Evaluating the potential trade-off between students’ satisfaction and school performance using evolutionary multiobjective optimization
RAIRO. Operations Research, Tome 55 (2021), pp. S1051-S1067

In this article, we carry out a combined econometric and multiobjective analysis using data from a representative sample of Andalusian schools. In particular, four econometric models are estimated in which the students’ academic performance (scores in math and reading, and percentage of students reaching a certain threshold in both subjects, respectively) are regressed against the satisfaction of students with different aspects of the teaching-learning process. From these estimates, four objective functions are defined which have been simultaneously maximized, subject to a set of constraints obtained by analyzing dependencies between explanatory variables. This multiobjective programming model is intended to optimize the students’ academic performance as a function of the students’ satisfaction. To solve this problem we use a decomposition-based evolutionary multiobjective algorithm called Global WASF-GA with different scalarizing functions which allows generating an approximation of the Pareto optimal front. In general, the results show the importance of promoting respect and closer interaction between students and teachers, as a way to increase the average performance of the students and the proportion of high performance students.

DOI : 10.1051/ro/2020027
Classification : 90C29, 90C11, 97D20, 62P20
Keywords: Evolutionary multiobjective optimization students’ performance, students’ satisfaction, achievement scalarizing function, econometric analysis
@article{RO_2021__55_S1_S1051_0,
     author = {Marcenaro-Guti\'errez, Oscar D. and Gonz\'alez-Gallardo, Sandra and Luque, Mariano},
     title = {Evaluating the potential trade-off between students{\textquoteright} satisfaction and school performance using evolutionary multiobjective optimization},
     journal = {RAIRO. Operations Research},
     pages = {S1051--S1067},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020027},
     zbl = {1472.90123},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020027/}
}
TY  - JOUR
AU  - Marcenaro-Gutiérrez, Oscar D.
AU  - González-Gallardo, Sandra
AU  - Luque, Mariano
TI  - Evaluating the potential trade-off between students’ satisfaction and school performance using evolutionary multiobjective optimization
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S1051
EP  - S1067
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020027/
DO  - 10.1051/ro/2020027
LA  - en
ID  - RO_2021__55_S1_S1051_0
ER  - 
%0 Journal Article
%A Marcenaro-Gutiérrez, Oscar D.
%A González-Gallardo, Sandra
%A Luque, Mariano
%T Evaluating the potential trade-off between students’ satisfaction and school performance using evolutionary multiobjective optimization
%J RAIRO. Operations Research
%D 2021
%P S1051-S1067
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020027/
%R 10.1051/ro/2020027
%G en
%F RO_2021__55_S1_S1051_0
Marcenaro-Gutiérrez, Oscar D.; González-Gallardo, Sandra; Luque, Mariano. Evaluating the potential trade-off between students’ satisfaction and school performance using evolutionary multiobjective optimization. RAIRO. Operations Research, Tome 55 (2021), pp. S1051-S1067. doi: 10.1051/ro/2020027

[1] F. J. André and C. Romero, Computing compromise solutions: on the connections between compromise programming and composite programming. Appl. Math. Comput. 195 (2008) 1–10. | MR | Zbl

[2] R. J. Barro, Human Capital and Growth. Am. Econ. Rev. 91 (2001) 12–17. | DOI

[3] J. Calero and O. Escardíbul, El rendimiento del alumnado de origen inmigrante en PISA 2012, edited by INEE. In: Vol. II of Análisis secundario PISA 2012: Programa para la evaluación internacional de los alumnos. Informe español. Ministerio de Educación, Cultura y Deporte, Instituto Nacional de Evaluación Educativa, Madrid (2013) 4–31.

[4] J. F. Chizmar and T. A. Zak, Source modeling multiple outputs in educational production functions. Am. Econ. Rev. 73 (1983) 18–22.

[5] K. Deb and K. Miettinen, Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search, edited by M. Ehrgott, B. Naujoks, T. J. Stewart and J. Wallenius. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Springer-Verlag, Berlin (2010) 339–354. | Zbl

[6] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elistic multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002) 182–197. | DOI

[7] K. Deb, K. Miettinen and S. Chaudhuri, Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14 (2010) 821–841. | DOI

[8] J. J. Durillo and A. J. Nebro, jMetal: A java framework of multi-objective optimization. Adv. Eng. Softw. 42 (2011) 760–771. | DOI

[9] M. Ehrgott and D. Tenfelde-Podehl, Computation of ideal and nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res. 151 (2003) 119–139. | MR | Zbl | DOI

[10] S. Gibbons and O. Silva, School quality, child wellbeing and parents’ satisfaction. Econ. Edu. Rev. 30 (2011) 312–331. | DOI

[11] E. Hanushek and L. Woessmann, The economics of international differences in educational achievement, edited by E. Hanushek, S. Machin and L. Woessmann. In: Vol. 3 of Handbook of the Economics of Education. Elsevier, New York (2011) 89–200.

[12] I. Kaliszewski, Quantitative Pareto Analysis by Cone Separation Technique. Kluwer Academic Publishers, Dordrecht (1994). | MR | Zbl | DOI

[13] M. Luque, O. D. Marcenaro and L. A. Lopez-Agudo, On the potential balance among compulsory education outcomes through econometric and multiobjetive programming analysis. Eur. J. Oper. Res. 241 (2015) 527–540. | DOI

[14] M. Luque, A. B. Ruiz, R. Saborido and O. D. Marcenaro, On the use of the L p distance in reference point-based approaches for multiobjective optimization. Ann. Oper. Res. 235 (2015) 559–579. | MR | Zbl | DOI

[15] O. D. Marcenaro, M. Luque and L. A. Lopez-Agudo, Balancing teachers’ math satisfaction and other indicators of the education system’s performance. Soc. Indic. Res. 129 (2016) 1319–1348. | DOI

[16] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999). | MR | Zbl

[17] G. K. Natvig, G. Albrektsen and U. Qvarnstrøm, Associations between psychosocial factors and happiness among school adolescents. Int. J. Nursing Pract. 9 (2003) 166–175. | DOI

[18] OECD, PISA 2015 Results in Focus, PISA, OECD Publishing, Paris. https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf (2018).

[19] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun and J. Wu, MOEA/d with adaptive weight adjustment. Evol. Comput. 22 (2014) 231–264. | DOI

[20] R. W. Rumberger and G. J. Palardy, Test scores, dropout rates, and transfer rates as alternative indicators of high school performance. Am. Edu. Res. J. 42 (2005) 3–42. | DOI

[21] R. Saborido, A. B. Ruiz and M. Luque, Global WASF-GA: An evolutionary algorithm in multiobjective optimization to approximate the whole pareto optimal front. Evol. Comput. 25 (2017) 309–349. | DOI

[22] S. Suldo, E. Shaffer and K. Riley, A social-cognitive-behavioral model of academic predictors of adolescents’ life satisfaction. School Psychol. Q. 23 (2008) 56–69. | DOI

[23] S. M. Suldo, A. Thalji-Raitano, M. Hasemeyer, C. Gelley and B. Hoy, Understanding middle school students life satisfaction: Does school climate matter? Appl. Res. Q. Life 8 (2013) 169–182. | DOI

[24] C. Uline and M. Tschannen-Moran, The walls speak: the interplay of quality facilities, school climate and student achievement. J. Edu. Admin. 46 (2008) 55–73. | DOI

[25] R. Wang, Q. Zhang and T. Zhang, Descomposition – Based algorithms using pareto adaptive scalarazing methods. IEEE Trans. Evol. Comput. 20 (2016) 821–837. | DOI

[26] A. P. Wierzbicki, The use of reference objectives in multiobjective optimization, edited by G. Fandel and T. Gal. In: Multiple Criteria Decision Making. Theory and Applications. Springer-Verlag, Berlin (1980) 468–486. | MR | Zbl

[27] P. L. Yu, A class of solutions for group decision problems. Manage. Sci. 19 (1973) 936–946. | MR | Zbl

[28] M. Zeleny, A concept of compromise solutions and the method of the displaced ideal. Comput. Oper. Res. 1 (1974) 479–496. | DOI

[29] Q. Zhang and H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 1 (2007) 712–731. | DOI

Cité par Sources :