj : ∀r ∈ O, ∀j ∈ Λ) is a weak Pareto solution to problem (3.6);
(iii) yu

rq =
∑

j∈Λ β
u∗
rj for each r ∈ O.

Then, the obtained efficiency lower bound of DMUq is equal to ϕ̄l
q.

Proof. See Appendix C. �
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To estimate of the lower limit of the input levels of DMUq to achieve the desired given efficiency target ϕ̄u
q ,

the following MOP model is proposed:

max
(
βl

rj ; ∀r ∈ O, ∀j ∈ Λ
)

(3.7)

s.t.
∑
j∈Π

λjx
l
ij + xl

iqλq ≤ xu
iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj +

∑
j∈Λ

β̄u
rj

λq ≥ ϕ̄u
q

∑
j∈Λ

βl
rj , ∀r ∈ O,

∑
j∈Π

λj + λq = 1,

yl
rj ≤ βl

rj ≤ β̄u
rj , ∀r ∈ O, ∀j ∈ Λ,

λj ≥ 0, ∀j ∈ Π.

In model (3.7),
(
λj ; j ∈ Π ∪ {q}, βl

rj ; ∀r ∈ O, ∀j ∈ J
)

is the variables vector. In this model, the expected
efficiency lower bound for DMUq is denoted by ϕ̄u

q .
(
β̄u

rj ;∀j ∈ Λ, ∀r ∈ O
)

is a Pareto solution of model (3.6).
The following theorem shows how the above MOP can be linearized.

Theorem 3.7. If DMUq is within the current PPS, then model (3.5) can be converted to the following MOLP
problem:

max
(
βl

rj ; ∀r ∈ O, ∀j ∈ Λ
)

(3.8)

s.t.
∑
j∈Π

λjx
l
ij ≤ xu

iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ ϕ̄u

q

∑
j∈Λ

βl
rj , ∀r ∈ O,

∑
j∈Π

λj = 1,

yl
rj ≤ βl

rj ≤ β̄u
rj , ∀r ∈ O, ∀j ∈ Λ,

λj ≥ 0, ∀j ∈ Π.

Proof. The proof is similar to the proof of Theorem 3.1. Note that the best situation of DMUq(
xl

iq, y
u
rq =

∑
j∈Λ β̄

u
rj

)
could be stated by a convex combination of some the best situation of units that have

not participated in merger. �

The following theorem shows how the MOLP (3.8) could be used to estimate of the lower limit of the DMUq

output levels.

Theorem 3.8. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆l = (λ∗, βl∗

rj : ∀r ∈ O, ∀j ∈ Λ) is a Pareto solution to model (3.8) in which β̄u
rj 6= βl∗

rj;
(iii) yl

rq =
∑

j∈Λ β
l∗
rj for each r ∈ O.

Then, the obtained efficiency upper bound of DMUq is equal to ϕ̄u
q .

Proof. See Appendix D. �
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Remark 3.9. In our study, the problem of merging units is developed provided that the merged unit is within
the current PPS. It is obvious that the DMUq will be inside of the current PPS, if and only if the virtual DMU([∑

j∈Λ x
l
ij ,
∑

j∈Λ x
u
ij

]
,
[∑

j∈Λ y
l
rj ,
∑

j∈Λ y
u
rj

])
for all r ∈ O and i ∈ I; is within the PPS. This arises from the

goals of the MOP input-(resp. output-) oriented models (3.1) and (3.3) (resp. (3.5) and (3.7)) as well as the goals
of the relaxed input-(resp. output-) oriented models (3.2) and (3.4) (resp. (3.6) and (3.8)). This assumption
guarantees that the merged unit is inside the PPS when it is inefficient or on the frontier once it is efficient.
It is worth noting that the models (3.1) to (3.4) try to keep the minimum level of the inputs of units j ∈ Λ,
while models (3.5) to (3.8) try to keep the maximum level of the outputs of units j ∈ Λ. Therefore, without
loss of generality, we can consider the models (3.2), (3.4), (3.6), and (3.8) instead of models (3.1), (3.3), (3.5),
and (3.7), respectively.

4. Minimum and maximum achievable efficiency targets

This section discusses about best and lowest values of lower and upper bounds of achievable efficiency targets
of the merged DMU. In fact, this section is devoted to answering Question 2. A method is proposed for finding
the pessimistic and optimistic levels of the achievable efficiency targets that can be attained through the merged
DMU. Such a method can be informative because it provides foresight about the post-merging market positioning
and the minimum and maximum efficiency level it can achieve. It is worth noting that knowing minimum and
maximum achievable efficiency targets has an important role for assessment of the decision maker about engaging
in the merging process.

In Sections 4.1 and 4.2 are investigated identification of the minimum and maximum achievable efficiency
targets that can be attained through the merged DMU.

4.1. Minimum and maximum achievable targets of the input-oriented efficiency

According to discussion of the Section 3.1, DMUq keeps the amount of outputs of set of the merging DMUs
and looks for the minimum amount of the inherited sources of these DMUs in order to reach the pre-defined
target level, θ̄q =

[
θ̄l

q, θ̄
u
q

]
. Knowing lowest and highest achievable efficiency targets has a critical importance

for the merging’ decision maker. Because, it is the prediction about the position of the merged unit. To attain
these goals, suppose that the maximum value of lower and upper bounds of achievable efficiency targets of the
merged DMU are denoted by θ̄l−max

q and θ̄u−max
q , respectively. In addition, assume that the minimum value

of lower and upper bounds of achievable efficiency targets of the merged DMU are denoted by θ̄l−min
q and

θ̄u−min
q , respectively. In fact, it is assumed that the pessimistic and optimistic levels of the attainable efficiency

through this merge is equal to [θ̄l−min
q , θ̄l−max

q ] and [θ̄u−min
q , θ̄u−max

q ], respectively. Clearly, if these pessimistic
and optimistic levels are satisfactory, then the decision maker is encouraged to merge. This section is dedicated
to identifying the pessimistic and optimistic levels that can be attained through the merged DMU.

The optimistic level of the attainable efficiency score through the merged DMU, could be determined through
the following theorem.

Theorem 4.1. Suppose that the model (3.2) is feasible for the efficiency target θ̄u
q . Then

(i) Model (3.2) remains feasible for each efficiency upper bound target θ̂u
q , where θ̄u

q ≤ θ̂u
q ≤ 1.

(ii) If

θu∗
q = min θ (4.1)

s.t.
∑
j∈Π

λjx
l
ij ≤

∑
j∈Λ

αl
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ yu

rq, ∀r ∈ O,



S1616 S. GHOBADI∑
j∈Π

λj = 1,

0 ≤ αl
ij ≤ xl

ij , ∀i ∈ I, ∀j ∈ Λ,∑
j∈Λ

αl
ij ≤ θ

∑
j∈Λ

xl
ij , ∀i ∈ I,

λj ≥ 0, ∀j ∈ Π,

then θu∗
q ≤ θ̄u

q (the minimum achievable upper bound for the efficiency target of the merged DMU is θu∗
q ,

i.e. θ̄u−min
q = θu∗

q ).

Remark 4.2. The last set of the constraints in the model (4.1) guarantees that the sum of the lower bounds
of the allocated inherited inputs to the merged unit is at most equal to the product of the minimum realized
upper bound of efficiency score by the aggregated inputs of the participating units in the merger.

Proof. It is obvious that any feasible solution of the model (3.2) corresponding to the efficiency target θ̄u
q ,

is a feasible solution of the model corresponding to the efficiency target θ̂u
q , where θ̄u

q ≤ θ̂u
q ≤ 1. This completes

the proof of part (i).
By contradiction assume that the model (3.2) is feasible for merging with the efficiency upper bound target

θ̄u
q such that θ̄u

q < θu∗
q . Let ∆l = (λ∗, αl∗

ij : ∀i ∈ I, ∀j ∈ Λ) be a Pareto solution to model (3.2). Feasibility of ∆l

to model (3.2), implies:
αl∗

ij ≤ xl
ij , ∀i ∈ I, ∀j ∈ Λ. (4.2)

By (4.2) and 0 < θ̄u
q ≤ 1, we get

θ̄u
qα

l∗
ij ≤ αl∗

ij ≤ xl
ij , ∀i ∈ I, ∀j ∈ Λ, (4.3)∑

j∈Λ

θ̄u
qα

l∗
ij ≤

∑
j∈Λ

θ̄u
q x

l
ij = θ̄u

q

∑
j∈Λ

xl
ij , ∀i ∈ I. (4.4)

Now, for all i ∈ I and j ∈ Λ define ᾱl
ij = θ̄u

qα
l∗
ij . By (4.3), (4.4), and feasibility of ∆l to model (3.2), it is obvious

that Ψ = (λ∗, θ̄u
q , ᾱ

l
ij : ∀i ∈ I, ∀j ∈ Λ) is a feasible solution to model (4.1). Therefore, the optimal value of

model (4.1) is less or equal θ̄u
q . This contradicts the assumption that θu∗

q is the optimal value of model (4.1) and
so the proof of part (ii) is completed. �

The pessimistic level of the attainable efficiency score through the merged DMU, could be determined through
the Theorems 4.3 and 4.4. In other words, the minimum and maximum achievable lower bound of the effi-
ciency target through the generated new unit, i.e. θ̄l−min

q and θ̄l−max
q , could be attained through the Theo-

rems 4.3 and 4.4, respectively. It is worth noting that the decision of merging can be made if this pessimistic
level is judged satisfactory.

Theorem 4.3. Suppose that model (3.4) is feasible for the efficiency target θ̄l
q. If

θl∗
q = min θ (4.5)

s.t.
∑
j∈Π

λjx
l
ij ≤

∑
j∈Λ

αu
ij , ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥ yl

rq, ∀r ∈ O,

∑
j∈Π

λj = 1,
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j∈Λ

αu
ij ≤ θ

∑
j∈Λ

xu
ij , ∀i ∈ I,

λj ≥ 0, ∀j ∈ Π,

then

(i) θl∗
q ≤ θu∗

q , where θu∗
q is the optimal solution of model (4.1).

(ii) θl∗
q ≤ θ̄l

q (the minimum achievable lower bound efficiency target of the merged DMU is θl∗
q , i.e. θ̄l−min

q = θl∗
q ).

Proof. Let Ω = (λ∗, θ∗, αl∗
ij ;∀i ∈ I, ∀j ∈ Π) be a optimal solution to model (4.1). Since xl

ij ≤ xu
ij and yl

rj ≤ yu
rj

for all i, r, j; it is obvious that Ω is a feasible solution to model (4.5) (setting λ = λ∗, θ = θ∗, αu
ij = αl∗

ij).
Therefore, θl∗

q ≤ θu∗
q and so the proof of part (i) is completed. In the similar method to the proof of part (ii) of

Theorem 4.1, we can show that the θl∗
q ≤ θ̄l

q. �

Theorem 4.4. Let a merging with θ̄l
q and θ̄u

q be as the efficiency lower and upper bounds targets for the merged
DMU. Let

(
ᾱl

ij ; ∀i ∈ I, ∀j ∈ Λ
)

be a Pareto solution of MOLP (3.2). Moreover, suppose that model (3.4) is
feasible for the efficiency target θ̄l

q. If θl∗
q is the optimal value of the following model:

min θl
q (4.6)

s.t.
∑
j∈Π

λjx
l
ij ≤ θl

qx
l
iq = θl

q

∑
j∈Λ

ᾱl
ij , i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj ≥ yl

rq, r = 1, 2, . . . , s,

∑
j∈Π

λj = 1,

λj ≥ 0, ∀j ∈ Π,

then model (3.4) remains feasible for each efficiency target θ̂l
q, where θ̄l

q ≤ θ̂l
q ≤ θl∗

q (the maximum achievable
lower bound efficiency target of the merged DMU is θl∗

q , i.e. θ̄l−max
q = θl∗

q ).

Proof. The proof is straightforward. �

4.2. Minimum and maximum achievable targets of the output-oriented efficiency

This section is devoted to answering Question 2 when the efficiency score is estimated using the output-
oriented models. To attain this goal, a similar process to the previous section is used. According to discussion
of the Section 3.2, DMUq keeps the amount of inputs of set of the merging units and looks for the maximum
amount of the inherited outputs of these units to reach the pre-defined target level, ϕ̄q =

[
ϕ̄l

q, ϕ̄
u
q

]
. As previously

mentioned, finding the pessimistic and optimistic levels of the achievable efficiency targets that can be attained
through the merged unit has a critical importance for the merging’ decision maker. To attain these goals, it is
assumed that the optimistic and pessimistic levels of the attainable efficiency through this merge is equal to
[ϕ̄l−min

q , ϕ̄l−max
q ] and [ϕ̄u−min

q , ϕ̄u−max
q ], respectively. In fact, it is assumed that the minimum value of lower and

upper bounds of achievable efficiency targets of the merged DMU are denoted by ϕ̄l−min
q and ϕ̄u−min

q , respectively.
Moreover, it is assumed that the maximum value of lower and upper bounds of achievable efficiency targets
of the merged DMU are denoted by ϕ̄l−max

q and ϕ̄u−max
q , respectively. It is worth noting that the decision of

merging can be made if these pessimistic and optimistic levels are judged satisfactory.
The optimistic level of the achievable efficiency score through the merged unit, could be attained through

the following theorem.
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Theorem 4.5. Suppose that the model (3.6) is feasible for the efficiency target ϕ̄l
q. Then

(i) Model (3.6) remains feasible for each efficiency upper bound target ϕ̂l
q, where 1 ≤ ϕ̂l

q ≤ ϕ̄l
q.

(ii) If

ϕl∗
q = max ϕ (4.7)

s.t.
∑
j∈Π

λjx
l
ij ≤ xl

iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥

∑
j∈Λ

βu
rj , ∀r ∈ O,

∑
j∈Π

λj = 1,

βu
rj ≥ yu

rj , ∀r ∈ O, ∀j ∈ Λ,∑
j∈Λ

βu
rj ≥ ϕ

∑
j∈Λ

yu
rj , ∀r ∈ O,

λj ≥ 0, ∀j ∈ Π.

then ϕl∗
q ≥ ϕ̄l

q (the maximum achievable lower bound for the efficiency target of the merged DMU is ϕl∗
q ,

i.e. ϕ̄l−max
q = ϕl∗

q ).

Remark 4.6. The last set of the constraints in the model (4.7) guarantees that the sum of the upper bounds
of the productive inherited outputs by the merged unit is at least equal to the product of the maximum realized
lower bound of efficiency score by the aggregated outputs of the participating units in the merger.

Proof. It is obvious that any feasible solution of the model (3.6) corresponding to the efficiency target ϕ̄l
q,

is a feasible solution of the model corresponding to the efficiency target ϕl∗
q , where 1 ≤ ϕ̂l

q ≤ ϕ̄l
q. This completes

the proof of part (i).
By contradiction assume that the model (3.6) is feasible for merging with the efficiency upper bound target

ϕ̄l
q such that ϕl∗

q < ϕ̄l
q. Let ∆u = (λ∗, βu∗

rj : ∀r ∈ O,∀j ∈ Λ) be a Pareto solution to model (3.6). Feasibility of
∆u to model (3.6), implies:

βu∗
rj ≥ yu

rj , ∀r ∈ O, ∀j ∈ Λ. (4.8)

By (4.8) and ϕ̄l
q ≥ 1, we get

ϕ̄l
qβ

u∗
rj ≥ βu∗

rj ≥ yu
rj , ∀r ∈ O, ∀j ∈ Λ, (4.9)∑

j∈Λ

ϕ̄l
qβ

u∗
rj ≥

∑
j∈Λ

ϕ̄l
qy

u
rj = ϕ̄l

q

∑
j∈Λ

yu
rj , ∀r ∈ O. (4.10)

Now, for all r ∈ O and j ∈ Λ define β̄u
rj = ϕ̄l

qβ
u∗
rj . By (4.9), (4.10), and feasibility of ∆u to model (3.6), it is

obvious that Ψ =
(
λ∗, ϕ̄l

q, β̄
u
rj : ∀r ∈ O, ∀j ∈ Λ

)
is a feasible solution to model (4.7). Therefore, the optimal

value of model (4.7) is less or equal ϕ̄l
q. This contradicts the assumption that ϕl∗

q is the optimal value of model
(4.7) and so the proof of part (ii) is completed. �

The pessimistic level of the achievable efficiency score through the merged DMU, could be attained through
the Theorems 4.7 and 4.8. In other words, the maximum and minimum values of upper bound of achievable
efficiency targets of the merged DMU, i.e. ϕ̄u−max

q and ϕ̄u−min
q , could be attained through the the Theo-

rems 4.7 and 4.8, respectively.
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Theorem 4.7. Suppose that model (3.8) is feasible for the efficiency target ϕ̄u
q . If

ϕu∗
q = max ϕ (4.11)

s.t.
∑
j∈Π

λjx
l
ij ≤ xu

iq, ∀i ∈ I,

∑
j∈Π

λjy
u
rj ≥

∑
j∈Λ

βl
rj , ∀r ∈ O,

∑
j∈Π

λj = 1,

βl
rj ≥ yl

rj , ∀r ∈ O, ∀j ∈ Λ,∑
j∈Λ

βl
rj ≥ ϕ

∑
j∈Λ

yl
rj , ∀r ∈ O,

λj ≥ 0, ∀j ∈ Π.

then

(i) ϕu∗
q ≥ ϕl∗

q , where ϕl∗
q is the optimal solution of model (4.7).

(ii) ϕu∗
q ≥ ϕ̄u

q (the maximum achievable upper bound for the efficiency target of the merged DMU is ϕu∗
q , i.e.

ϕ̄u−max
q = ϕu∗

q ).

Proof. Let Ω = (λ∗, ϕ∗, βu∗
rj ;∀r ∈ O,∀j ∈ Π) be a optimal solution to model (4.7). Since xl

ij ≤ xu
ij and yl

rj ≤ yu
rj

for all i, r, j; it is obvious that Ω is a feasible solution to model (4.11) (setting λ = λ∗, ϕ = ϕ∗, βl
rj = βu∗

rj ).
Therefore, ϕu∗

q ≥ ϕl∗
q and so the proof of part (i) is completed. In the similar method to the proof of part (ii)

of Theorem 4.5, we can show that the ϕu∗
q ≥ ϕ̄u

q . �

Theorem 4.8. Let a merging with ϕ̄u
q and ϕ̄l

q be as the efficiency lower and upper bounds targets for the merged
DMU. Let

(
β̄u

rj ; ∀r ∈ O,∀j ∈ Λ
)

be a Pareto solution of MOLP (3.6). Moreover, suppose that model (3.8) is
feasible for the efficiency target ϕ̄u

q . If ϕu∗
q is the optimal value of the following model:

max ϕu
q (4.12)

s.t.
∑
j∈Π

λjx
l
ij ≤ xu

iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj ≥ ϕu

q y
l
rq = ϕu

q

∑
j∈Λ

β̄u
rj , r = 1, 2, . . . , s,

∑
j∈Π

λj = 1,

λj ≥ 0, ∀j ∈ Π,

then model (3.8) remains feasible for each efficiency target ϕ̂u
q , where ϕu∗

q ≤ ϕ̂u
q ≤ ϕ̄u

q (the minimum achievable
upper bound for the efficiency target of the merged DMU is ϕu∗

q , i.e. ϕ̄u−min
q = ϕu∗

q ).

Proof. The proof is straightforward. �

Remark 4.9. An important issue for decision maker involved in a merging program would be to know the
minimum and maximum efficiency score that can be attained by the merged unit. Section 4 addresses this issue.
More precisely, an insightful method is provided to obtain the minimum and maximum achievable lower and



S1620 S. GHOBADI

Table 1. The efficiency interval of 20 bank branches.

Branches Efficiency interval Branches Efficiency interval

B01 [0.88, 1.00] B11 [0.95, 1.00]
B02 [0.79, 0.90] B12 [0.62, 0.67]
B03 [0.73, 1.00] B13 [0.68, 0.85]
B04 [0.90, 1.00] B14 [0.64, 0.71]
B05 [0.96, 1.00] B15 [0.47, 1.00]
B06 [0.90, 1.00] B16 [0.57, 0.66]
B07 [0.77, 1.00] B17 [0.99, 1.00]
B08 [0.90, 1.00] B18 [0.98, 1.00]
B09 [0.87, 1.00] B19 [0.86, 1.00]
B10 [0.98, 1.00] B20 [0.50, 0.66]

Table 2. The inherited outputs of the branch Bq from the merging branches B12 and B14.

Branches The total sum of
four main deposits

Other deposits Loans granted Received interest Fee

B12 [453 170, 481 943] [27 196, 29 553] [245 726, 275 717] [35 757.83, 42 790.14] [375.07, 559.85]
B14 [309 670, 342 598] [20 168, 26 172] [124 188, 126 930] [8143.79, 11 948.04] [936.62, 1468.45]
Bq [762 840, 824 541] [47 364, 55 725] [369 914, 402 647] [43 901.62, 54 738.18] [1311.69, 2028.3]

upper bounds of the efficiency score of the merged unit. In other words, input-(resp. output-) oriented models
(4.1), (4.5), and (4.6) (resp. (4.7), (4.11), and (4.12)) are provided to obtain the lowest and highest achievable
lower and upper bounds of the efficiency interval of the merged unit can realize. The results of these models
have a critical importance for the merging’ manager. The results are very informative because these provide
foresight about the position of the merged unit. These minimum and maximum values could be considered as
thresholds for the merger approval if these values are satisfactory.

5. A numerical illustration

In this section, the performance of the proposed approach is demonstrated through an example in banking
sector. Nevertheless, this approach could be used in other sectors with the merging possibility. We consider
20 commercial bank branches in Iran. As we know, there are two main approaches (the production and the
intermediation approach) to select of the input and output factors. In this study, the input and output factors
are selected based on the intermediation approach. Each branch produces five outputs using three inputs. The
total sum of four main deposits (y1), other deposits (y2), loans granted (y3), received interest (y4), and fee
(y5) are considered as outputs while the payable interest (x1), personnel (x2), and non-performing loans (x3)
are considered as the input factors. The dataset is reproduced from Jahanshahloo et al. [31] and presented in
Appendix E.

To estimate the lower and upper bounds of the efficiency of 20 bank branches, models (2.2) and (2.3) are
applied. The results are reported in Table 1.

According to Definition of 2.2, B12 and B14 branches are inefficient (see Tab. 1). Assume that these branches
consolidate their activities by producing the new merged branch q (Bq) such that Bq keeps the amount of outputs
of branches of B12 and B14 and looks for the minimum amount of the inherited inputs of these branches to
reach the pre-defined target level. According to this discussion, the output levels of the new branch Bq are
obtained and it is presented in Table 2.
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Table 3. The inherited inputs of the branch Bq of the merging branches B12 and B14.

Branches Payable interest Personnel Non-performing loans

B12 [7303.27, 14 178.11] [22.87, 23.19] [16 148, 21 353]
B14 [4540.75, 9312.24] [22.83, 23.96] [17 918, 17 964]
Bq [3551.75, 3577.72] [25.73, 29.09] [6669.16, 6669.16]

According to model (4.1), the lowest attainable efficiency for the upper bound by the merged branch Bq is
θu

q = 0.43. According to Theorem 4.1, if the condition θ̄u
q ≥ 0.43 is violated, then the corresponding model (3.2)

becomes infeasible. Based on model (4.5), the minimum achievable efficiency for the lower bound by the merged
branch Bq is obtained as θl

q = 0.37. Therefore, the least attainable efficiency level through this merge is equal
to [0.37, 0.43]. If this pessimistic level is satisfactory, the decision maker is encouraged to perform the merging.

According to Theorem 4.1, the maximum attainable efficiency for the upper bound by the merged branch
Bq is equal to θu

q = 1. According to Theorem 4.4, if the efficiency upper bound target of the merged branch
Bq is equal to θu

q = 1, then the maximum achievable efficiency for the lower bound by the merged branch Bq

could be obtained as θl
q = 0.96. Therefore, the most attainable efficiency level through this merge is equal to

[0.96, 1.00]. In fact, this is an optimistic level for this merger.
The branches B12 and B14 are merged with two different expected performance levels. First, suppose that

the efficiency target of the merged branch Bq is equal to θ̄q =
[
θ̄l

q, θ̄
u
q

]
= [0.7, 0.80]. To identify the minimum

inherited input levels of the Bq from merging units (B12 and B14), the proposed model (3.2) that corresponds
to this merger is considered.

The weight-sum method [14] is employed to generate different Pareto solutions for this model. It is worth
noting that if there is no priority in reducing different inputs, then we can consider the same weights for all
the inputs. However, if the decision maker seeks various aims from merging these branches (such as saving
more inputs from a special DMU), then the weights should be considered differently. Here, due to simplicity,
we consider the same weights for all the objective functions and a Pareto solution is generated as follows:

αl∗
1,12 = 3551.75, αl∗

2,12 = 22.87, αl∗
3,12 = 6669.16

αl∗
1,14 = 0.00, αl∗

2,14 = 2.86, αl∗
3,14 = 0.00

λ∗1 = 0.02, λ∗4 = 0.15, λ∗10 = 0.04, λ∗11 = 0.79, λ∗j = 0 ∀j 6= 1, 4, 10, 11.

(5.1)

Accordingly, the lower bounds of the inherited input levels of the Bq from merging branches (B12 and B14) to
reach the upper pre-defined target level (θ̄u

q = 0.80) are extracted (see Tab. 3). The obtained Pareto solution (5.1)
is utilized in Theorem 4.4 to obtain the maximum achievable efficiency lower bound by the merged branch Bq

as θl
q = 0.77. Therefore, the intended efficiency lower bound θ̄l

q = 0.70 of the merged branch Bq is achievable.
To estimate the minimum upper bound of the inherited input levels from merging branches (B12 and B14),
the proposed model (3.4) that corresponds with this merger is considered. Using the weight-sum method,
we obtained a Pareto solution for this MOLP as:

αu∗
1,12 = 3577.72, αu∗

2,12 = 23.19, αu∗
3,12 = 6669.16

αl∗
u,14 = 0.00, αu∗

2,14 = 5.90, αu∗
3,14 = 0.00

λ∗4 = 0.21, λ∗10 = 0.02, λ∗11 = 0.77, λ∗j = 0 ∀j 6= 4, 10, 11.
(5.2)

Accordingly, the upper bounds of the inherited input levels the Bq from merging branches (B12 and B14) to
achieve the lower pre-defined target level (θl

q = 0.70) are extracted (see Tab. 3).
As another intended performance level, consider that the merger of two merging branches B12 and B14 should

achieve an optimistic target level, that is equal to [0.96, 1.00]. By using models (3.2) and (3.4) that correspond
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Table 4. The inherited inputs of the branch Bq of the merging branches B12 and B14.

Branches Payable interest Personnel Non-performing loans

B12 [7303.27, 14 178.11] [22.87, 23.19] [16 148, 21 353]
B14 [4540.75, 9312.24] [22.83, 23.96] [17 918, 17 964]
Bq [2841.40, 2841.40] [20.58, 20.60] [5335.33, 5335.33]

with this merger, the following two Pareto solutions are generated for these models, respectively;

αl∗
1,12 = 2841.40, αl∗

2,12 = 20.58, αl∗
3,12 = 5335.33

αl∗
1,14 = 0.00, αl∗

2,14 = 0.00, αl∗
3,14 = 0.00

λ∗1 = 0.02, λ∗4 = 0.15, λ∗10 = 0.04, λ∗11 = 0.79, λ∗j = 0 ∀j 6= 1, 4, 10, 11.

(5.3)

αu∗
1,12 = 2841.40, αu∗

2,12 = 20.60, αu∗
3,12 = 5335.33

αl∗
u,14 = 5793.10, αu∗

2,14 = 0.00, αu∗
3,14 = 0.00

λ∗4 = 0.18, λ∗5 = 0.04, λ∗10 = 0.03, λ∗11 = 0.70, λ∗18 = 0.05, λ∗j = 0 ∀j 6= 4, 5, 10, 11, 18.
(5.4)

Accordingly, to achieve the efficiency pre-defined target level ([0.96, 1.00]), the lower and upper bounds of the
inherited input levels of the branch Bq from merging units B12 and B14 are estimated and presented in Table 4.

The problem of merging entities based on the inverse DEA has been initially investigated by
Gattoufi et al. [21]. Then, Zeinodin and Ghobadi [49] and Amin et al. [4] used MOP tools to estimate of
the inherited inputs/outputs of the merged unit from merging units. In addition, the problem of merging units
was studied with negative data and under inter-temporal dependence data by Amin and Al-Muharrami [1] and
Zenodin and Ghobadi [50], respectively. Therefore, there is currently no inverse DEA based method for com-
paring the results of the IDEA based approach in this paper.

6. Conclusion

Merging a group of DMUs to generate a new DMU is a method for cooperation of units to attain better
performance. It is shown that the conventional inverse DEA based models could not be applicable in the presence
of interval data. This paper studies the problem of merging units in the presence of interval data. By using the
inverse DEA idea, sufficient conditions for identification of the inherited inputs/outputs of the merged DMU
from merging DMUs to achieve a pre-defined efficiency target are extracted. In this way, Pareto solutions of
MOLP problems have been utilized. In this paper, an insightful method is provided to obtain the minimum
and maximum achievable lower and upper bounds of the efficiency interval of the merged unit. These minimum
and maximum values could be considered as thresholds for the merger approval if these values are satisfactory.
The applicability of the proposed models for target adjustment of the merged unit is demonstrated through
a banking sector example. Nevertheless, any part including the homogeneous units with the merging ability
could be considered as an issue for the proposed method in this paper.

In this paper, the IDEA approach is employed to study the merging DMUs problem when the merged unit
(DMUq) is within the current PPS. Therefore, the following items could be considered as further research
directions:

(i) Proposing a FDEA approach based solution for this problem.
(ii) Investigation of the problem of merging units when the merged unit is not within the current PPS.
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Appendix A.

Theorem A.1. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆l = (λ∗, αl∗

ij : ∀i ∈ I, ∀j ∈ Λ) is a Pareto solution to model (3.2);
(iii) xl

iq =
∑

j∈Λ α
l∗
ij for each i ∈ I.

Then, the obtained efficiency upper bound of DMUq is equal to θ̄u
q .

Proof. To prove the theorem, we should show that the optimal value of the following model is θ̄u
q .

min θu
q (A.1)

s.t.
∑
j∈Π

λjx
l
ij + λqx

l
iq ≤ θu

q x
l
iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj + λqy

u
rq ≥ yu

rq, r = 1, 2, . . . , s,

∑
j∈Π

λj + λq = 1,

λj ≥ 0, ∀j ∈ Π ∪ {q}.

Since θ̄u
q ≤ 1 and ∆l is a feasible solution for model (3.2) (assumption (ii)), we have

∑
j∈Π

λ∗jx
l
ij ≤ θ̄u

q

∑
j∈Λ

αl∗
ij = θ̄u

q x
l
iq ≤ xl

iq, ∀i ∈ I, (A.2)

∑
j∈Π

λ∗jy
u
rj ≥ yu

rq, ∀r ∈ O, (A.3)

0 ≤ αl∗
ij ≤ xl

ij , ∀i ∈ I, ∀j ∈ Λ, (A.4)∑
j∈Π

λ∗j = 1. (A.5)

According to equations (A.2), (A.3), and (A.5), it is obvious that
(
λ̄ =

(
λ∗j ,∀j ∈ Π;λq = 0

)
, θu

q = θ̄u
q

)
is a feasible solution to problem (A.1). Therefore, the optimal value of model (A.1) is less than or equal θ̄u

q .

By contradiction assume that Φ =
(
λ∗∗j ,∀j ∈ Π;λ∗∗q , θ

u∗∗
q

)
be an optimal solution to model (A.1) in which

θu∗∗
q < θ̄u

q ≤ 1. The inequality (A.2) will be used in problem (A.1), the following result is obtained:

θu∗∗
q xl

iq ≥
∑
j∈Π

λ∗∗j x
l
ij + λ∗∗q x

l
iq ≥

∑
j∈Π

λ∗∗j x
l
ij + λ∗∗q

∑
j∈Π

λ∗jx
l
ij

 ,

∑
j∈Π

(
λ∗∗j + λ∗∗q λ

∗
j

)
xl

ij ≤ θu∗∗
q xl

iq, ∀i ∈ I. (A.6)

For each j ∈ Π, define λ̄j = λ∗∗j + λ∗∗q λ
∗
j . By equation (A.5) and feasibility Φ to model (A.1) , we have λ̄j ≥ 0

(∀j ∈ Π) and ∑
j∈Π

λ̄j =
∑
j∈Π

(
λ∗∗j + λ∗∗q λ

∗
j

)
=
∑
j∈Π

λ∗∗j + λ∗∗q
∑
j∈Π

λ∗j = 1. (A.7)
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By (A.6) and θu∗∗
q < θ̄u

q (contradiction assume), we have

∑
j∈Π

λ̄jx
l
ij ≤ θu∗∗

q xl
iq < θ̄u

q x
l
iq, ∀i ∈ I. (A.8)

Similarly, considering equation (A.3) and problem (A.1), we get∑
j∈Π

λ̄jy
u
rj ≥ yu

rq, ∀r ∈ O. (A.9)

There exists at least one p ∈ I and at least one k ∈ Π such that αl∗
pk > 0, because xl

iq 6= 0. Then, there exists
positive scalar µ > 0, such that αl∗

pk − µ ≥ 0 and

∑
j∈Π

λ̄jx
l
pj ≤ θ̄u

q

(αl∗
pk − µ

)
+

∑
j∈Λ−{k}

αl∗
pj

 . (A.10)

Now, define

ᾱl
ij =

αl∗
ij − µ if i = p, j = k,

αl∗
ij otherwise.

(A.11)

By (A.8), (A.10), and (A.11), we have ∑
j∈Π

λ̄jx
l
ij ≤ θ̄u

q

∑
j∈Λ

ᾱl
ij , ∀i ∈ I, (A.12)

0 ≤ ᾱl
ij ≤ xl

ij , ∀i ∈ I. (A.13)

According to (A.7), (A.9), (A.12), and (A.13),
(
λ̄, ᾱl

ij : ∀i ∈ I, ∀j ∈ Λ
)

is a feasible solution to problem (3.2), in
which

(
ᾱl

ij ; ∀i ∈ I, ∀j ∈ Λ
)
≤
(
ᾱl∗

ij ; ∀i ∈ I, ∀j ∈ Λ
)

and
(
ᾱl

ij ; ∀i ∈ I, ∀j ∈ Λ
)
6=
(
ᾱl∗

ij ; ∀i ∈ I, ∀j ∈ Λ
)
. This

contradicts the assumption (ii) that ∆l is a Pareto solution to problem (3.2). Therefore, θu∗∗
q = θ̄u

q and the
proof is completed. �

Appendix B.

Theorem B.1. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆u =

(
λ∗, αu∗

ij : ∀i ∈ I, ∀j ∈ Λ
)

is a Pareto solution to MOLP (3.4) in which αu∗
ij 6= ᾱl

ij for some i ∈ I
and j ∈ Λ;

(iii) xu
iq =

∑
j∈Λ

αu∗
ij for each i ∈ I.

Then, the obtained efficiency lower bound of DMUq is equal to θ̄l
q.

Proof. To prove the theorem, we consider the following LP problem:

min θl
q (B.1)

s.t.
∑
j∈Π

λjx
l
ij + λqx

l
iq ≤ θl

qx
u
iq, i = 1, 2, . . . ,m,
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j∈Π

λjy
u
rj + λqy

u
rq ≥ yl

rq, r = 1, 2, . . . , s,

∑
j∈Π

λj + λq = 1,

λj ≥ 0, ∀j ∈ Π ∪ {q}.

We should show that the optimal value of the above model is θ̄l
q.

Since the efficiency frontiers are identical before and after merging (assumption (i)), then in each optimal
solution of the above model we have λ∗q = 0. Accordingly, model (B.1) can be converted to the following model:

min θl
q (B.2)

s.t.
∑
j∈Π

λjx
l
ij ≤ θl

qx
u
iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj ≥ yl

rq, r = 1, 2, . . . , s,

∑
j∈Π

λj = 1,

λj ≥ 0, ∀j ∈ Π.

Feasibility of ∆u for model (3.4), implies that
(
λ∗, θl

q = θ̄l
q

)
is a feasible solution to problem (B.2). Therefore,

the optimal value of model (B.2) is less than or equal θ̄l
q.

By contradiction assume that Φ =
(
λ∗∗, θl∗∗

q

)
be an optimal solution to model (B.2) in which θl∗∗

q < θ̄l
q ≤ 1.

Feasibility of Φ for model (B.2) and θl∗∗
q < θ̄l

q (contradiction assume), implies

∑
j∈Π

λ∗∗j x
l
ij ≤ θl∗∗

q xu
iq < θ̄l

qx
u
iq = θ̄l

q

∑
j∈Λ

αu∗
ij , ∀i ∈ I, (B.3)

∑
j∈Π

λ∗∗j y
u
rj ≥ yl

rq, ∀r ∈ O, (B.4)

∑
j∈Π

λ∗∗j = 1. (B.5)

If assumption (ii) holds, then there exists at least one p ∈ I and at least one k ∈ Λ such that ᾱl
pk < αu∗

pk .
Therefore, there exists positive scalar µ > 0, such that ᾱl

pk ≤ αu∗
pk − µ and

∑
j∈Π

λ∗∗j x
l
pj ≤ θ̄l

q

(αu∗
pk − µ

)
+

∑
j∈Λ−{k}

αu∗
pj

 . (B.6)

Now, define

ᾱu
ij =

αu∗
ij − µ if i = p, j = k,

αu∗
ij otherwise.

(B.7)

By (B.3), (B.6), and (B.7), we have ∑
j∈Π

λ∗∗j x
l
ij ≤ θ̄l

q

∑
j∈Λ

ᾱu
ij , ∀i ∈ I, (B.8)
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ᾱl
ij ≤ ᾱu

ij ≤ xu
ij , ∀i ∈ I. (B.9)

According to (B.4), (B.5), (B.8), and (B.9),
(
λ∗∗, ᾱu

ij : ∀i ∈ I, ∀j ∈ Λ
)

is a feasible solution to problem (3.4), in
which

(
ᾱu

ij ; ∀i ∈ I, ∀j ∈ Λ
)
≤
(
αu∗

ij ; ∀i ∈ I, ∀j ∈ Λ
)

and
(
ᾱu

ij ; ∀i ∈ I, ∀j ∈ Λ
)
6=
(
αu∗

ij ; ∀i ∈ I, ∀j ∈ Λ
)
. This

contradicts the assumption (ii) that ∆u is a Pareto solution to MOLP (3.4). Accordingly, θl∗∗
q = θ̄l

q and the
proof is completed. �

Appendix C.

Theorem C.1. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆u =

(
λ∗, βu∗

rj : ∀r ∈ O, ∀j ∈ Λ
)

is a weak Pareto solution to problem (3.6);
(iii) yu

rq =
∑

j∈Λ β
u∗
rj for each r ∈ O.

Then, the obtained efficiency lower bound of DMUq is equal to ϕ̄l
q.

Proof. To prove the theorem, we should show that the optimal value of the following problem is ϕ̄l
q.

max ϕl
q (C.1)

s.t.
∑
j∈Π

λjx
l
ij + λqx

l
iq ≤ xl

iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj + λqy

u
rq ≥ ϕl

qy
u
rq, r = 1, 2, . . . , s,

∑
j∈Π

λj + λq = 1,

λj ≥ 0, ∀j ∈ Π ∪ {q}.

Since ∆u is a feasible solution for model (3.6) (assumption (ii)) and ϕ̄l
q ≥ 1, we get

∑
j∈Π

λ∗jx
l
ij ≤ xl

iq, ∀i ∈ I, (C.2)

∑
j∈Π

λ∗jy
u
rj ≥ ϕ̄l

q

∑
j∈Λ

βu∗
rj = ϕ̄l

qy
u
rq ≥ yu

rq, ∀r ∈ O, (C.3)

βu∗
rj ≥ yu

rj , ∀r ∈ O, ∀j ∈ Λ, (C.4)∑
j∈Π

λ∗j = 1. (C.5)

According to equations (C.2), (C.3), and (C.5), it is obvious that
(
λ̄ = (λ∗j , j ∈ Π;λq = 0), ϕl

q = ϕ̄l
q

)
is

a feasible solution to problem (C.1). Therefore, the optimal value of model (C.1) is more than or equal ϕ̄l
q.

By contradiction assume that Φ =
(
λ∗∗j , j ∈ Π;λ∗∗q , ϕ

l∗∗
q

)
be an optimal solution to model (C.1) in which

ϕl∗∗
q > ϕ̄l

q ≥ 1. The inequality (C.3) will be used in problem (C.1), the following result is obtained:

ϕl∗∗
q yu

rq ≤
∑
j∈Π

λ∗∗j y
u
rj + λ∗∗q y

u
rq ≤

∑
j∈Π

λ∗∗j y
u
rj + λ∗∗q

∑
j∈Π

λ∗jy
u
rj

 ,
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j∈Π

(
λ∗∗j + λ∗∗q λ

∗
j

)
yu

rj ≥ ϕl∗∗
q yu

rq, ∀r ∈ I. (C.6)

For each j ∈ Π, define λ̄j = λ∗∗j + λ∗∗q λ
∗
j . By equation (C.5) and feasibility Φ to model (C.1), we have λ̄j ≥ 0

(∀j ∈ Π) and ∑
j∈Π

λ̄j =
∑
j∈Π

(
λ∗∗j + λ∗∗q λ

∗
j

)
=
∑
j∈Π

λ∗∗j + λ∗∗q
∑
j∈Π

λ∗j = 1. (C.7)

Similarly, considering equation (C.2) and problem (C.1), we have∑
j∈Π

λ̄jx
l
ij ≤ xl

iq, ∀i ∈ I. (C.8)

By (C.6) and ϕl∗∗
q > ϕ̄l

q (contradiction assume), we have

∑
j∈Π

λ̄jy
u
rj ≥ ϕl∗∗

q yu
rq > ϕ̄l

qy
u
rq = ϕ̄l

q

∑
j∈Λ

βu∗
rj , ∀r ∈ O. (C.9)

Then, there exists scaler positive µ > 0, such that∑
j∈Π

λ̄jy
u
rj ≥ ϕ̄l

q

∑
j∈Λ

(
βu∗

rj + µ
)

= ϕ̄l
q

∑
j∈Λ

β̄u
rj , ∀r ∈ O. (C.10)

According to (C.7), (C.8), and (C.10),
(
λ̄, β̄u

rj : ∀r ∈ O, ∀j ∈ Λ
)

is a feasible solution to problem (3.6), in which(
β̄u

rj ; ∀r ∈ O, ∀j ∈ Λ
)
>
(
βu∗

rj ; ∀r ∈ O, ∀j ∈ Λ
)
. This contradicts the assumption (ii) that ∆u is a weak Pareto

solution to MOLP (3.6). Then, ϕl∗∗
q = ϕ̄l

q and the proof is completed. �

Appendix D.

Theorem D.1. If the following assumptions hold:

(i) The merged unit (DMUq) is within the current PPS;
(ii) ∆l =

(
λ∗, βl∗

rj : ∀r ∈ O, ∀j ∈ Λ
)

is a Pareto solution to model (3.8) in which β̄u
rj 6= βl∗

rj;
(iii) yl

rq =
∑

j∈Λ β
l∗
rj for each r ∈ O.

Then, the obtained efficiency upper bound of DMUq is equal to ϕ̄u
q .

Proof. To prove the theorem, we consider the following LP model:

max ϕu
q (D.1)

s.t.
∑
j∈Π

λjx
l
ij + λqx

l
iq ≤ xu

iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj + λqy

u
rq ≥ ϕu

q y
l
rq, r = 1, 2, . . . , s,

∑
j∈Π

λj + λq = 1,

λj ≥ 0, ∀j ∈ Π ∪ {q}.

we should show that the optimal value of the above model is ϕ̄u
q .
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Since the efficiency frontiers are identical before and after merging (assumption (i)), then in each optimal
solution of the above model we have λ∗q = 0. Accordingly, model (D.1) can be converted to the following model:

max ϕu
q (D.2)

s.t.
∑
j∈Π

λjx
l
ij ≤ xu

iq, i = 1, 2, . . . ,m,

∑
j∈Π

λjy
u
rj ≥ ϕu

q y
l
rq, r = 1, 2, . . . , s,

∑
j∈Π

λj = 1,

λj ≥ 0, ∀j ∈ Π.

Feasibility of ∆l for model (3.8), implies that
(
λ∗, ϕu

q = ϕ̄u
q

)
is a feasible solution to problem (D.2). Therefore,

the optimal value of model (D.2) is more than or equal ϕ̄u
q .

By contradiction assume that Φ =
(
λ∗∗, ϕu∗∗

q

)
be an optimal solution to model (D.2) in which ϕu∗∗

q > ϕ̄u
q ≥ 1.

Feasibility of Φ for model (D.2) and ϕu∗∗
q > ϕ̄u

q ≥ 1 (contradiction assume), implies∑
j∈Π

λ∗∗j x
l
ij ≤ xl

iq, ∀i ∈ I, (D.3)

∑
j∈Π

λ∗∗j y
u
rj ≥ ϕu∗∗

q yl
rq > ϕ̄l

qy
l
rq = ϕ̄l

q

∑
j∈Λ

βl∗
rj , ∀r ∈ O, (D.4)

∑
j∈Π

λ∗∗j = 1. (D.5)

If assumption (ii) holds, then there exists at least one p ∈ O and at least one k ∈ Λ such that βl∗
pk < β̄u

pk.
Therefore, there exists posetive scalar µ > 0, such that βl∗

pk + µ ≤ β̄u
pk and

∑
j∈Π

λ∗∗j y
u
pj ≥ ϕ̄l

q

(βl∗
pk + µ

)
+

∑
j∈Λ−{k}

βl∗
pj

 . (D.6)

Now, define

β̄l
rj =

βl∗
rj + µ if r = p, j = k,

βl∗
rij otherwise.

(D.7)

By (D.4), (D.6), and (D.7), we have ∑
j∈Π

λ∗∗j y
u
rj ≥ ϕ̄l

q

∑
j∈Λ

β̄l
rj , ∀r ∈ O, (D.8)

β̄u
rj ≥ β̄l

rj ≥ yl
rj , ∀r ∈ O. (D.9)

According to (D.3), (D.5), (D.8), and (D.9),
(
λ∗∗, β̄l

rj : ∀r ∈ O, ∀j ∈ Λ
)

is a feasible solution to problem (3.8), in
which

(
β̄l

rj : ∀r ∈ O, ∀j ∈ Λ
)
≥
(
βu∗

rj ; ∀r ∈ O, ∀j ∈ Λ
)

and
(
β̄l

rj : ∀r ∈ O, ∀j ∈ Λ
)
6=
(
βu∗

rj ; ∀r ∈ O, ∀j ∈ Λ
)
.

This contradicts the assumption (ii) that ∆l is a Pareto solution to problem (3.8). Therefore, ϕu∗∗
q = ϕ̄u

q and
the proof is completed. �
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Appendix E.

Tables E.1 and E.2.

Table E.1. The inputs of 20 bank branches.

Branches Payable interest Personnel Non-performing loans

B01 [5007.37, 9613.37] [36.29, 36.86] [87 243, 87 243]

B02 [2926.81, 5961.55] [18.8, 20.16] [9945, 12 120]
B03 [8732.7, 17 752.5] [25.74, 27.17] [47 575, 50 013]

B04 [945.93, 1966.39] [20.81, 22.54] [19 292, 19 753]

B05 [8487.07, 17 521.66] [14.16, 14.8] [3428, 3911]
B06 [13 759.35, 27 359.36] [19.46, 19.46] [13 929, 15 657]

B07 [587.69, 1205.47] [27.29, 27.48] [27 827, 29 005]

B08 [4646.39, 9559.61] [24.52, 25.07] [9070, 9983]
B09 [1554.29, 3427.89] [20.47, 21.59] [412 036, 413 902]

B10 [17 528.31, 36 297.54] [14.84, 15.05] [8638, 10 229]
B11 [2444.34, 4955.78] [20.42, 20.54] [500, 937]

B12 [7303.27, 14 178.11] [22.87, 23.19] [16 148, 21 353]

B13 [9852.15, 19 742.89] [18.47, 21.83] [17 163, 17 290]
B14 [4540.75, 9312.24] [22.83, 23.96] [17 918, 17 964]

B15 [3039.58, 6304.01] [39.32, 39.86] [51 582, 55 136]

B16 [6585.81, 13 453.58] [25.57, 26.52] [20 975, 23 992]
B17 [4209.18, 8603.79] [27.59, 27.95] [41 960, 43 103]

B18 [1015.52, 2037.82] [13.63, 13.93] [18 641, 19 354]

B19 [5800.38, 11 875.39] [27.12, 27.26] [19 500, 19 569]
B20 [1445.68, 2922.15] [28.96, 28.96] [31 700, 32 061]

Table E.2. The outputs of 20 bank branches.

Branches The total sum
of four main

deposits

Other deposits Loans granted Received interest Fee

B01 [2 696 995, 3 126 798] [263 643, 382 545] [1 675 519, 1 853 365] [108 634.76, 125 740.28] [965.97, 6957.33]

B02 [340 377, 440 355] [95 978, 117 659] [377 309, 390 203] [32 396.65, 37 836.56] [304.67, 749.4]
B03 [1 027 546, 1 061 260] [37 911, 503 089] [1 233 548, 1 822 028] [96 842.33, 108 080.01] [2285.03, 3174]
B04 [1 145 235, 1 213 541] [229 646, 268 460] [468 520, 542 101] [32 362.8, 39 273.37] [207.98, 510.93]

B05 [390 902, 395 241] [4924, 12 136] [129 751, 142 873] [12 662.71, 14 165.44] [63.32, 92.3]
B06 [988 115, 1 087 392] [74 133, 111 324] [507 502, 574 355] [53 591.3, 72 257.28] [480.16, 869.52]
B07 [144 906, 165 818] [180 530, 180 617] [288 513, 323 721] [40 507.97, 45 847.48] [176.58, 370.81]

B08 [408 163, 416 416] [405 396, 486 431] [1 044 221, 1 071 812] [56 260.09, 73 948.09] [4654.71, 5882.53]
B09 [335 070, 410 427] [337 971, 449 336] [1 584 722, 1 802 942] [176 436.81, 189 006.12] [560.26, 2506.67]

B10 [700 842, 768 593] [14 378, 15 192] [2 290 745, 2 573 512] [662 725.21, 791 463.08] [58.89, 86.86]

B11 [641 680, 696 338] [114 183, 241 081] [1 579 961, 2 285 079] [17 527.58, 20 773.91] [1070.81, 2283.08]
B12 [453 170, 481 943] [27 196, 29 553] [245 726, 275 717] [35 757.83, 42 790.14] [375.07, 559.85]
B13 [553 167, 574 989] [21 298, 23 043] [425 886, 431 815] [45 652.24, 50 255.75] [438.43, 836.82]

B14 [309 670, 342 598] [20 168, 26 172] [124 188, 126 930] [8143.79, 11 948.04] [936.62, 1468.45]
B15 [286 149, 317 186] [149 183, 270 708] [787 959, 810 088] [106 798.63, 111 962.3] [1203.79, 4335.24]

B16 [321 435, 347 848] [66 169, 80 453] [360 880, 379 488] [89 971.47, 165 524.22] [200.36, 399.8]
B17 [618 105, 835 839] [244 250, 404 579] [9 136 507, 9 136 507] [33 036.79, 41 826.51] [2781.24, 4555.42]
B18 [248 125, 320 974] [3063, 6330] [26 687, 29 173] [9525.6, 10 877.78] [240.04, 274.7]

B19 [640 890, 679 916] [490 508, 684 372] [2 946 797, 3 985 900] [66 097.16, 95 329.87] [961.56, 1914.25]
B20 [119 948, 120 208] [14 943, 17 495] [297 674, 308 012] [21 991.53, 27 934.19] [282.73, 471.22]



S1630 S. GHOBADI

Acknowledgements. The author would like to thank Professor Nelson Maculan (the editor of the journal) and anonymous
reviewers for their insightful and constructive comments and suggestions.

References

[1] G.R. Amin and S. Al-Muharrami, A new inverse data envelopment analysis model for mergers with negative data. IMA J.
Manage. Math. 29 (2018) 137–149.

[2] G.R. Amin and A. Oukil, Flexible target setting in mergers using inverse data envelopment analysis. Int. J. Oper. Res.
35 (2019) 301–317.

[3] G.R. Amin, A. Emrouznejad and S. Gattoufi, Modelling generalized firms’ restructuring using inverse DEA. J. Prod. Anal.
48 (2017) 51–61.

[4] G.R. Amin, S. Al-Muharrami and M. Toloo, A combined goal programming and inverse DEA method for target setting in
mergers. Expert Syst. App. 115 (2019) 412–417.

[5] X. Bai, J. Zeng and Y. Chiu, Pre-evaluating efficiency gains from potential mergers and acquisitions based on the resampling
DEA approach: evidence from China’s railway sector. Trans. Policy 76 (2019) 46–56.

[6] C. Bernad, L. Fuentelsaz and J. Gmez, The effect of mergers and acquisitions on productivity: an empirical application to
Spanish banking. Omega 38 (2010) 283–293.

[7] P. Bogetoft and D.X. Wang, Estimating the potential gains from mergers. J. Prod. Anal. 23 (2005) 145–171.

[8] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978)
429–444.

[9] W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA)-Thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17.

[10] W.W. Cooper, K.S. Park and G. Yu, IDEA and AR-IDEA: models for dealing with imprecise data in DEA. Manage. Sci.
45 (1999) 597–607.

[11] W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, Applications,
References and DEA-Solver Software, Second edition. Springer US, New York, NY (2007).

[12] D. Despotis and Y. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36.

[13] L. Dong Joon, Inverse DEA with frontier changes for new product target setting. Eur. J. Oper. Res. 254 (2016) 510–516.

[14] M. Ehrgott, Multicriteria Optimization. Springer, Berlin-Heidelberg (2005).

[15] A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. J. Soc.
Econ. Plan. Sci. 61 (2018) 4–8.

[16] A. Emrouznejad, B. Parker and G. Tavares, Evaluation of research in efficiency and productivity: a survey and analysis of the
first 30 years of scholarly literature in DEA. J. Socio Econ. Plan. Sci. 42 (2008) 151–157.

[17] A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini, M. Tavana and N. Aghayi, An overall profit Malmquist pro-
ductivity index with fuzzy and interval data. Math. Comput. Model. 54 (2011) 2827–2838.

[18] A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini and M. Tavana, General and multiplicative non-parametric
corporate performance models with interval ratio data. Math. Comput. Model. 36 (2012) 5506–5514.

[19] A. Emrouznejad, G.-L. Yang and G.R. Amin, A novel inverse DEA model with application to allocate the CO2 emissions
quota to different regions in Chinese manufacturing industries. J. Oper. Res. Soc. 70 (2018) 1–12.

[20] T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data. Eur. J. Oper. Res.
136 (2002) 32–45.

[21] S. Gattoufi, G.R. Amin and A. Emrouznejad, A new inverse DEA method for merging banks. IMA J. Manage. Math. 25 (2014)
73–87.

[22] S. Ghobadi, Inputs and outputs estimation in inverse DEA. Iran. J. Optim. 9 (2017) 119–129.

[23] S. Ghobadi, Inverse DEA using enhanced Russell measure in the presence of fuzzy data. Int. J. Ind. Math. 10 (2018) 1–16.

[24] S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO: OR 53 (2019)
1791–1805.

[25] S. Ghobadi and S. Jahangiri, Optimal allocation of resources using the ideal-solutions. J. New Res. Math. 5 (2019) 121–134.

[26] S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Dynamic inverse DEA in the presence of
fuzzy data. Adv. Environ. Biol. 8 (2014) 139–151.

[27] S. Ghobadi, G.R. Jahanshahloo, F. Hoseinzadeh Lotfi and M. Rostami-Malkhalifeh, Efficiency measure under inter-temporal
dependence. Int. J. Technol. Decis. Making 17 (2018) 657–675.

[28] A. Hadi-Vencheh, A.A. Foroughi and M. Soleimani-Damaneh, A DEA model for resource allocation. Econ. Model. 25 (2008)
983–993.

[29] G.R. Jahanshahloo, F.H. Lotfi and M. Moradi, Sensitivity and stability analysis in DEA with interval data. Appl. Math.
Comput. 156 (2004) 463–477.

[30] G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA
models. Appl. Math. Comput. 169 (2005) 905–916.

[31] G.R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-Malkhalifeh and M. Ahadzadeh Namin, A generalized model for data
envelopment analysis with interval data. Appl. Math. Model. 33 (2009) 3237–3244.

[32] G.R. Jahanshahloo, F. Hoseinzadeh Lotfi, M. Rostami-malkhalifeh and S. Ghobadi, Using enhanced Russell model to solve
inverse data envelopment analysis problems. Sci. World J. 2014 (2014) 1–10.



MERGING DECISION-MAKING UNITS S1631

[33] G.R. Jahanshahloo, M. Soleimani-damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-
objective programming. Eur. J. Oper. Res. 240 (2015) 447–456.

[34] C. Kao, Interval efficiency measures in data envelopment analysis with imprecise data. Eur. J. Oper. Res. 174 (2006) 1087–
1099.

[35] H. Leleu, J. Moises and V. Valdmanis, Optimal productive size of hospitals intensive care units. Int. J. Prod. Econ. 136 (2012)
297–305.

[36] F. Li, L. Liang, L. Yongjum and A. Emrouznejad, An alternative approach to decompose the potential gains from mergers.
J. Oper. Res. Soc. 69 (2018) 1793–1802.

[37] H.T. Lin, An efficiency-driven approach for setting revenue target. Decis. Support Syst. 49 (2010) 311–317.

[38] H.H. Liu, T.Y. Chen and L.Y. Pai, The influence of merger and acquisition activities on corporate performance in the Taiwanese
telecommunications industry. Serv. Ind. J. 27 (2007) 1041–1051.

[39] P. Molyneux, K. Schaeck and T. MiZhou, Too systemically important to fail in banking – evidence from bank mergers and
acquisitions. J. Int. Money Finance 49 (2014) 258–282.

[40] V. Moonesian, S. Jahangiri and S. Ghobadi, Efficiency and super-efficiency under inter-temporal dependence. RAIRO:OR 54
(2020) 1385–1400.

[41] J. Motis, Mergers and acquisitions motives, Working Papers 0730. University of Crete, Department of Economics (2007).

[42] J.K. Sengupta, A fuzzy systems approach in data envelopment analysis. Comput. Math. App. 24 (1992) 259–266.

[43] X. Shi, Y. Li, A. Emrouznejad, J. Xie and L. Liang, Estimation of potential gains from bank mergers: a novel two-stage cost
efficiency DEA model. J. Oper. Res. Soc. 9 (2017) 1045–1055.

[44] A.H. Shokouhi, A. Hatami-Marbini, M. Tavana and S. Saati, A robust optimization approach for imprecise data envelopment
analysis. Comput. Ind. Eng. 59 (2010) 387–397.

[45] Y. Wang, R. Greatbanks and J. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst.
153 (2005) 347–370.

[46] P. Wanke, A. Maredza and R. Gupta, Merger and acquisitions in South African banking: a network DEA model. Res. Int.
Bus. Finance 41 (2017) 362–376.

[47] J.A. Weber and U.M. Dholakia, Including marketing synergy in acquisition analysis: a step-wise approach. Ind. Market.
Manage. 29 (2000) 157–177.

[48] M. Wegener and G.R. Amin, Minimizing greenhouse gas emissions using inverse DEA with an application in oil and gas. Expert
Syst. App. 122 (2019) 369–375.

[49] E. Zeinodin and S. Ghobadi, Merging DMUs based on of the idea inverse DEA. Iran. J. Optim. 11 (2019) 77–84.

[50] E. Zeinodin and S. Ghobadi, Merging decision-making units under inter-temporal dependence. IMA J. Manage. Math. 31 (2020)
139–166.

[51] X. Zhang and J. Cui, A project evaluation system in the state economic information system of China: an operation research
practice in public sectore. Int. Trans. Oper. 6 (1999) 441–452.


	Introduction
	Question 1.
	Question 2.

	Preliminaries
	Multiple-objective programming
	DEA with interval data

	Merging DMUs in the presence of interval data
	Estimation of input 
	Estimation of output

	Minimum and maximum achievable efficiency targets
	Minimum and maximum achievable targets of the input-oriented efficiency
	Minimum and maximum achievable targets of the output-oriented efficiency

	A numerical illustration
	Conclusion
	
	
	
	
	
	References

