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EVALUATING THE POTENTIAL TRADE-OFF BETWEEN STUDENTS’
SATISFACTION AND SCHOOL PERFORMANCE USING EVOLUTIONARY
MULTIOBJECTIVE OPTIMIZATION

OSCAR D. MARCENARO-GUTIERREZ!, SANDRA GONZALEZ-GALLARDO? AND
MARIANO LUQUE?*

Abstract. In this article, we carry out a combined econometric and multiobjective analysis using
data from a representative sample of Andalusian schools. In particular, four econometric models are
estimated in which the students’ academic performance (scores in math and reading, and percent-
age of students reaching a certain threshold in both subjects, respectively) are regressed against the
satisfaction of students with different aspects of the teaching-learning process. From these estimates,
four objective functions are defined which have been simultaneously maximized, subject to a set of
constraints obtained by analyzing dependencies between explanatory variables. This multiobjective
programming model is intended to optimize the students’ academic performance as a function of the
students’ satisfaction. To solve this problem we use a decomposition-based evolutionary multiobjec-
tive algorithm called Global WASF-GA with different scalarizing functions which allows generating
an approximation of the Pareto optimal front. In general, the results show the importance of promot-
ing respect and closer interaction between students and teachers, as a way to increase the average
performance of the students and the proportion of high performance students.
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1. INTRODUCTION

The relative low academic performance of secondary education students is a main concern for the educational
authorities in Spain, as this country leads the ranking within the UE countries in terms of educational drop-
out rate and grade retention!. Specifically, Andalusia is among the Spanish regions that shows lower academic
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L The percentage of students (aged between 6 and 16 years) who have repeated in Spain, at least once, is around 32%. This
figure is well above the actual average of OCDE, around 12% [18].
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performance in terms of standardized scores, like those provided by PISAZ. Furthermore, this region — the
most populated in Spain presents high dropout rates (around 31% of boys and 24% of girls did not finish their
studies, dropping out before finishing compulsory education in 2012; IECA, 2017%). Additionally, since one of
the key factors to explain economic growth is education [2], it is interesting to analyze any factor potentially
contributing to improve the performance of the educational system. Regarding with this, one less explored factor
is the satisfaction of students with different aspects of the teaching-learning process. This is precisely our main
contribution, to the extent that we intend to explore how these qualitative aspects may contribute to achieve
optimal combinations of different objective measures of educational performance. In this way we try to shed
light to help policy makers to design optimal educational policies.

An increasing bulk of research is concerned with how academic performance can be measured, since the
output of the teaching-learning process is multidimensional. In this sense, as a second contribution, this paper
also provides evidence to the literature to date by considering several outputs simultaneously: the mean scores
— at the school level — in reading and math, in addition to the percentage of students who exceed level three
in PISA* scores for these subjects, as the latest is considered the lower bound of the scores distribution for
the most successful students — following the international large scale assessments. In this way, we account not
only for the mean performance but also for its dispersion, which is on the base of the complex debate between
efficiency and equity of any social policy.

The third contribution of the paper relies on the implementation of a combined econometric-multiobjective
methodological approach, which allows to determine — in a more realistic way — to what extent the satisfaction of
students should be considered a useful instrument to attain optimal-balanced improvements of the educational
system performance. To achieve this, we have built a multiobjective programming model through an econometric
analysis and solved our multiobjective problem using an evolutionary multiobjective algorithm called Global
WASF-GA [21] with different scalarizing functions, which allows generating an approximation of the Pareto
optimal front.

The rest of this paper is organized as follows. In Section 2, we present a review of the literature. The
description of the data is found in Section 3, before presenting the first step of our methodological approach
and the results of this econometric analysis, in Section 4. The concepts, mathematical notation and results of
the multiobjective problem are reported in Section 5. Finally, the conclusions and policy implications of our
results are drawn in Section 6.

2. LITERATURE REVIEW

Traditionally the academic performance has been measured with the scores obtained by students in the main
subjects [11]. However, to the extent that academic performance is a multidimensional output [4], using only
the scores may be too simplistic. In general, the academic performance is the level of knowledge demonstrated
in an area or subject taking into account the age and academic level. Additionally, Calero and Escardibul [3]
assert that the simple evaluation of knowledge does not include the total concept of academic achievement; they
indicate that the academic performance can be measured, e.g. with the rate of grade retention and this depends
to a large extent on social characteristics.

Broadly speaking, two theoretical approaches may be distinguished with regard to the outputs of the education
production function. On the one hand, the more conservative perspective, which supports that the output of

2 According to PISA, this region is below the average for Spain and OCDE; Andalusia reaches 479 points in reading (the average
for Spain and OCDE is 493), 473 in sciences (mean of Spain and OCDE, 496 and 493, respectively) and 466 in mathematics (mean
of Spain and OCDE, 486 and 490, respectively).

3 Institute of Statistics and Cartography of Andalusia. Instituto de Estadistica y Cartografia de Andalucia.

4Following OECD [18], at level four students can use more complex or more abstract content knowledge, which is either provided
or recalled, to construct explanations of more complex or less familiar events and processes. They can conduct experiments involving
two or more independent variables in a constrained context. They are able to justify an experimental design, drawing on elements
of procedural and epistemic knowledge. Level 4 students can interpret data drawn from a moderately complex data set or less
familiar context, draw appropriate conclusions that go beyond the data and provide justifications for their choices.
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education depends only on academic factors. On the other hand, one that argues that social and family factors are
also important for academic achievement, for example satisfaction with life and school center. Both perspectives
can help to optimize academic performance [20].

In recent years, there is an increasing number of research works reporting a positive correlation between good
results in education and life satisfaction of students [17,22]. Specifically, Suldo et al. [23] carried out a study in
which they found significant correlation between students’ satisfaction and the school climate. These authors
consider six factors to encompass the concept of school environment: order and discipline, sharing of resources,
parent involvement, peer relations, student—teacher relationship and fairness. Likewise, Uline and Tschannen-
Moran [24] studied the relation between academic performance and school climate. This research work was
conducted using USA data and analyzed the link between students’ achievement in English and Mathematics
and the quality of school facilities; they show a positive correlation between school environment and quality
of facilities. With regard to satisfaction, Marcenaro et al. [15] provided a novel insight into the satisfaction of
teachers as output of the educational production function, trying to find the level of inputs helping to achieve
a balanced simultaneous solution to the problem of maximizing different outputs of the educational process.
Similarly, Luque et al. [13] estimated simultaneously the performance in mathematics, English and Spanish
literature as a function of sociodemographic characteristics of students and their parents. Additionally, there is
evidence [10] that relates the degree of satisfaction of parents with the quality of the school and the scores that
measure the progression of the students. These authors conclude that parents’ satisfaction isstrongly related to
scores and progression of children.

We depart from the previous literature to the extent that we are using a rich dataset focused on the satisfaction
of students to evaluate how to achieve an optimal level of a multidimensional measure of academic performance,
combining econometric estimates and multiobjective programming.

3. DATA

The empirical strategy in this paper is based on the data provided by the Agencia Andaluza de Evaluacion
Educativa (AGAEVE). In particular, this rich dataset provides information on the satisfaction of 8th grade
students (aged 13-14 years) with 36 different aspects of the learning-teaching process: satisfaction with the
image of the center, internal and external communications, involvement of education sectors and processes
of the school. Nevertheless, we exclude from the analyses those satisfaction variables which had at least 5% of
students with missing values, and those schools with a number of students — answering the satisfaction questions
— below the 5% of the total sample of students. This means that we ended up with 20 satisfaction variables
regarding the students enrolled in 162 secondary schools. With regard to the outputs of the education production
function, the data provide the results from the diagnostic assessment test (DAT), which are the scores from
a standardized test, similar to the one developed by PISA. The survey was answered by 7429 students, using
a 0 to 10 scale.

Table A.1 shows the descriptive statistics of the variables under scrutiny. In this table, it can be observed
that the average value of the satisfaction variables is around 6.8 points, with relatively low standard deviations.
The maximum average value is reached by the variable “Knowledge of the rules of coexistence” with 7.62 points.
This is followed by “Information received about the criteria established to obtain a title” and “Initial activities
directed to the knowledge of the classmates as well as to the union of the group” with 7.36 points. The minimum
value is reached by “Utility of the response given to the complaint or claim presented” with 5.72 points.

As the information on the satisfaction variables are reported grouped by schools, the rest of variables have
been also grouped to this level. Specifically, the test scores used as output will be the average of the reading and
mathematics scores, respectively, of all the students; same applies to the variables measuring the percentage of
students that reached, at least, level four of academic achievement in math and reading, respectively.
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4. ECONOMETRIC ANALYSIS

In order to observe the correlation between student’s satisfaction and the different measures of academic per-
formance, we have estimated regression models — by ordinary least squares (OLS) — in which we consider four
different dependent variables: mean scores in math, mean scores in reading and percentage of students (reaching
level four or higher, i.e. achieving greater or equal to 559 points) in math and reading, respectively. The explana-
tory variables are those indicating the satisfaction of students with different aspects of the teaching-learning
process, as above described. The dependent variables are standardized (mean of 0 and standard deviation of 1;
using the mean and standard deviations for the whole sample of the corresponding variables.

The coefficients obtained from estimating the regression models are used to build the four objective functions
that we wish to maximize simultaneously, thus having a multiobjective programming problem. The idea behind
the OLS estimator is to minimize the squared sum term in order to get rid of the so-called statistical noise
as much as possible. We are assuming that each of the four outputs is affected by random factors which are
inherently unobservable and distributed normally.

If the order of the secondary education center is represented as “i”, and the four outputs are indexed as “;j”,
this model can be represented by the following set of equations:

Pj(i) = &7 + Blay (6) + Bwa(i) + ... + Blas(i) + € (4)
i=1,...,n (n = number of observations, 162 education centers)
j=1,2,3,4 (1 = average maths scores; 2 = average reading scores; 3
= proportion of students above the level four in maths; 4

= proportion os students above the level four in reading)

©sn
7

where P; (i) is a measure of the output “;” for the center “”, and 1 (i), ..., z5(¢) a set of explanatory variables;

€;(7) is a random disturbance; ﬂAj = (A{, ey Bg)T a vector of slope coefficients and &’ a fixed but unknown
population intercept. From the estimation of the four regression models we obtain 5 significant regressors:
respect and attention received by the teachers, satisfaction with the way teachers teach, information received
on the personal and academic progression, assessment of the starting activities carried out at the beginning of
the academic year and knowledge of the projects and educational activities of the center.

Table 1 shows the estimated coefficients of the group of significant variables for each of the four objective
functions; it also reports the standard deviations and the significance levels for the estimated coefficients.

Regarding the results of the estimations, it can be seen that in all the estimations the variable respect received
by the teaching staff is significant and with a positive coeflicient, which means that it contributes to increase
the academic achievement of students, both in terms of average scores and the percentage of students above
level three in both subjects. The rest of the variables that are significant are not the same in the different
estimations, which means that there is some degree of conflict when reaching the maximum of the objectives
at the same time and, thus, it justifies the multiobjective approach implemented. A description of the variables
under scrutiny is provided in Table A.2.

The rest of the explanatory variables that are significant have a negative coefficient, which means that an
increase in these variables produces, on average, a decrease in the academic achievement. For example, focusing
on the estimation whose dependent variable is scores in reading, the variables with significant coefficients are:
initial activities and projects, which present negative coefficients. Therefore, if these variables increase by one
(in a 0-10 scale), the standard deviation of scores in reading will decrease by 0.345 and 0.236, respectively;
in other words, the dependent variable will decrease by 34.5% and 23.6% of a standard deviation, which is
a quite substantial impact. For example, in the case of reading, this means between 10 and 15 points, which is
equivalent to almost half academic year in terms of competences accumulation.
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TABLE 1. Estimates of the effect of students’ satisfaction on students’ academic outcomes

(normalized).
Normalized mean Normalized mean Normalized % Normalized %
scores in math scores in reading > 559 scores in > 559 scores in
math reading
Respect and attention  0.696™** 0.596™** 0.515™** 0.479"**
received by the teachers
(0.155) (0.136) (0.160) (0.141)
Overall assessment of the —0.407*"
teacher’s way of teaching
(0.177)
Information received on the —0.277" —0.426™**
personal and academic pro-
gression
(0.152) (0.134)
Initial activities directed to —0.345™** —0.257""
the knowledge of the class-
mates and to the union of the
group
(0.121) (0.125)
Knowledge of the projects and —0.236™"* —0.198**
educational activities of the
school
(0.0901) (0.0937)
Constant —0.0955 —0.251 —0.774 —0.291
(1.159) (1.038) (0.984) (1.080)
Observations 162 162 162 162
R-squared 0.138 0.181 0.076 0.114

*ok ok

Notes. Standard errors in parentheses. Estimation method: OLS. Coefficient:
*significant at 10%. Source: Authors’ own calculations.

significant at 1%, **significant at 5%,

5. SPECIFICATION AND RESOLUTION OF OUR MODEL

5.1. Concepts and notation in multiobjective programming

In order to solve the multiobjective problem proposed in this study it is necessary to establish the basic
definitions and notations about this topic. Let us consider the following general multiobjective problem:

?t%}ff(i)e:)((fl(w),.“’fk(w)) (5.1)

which involves k (>2) conflicting objective functions f; : X — R that must be maximized simultaneously
and where x = (x4, ... ,xm)T are the decision variables (if any function or functions must be minimized, the
opposite function can be considered since that minimize a function is equivalent to maximize the opposite one).
The decision vector x belongs to the called feasible region X C R", which we suppose that is a nonempty
compact set. The image of any vector of decision € X,z = f(x) is called objective vector and Z = f(X) is
called feasible objective region. In the majority of cases, it is impossible to find a feasible which simultaneously
maximizes all objective functions due to the conflict degree among the objectives. Because of that, the efficiency
concept of optimality appears where none of the components can be improved without deteriorating at least
one of the others: a decision vector ' € X is defined as efficient or Pareto optimal solution of the problem
(5.1) if there does not exist another @ € X such that f;(x’) < fj(x) for all j = 1,...,k, with at least one
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strict inequality. When this happens, 2’ = f(z') is called nondominated objective vector or Pareto optimal
objective vector. The efficient set is denoted by E and f(FE) is the nondominated objective set or the Pareto
optimal front. A decision vector ' € X is called weakly efficient or weakly Pareto optimal if there does not
exist another € X such as f; (') < fj(x) for all j = 1,...,k. The corresponding objective vector is called
weakly nondominated objective vector. In addition, it is necessary to underline that the set of efficient solutions
is a subset of the weakly efficient solutions.

Furthermore, since the set of nondominated objective vectors contains more than one vector — usually many
solutions —, it is useful to know the ranges of the objective vectors in the nondominated objective set. On the

one hand, lower bounds are set by the nadir vector z"2d = (z?ad, ey z,rc‘ad)T7 where z}‘ad = mingeg fj(x) for all
j=1,...,k, while upper bounds are given by the ideal values z* = (27, ..., Z;:)T7 where 27 = maxger fj(z) =
maxgex fj(x) for all j =1,..., k. The nadir vector is not easy to obtain and when estimated from the pay-off

table the values achieved are not necessarily good approximations (for details, see e.g. [9]; or [16]). Deb et al.
[7] and Deb and Miettinen [5] proposed more reliable approaches for its estimation. Both the ideal vector and
the nadir vector are frequently used to normalize the objective functions since the range normalization is the
most used one. In the case of this study, this normalization has been previously performed.

One of the most used techniques to generate Pareto optimal solutions in multiobjective programming is based
on an achievement scalarizing function proposed by Wierzbicki [26]. Given some reference values ¢, ..., g for
the objective functions, which constitute the so-called reference point ¢ = (¢1, . - ., qk)T and, a vector of weights
w=(p1,..., )" with p; > 0 for all j =1,...,k to reach these reference values, the achievement scalarizing
function for problem (5.1) is given by the following expression:

E
s(q, [ (@), p) = jDax {uj(q; = f; (@)} +p > pila; — fi (x)) (5.2)
geeny v j=1
which must be minimized in the feasible region:
min s (g, f (z), 1)
st.: xxelX. (5.3)

The parameter p > 0 is a so-called augmentation coefficient, which must be a small value and which assures
the efficiency of the solutions generated (in many cases, p is equal to one thousandth, or one ten thousandth).
Only the weak efficiency of the solution is assured when the second term is not used, although, if the solution
is unique, it is efficient (see [16]).

The problem (5.3) generates nondominated solutions and it is demonstrated that any Pareto optimal solution
can be found by solving (5.3) using the ideal objective vector as reference point (or any objective vector that
dominates it, as for example an utopian vector), and modifying the weight vector in the whole weight vector
space [12]. It is also demonstrated that any Pareto optimal solution can be found by solving (5.3) when fixing
the weight vector and varying the reference point [16].

Precisely, the property of being able to generate the whole Pareto optimal front using the ideal objective
vector and /or utopian vector as reference point(s) in (5.3) is used in a recent group of evolutionary multiobjective
algorithms to obtain an approximation of the Pareto optimal front. This group, called decomposition-based
evolutionary multiobjective algorithms, transforms the original multiobjective optimization problem into a set
of scalarizing (single-objective) optimization subproblems. During the solution process, the optimal individuals
of these scalarizing subproblems are searched between the individuals of the current population. Among the
most popular algorithms of this group we have MOEAD [29] and its different versions like for example the
recent works of Qi et al. [19] and Wang et al. [25] where the adaptation of the weights is fundamental to obtain
a better approximation.

Within this group, we also have Global WASF-GA (Global Weighting Achievement Scalarizing Function
Genetic Algorithm) proposed by Saborido et al. [21] based on the achievement scalarizing function given in
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(5.2) and the use of two reference points (utopian and nadir points). It considers an initial predefined set of
weight vectors whose inverse components are evenly distributed as much as possible. The idea is, taking into
account the properties of (5.2), generate a set of projection directions evenly distributed as much as possible
in the objective space. At each generation, the individuals (solutions) are classified into different fronts, as
NSGA-II [6], according to the values that they take on (5.2) for the weight vectors. The convergence of the
algorithm is assured by highlighting the individuals that minimize (5.2) at each generation.

Thus, our idea is to generate an approximation of the whole Pareto optimal front for our multiobjective
model by using Global WASF-GA, analysing different solutions and trade-offs among them. To obtain a better
approximation of the Pareto optimal front, we will also use the L, metric as achievement scalarizing function
in Global WASF-GA so that we can obtain a broad and diverse set of nondominated solutions to our model.
The use of different scalarized functions in decomposition-based evolutionary multiobjective algorithms have
also been used in the well-known algorithm MOEA /D (see [25]), in a satisfying way, and allows to contrast the
approximation obtained by considering (5.2).

Given the multiobjective problem (5.1), we also consider the following scalarizing function (p > 1):

1/p

k
s(z,f(z),p) = Zuj (27 = fi ()" (5.4)

which must be minimized in the feasible region:

p11/P
min [, 45 (5 — f; () }1 (5:5)
st.: xeX.

If u; > 0 for all j =1,...,k, then a solution to (5.5) is Pareto optimal (see [27]). This formulation, proposed
by Yu [27] and Zeleny [28], allows different grades of compensation between the objective values to reach their
corresponding ideal values. Concretely, the higher is the p value in (5.5), the lower is the compensation between
objective values to reach the ideal vector (for p = co there is no compensation between components and for
p = 1 the compensation is total). The difference between the ideal component and the objective value can be
normalized by a range of the objective function.

In [1], it is demonstrated that, in the bi-objective case, if the efficient set is given by a continuously differ-
entiable and strictly quasi-convex, then there is a narrow relation between the compromise set and a weighted
problem combining the cases p = oo and p = 1 of (5.5), that is, distances Lo, and Lj, respectively. In the
majority of cases, the solution L., metric matches with the solutions to the problem (5.3) because p is a small
value. Concretely, the compromise set bounded by the solutions for p = co and p = 1 can be obtained varying
the weights in the afore mentioned weighted problem (this last problem is similar to the achievement scalarizing
function with the augmentation term proposed by Wierzbicki [26] where the augmentation term can vary from
0 to infinity). In the case without differentiability of the efficient set or with more than two objective functions,
the relationship between both approaches practically does not exist. An extension to the problem (5.5) where
the reference point is not necessary the ideal vector (can be unachievable or achievable), is proposed in Luque
et al. [14].

5.2. Constraints

To have a model adjusted, as much as possible, to reality, it is necessary to define a set of constraints that
delimit the possible values of the variables. These constraints have been derived from clear dependencies between
explanatory variables. This means that we have chosen those pairs of variables whose dependencies were stronger
according to this analysis. For example, we take the variable x; and observe the dependence between it and the
rest of the variables, from where two-sided constraints have been built, using 99% confidence intervals; these
bounds for ¢ and d are presented in Table 2.
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TABLE 2. Constraints for dependency between 1 and x5, x3, x4 Or 5.

Variables Constraints ¢ d c* d*
T2 C1 0.239 2.395

C2 0.647 5.391
xs3 C3 0.331  2.920

C4 0.618 4.889
Ta C5 0.075  4.206

C6 0.398 6.591
Ts Cc7 0.115 5.017

C8 0.339 6.433

Notes. Source: Authors’ own calculations.

TABLE 3. Constraints for dependency between zo and x3, x4 or xs.

Variables Constraints ¢ d c* d*
T3 C9 0.355 3.186

C10 0.607 4.913
T4 C11 0.398 2.717

C12 0.626  4.405
Ts5 C13 0.201  4.889

Cl14 0.389 6.077

Notes. Source: Authors’ own calculations.

TABLE 4. Constraints for dependency between x3 and x4 or 5.

Variables Constraints ¢ d' c* d*
x4 C15 0.392 1.522

C16 0.720 3.946
Ts C17 0.444  2.890

C18 0.629 4.058

Notes. Source: Authors’ own calculations.

Additionally, in Tables 3-5 we report the constraints of the rest of variables (in total we have 20 constraints).
In these tables, the first row corresponds to the lower bounds of ¢ and d and the second row corresponds to their
upper bounds, for each variable. In order to make this procedure more understandable, an example is provided.
We are going to use the variables x; and x2; dependency between these variables is given by the following linear
regression:

T, =cxro+d
where the confident intervals of the coefficients are (at 99%): ¢ € [, c*] = [0.239,0.647] and d € [d',d"] =
[2.395,5.391], which implies:
das+d <z < g+ dv

Apart from the restrictions defined above, we have considered the minimum and maximum of these variables
in the database as lower and upper bounds. In Table 6, we show these bounds for each decision variable.



STUDENTS’ SATISFACTION AND SCHOOL PERFORMANCE’S TRADE-OFFS WITH EMO S1059

TABLE 5. Constraints for dependency between x4 and xs.

Variables Constraints ¢ d c* d*
Ts C19 0.254 4.188
C20 0.506  5.782

Notes. Source: Authors’ own calculations.

TABLE 6. Lower and upper bounds.

Constraints Lower bound x;  Upper bound

B1 5.5 z1  9.03
B2 5.69 z2  9.27
B3 4.92 r3 9.05
B4 5.159 x4 9.435
B5 3.543 x5 8.870

Notes. Source: Authors’ own calculations.

5.3. Objective functions

The objectives to be considered in this study are maximizing average scores in math and reading, and the
proportion of students above level three in math and reading. The econometric study has allowed us to express
these outcomes as functions of a set of five variables. Therefore, Bﬁn is the regression coeflicient of variable m
for performance level j, and &7 is the independent term of performance level j, then we have the following 4
objectives:

~NT )
EPj(sc)z(ﬁﬂ) r+a j=1,2,3,4.

AT
where (ﬂﬂ > = (ﬂ{ 3535 515;) and 7 = (z122237425). The resulting multiobjective problem to be solved is

the following:

Max (EP, (z), EPs(x), EPs(x), EP4(x)) = ((Bl)T z+al, ([32)T x+ a2, (33)T z + a3, (B‘*)T T+ a4> .
(5.6)
Subject to: (C1)—(C20); (B1)—(B5).

For each case, we have calculated their ideal values:
2* = (553.932, 557.249, 0.400, 0.487) .

These ideal values are 553.932 points and 557.249 points, for math and reading, respectively. In terms of the
other two outputs, the ideal values are 40% for students’ above level three in math, and 48.7% for students’
above level three in reading.

Although the number of significant variables that represent satisfaction is low (5.5), the correlation between
the variables, expressed in the different constraints (20 in total), makes necessary to use appropriate techniques
to generate the Pareto optimal front or a good approximation. It should be noted that the linear multiobjective
problem in standard form has 35 variables (5 original variables + 20 slack variables for inequality constraints
and 10 slack variables for variable bounds) and 30 constraints (20 original constraints + 10 constraints for

variable bounds), which implies that the number of extreme points or vertices is at most (3(5)) = 324632, but
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nevertheless this number is usually smaller. Thus, as above mentioned, we have chosen to use Global WASF-
GA with different scalarized functions as fitness function to obtain a set of nondominated solutions which
approximate the Pareto optimal front.

5.4. Solutions to the multiobjective model

As already mentioned, the multiobjective problem has been solved by the evolutionary multiobjective opti-
mization (EMO) algorithm called Global WASF-GA. It is relevant to remark that, to the best of our knowledge,
this is the first time that an EMO algorithm has been used to solve a multiobjective model defined for a case
in economics of education.

To apply Global WASF-GA, firstly we need to calculate the ideal values or approximations. In order to obtain
these values, it is necessary to maximize each objective function separately. Since the objective functions are not
expressed on the same scale, we decided to work with normalized values for the objective functions as indicated
in Section 4. Thus, the ideal values are given by:

2F = 1717, 25 = 1.683, 25 = 1.214, 2} = 1.338.

Initially we do not have approximations of the nadirs and thus, we have decided to use Global WASF-GA
considering only the ideal vector. Using the scalarized functions (5.2) and (5.4) for the values p = 1,25, we
have generated four approximations of the Pareto optimal front to our multiobjective model (5.6). The following
values for the algorithm’s parameters have been considered in the four runs:

— Number of weight vectors: 120 (generated so that the vectors formed by their inverse components are evenly
distributed as much as possible).

— Number of iterations: 300.

— Maximum number of evaluations: 144.000 (120 x 300 x 4).

— Crossover operator: SBX [6] with a distribution index 7. = 20 and a probability P. = 0.9.

It has been implemented in Java and has been incorporated to the version 5 of jMetal framework [8]°.

Once obtained these approximations, we have mixed the solutions of the four approximations remaining only
with the nondominated solutions among them. As result, we have 31 solutions which are showed in Table 7.
The solutions are in decreasing order by the first objective function. It can be observed that when an objective
is close to its ideal value, another objective value is far from its corresponding ideal value. For example, focusing
on the first and last solutions it can be observed that in number one the value of scores in math is close to ideal
while the value of percentage above level three in reading gets a low value. However, in the solution number
thirty-one the opposite applies.

In order to have a better understanding of the solutions, the non-normalized solutions and the values of
variables of the problem are shown in Tables A.3 and A.4, respectively. Also, in appendix (Tab. A.5), we show
the descriptive statistics of solutions that approximate the Pareto optimal front. As it can be observed from
Table A.3, with respect to math, mean scores in math, varies from 547.246 to 553.621 and the proportion of
students with scores >559 in math varies from 0.380 to 0.400. In case of reading, mean scores varies from 553.832
to 557.097 and the proportion of students with scores above 559 varies from 0.476 to 0.486. If we compare the
mean scores in math and reading, they are in conflict since when math scores achieve the best value (553.621)
reading achieves the worst value (553.832) and wice-versa. Same applies when comparing % > 559 scores in
math with % > 559 scores in reading.

Regarding the decision variables of the solutions, the variable respect by teacher achieve a value close to
the mean (respect by teacher’s mean: 7.14), unlike the remaining decision variables, whose values are closer to
the minimum than the average. It is logical since these variables have a negative influence on the objectives.
Therefore, for obtaining a balance among the four objective functions (scores in math, scores in reading, % > 559
scores in math, and % > 559 scores in reading), the respect received by the teachers is relevant. On average,

5Which can be downloaded in https://github.com/jMetal/jMetal.
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TABLE 7. Normalized solutions.

Number of Normalized mean Normalized mean Normalized % > 559 Normalized % > 559
solution scores in math scores in reading scores in math scores in reading
1 1.709 1.600 1.213 1.268
2 1.708 1.591 1.213 1.261
3 1.706 1.602 1.213 1.269
4 1.698 1.608 1.202 1.274
5 1.696 1.607 1.204 1.274
6 1.696 1.608 1.202 1.274
7 1.692 1.609 1.202 1.275
8 1.691 1.614 1.194 1.279
9 1.690 1.612 1.194 1.278
10 1.686 1.619 1.188 1.284
11 1.683 1.622 1.184 1.286
12 1.678 1.626 1.179 1.289
13 1.675 1.627 1.177 1.290
14 1.674 1.627 1.177 1.290
15 1.666 1.619 1.185 1.284
16 1.664 1.627 1.177 1.290
17 1.653 1.646 1.150 1.305
18 1.644 1.648 1.141 1.307
19 1.642 1.652 1.139 1.310
20 1.640 1.655 1.137 1.313
21 1.634 1.658 1.132 1.315
22 1.626 1.648 1.141 1.307
23 1.626 1.662 1.126 1.319
24 1.625 1.653 1.139 1.311
25 1.623 1.662 1.127 1.319
26 1.616 1.667 1.119 1.323
27 1.614 1.658 1.132 1.316
28 1.614 1.647 1.141 1.307
29 1.612 1.669 1.117 1.325
30 1.584 1.674 1.096 1.330
31 1.553 1.679 1.072 1.335

Notes. Source: Authors’ own calculations.

the results provide a solution where the score in math is 551.434, the score in reading is 555.279 and the students’
percentage reaching 559 points is 39.3% and 48.1% in math and reading, respectively. In this regard, the results
suggest that it is easier achieve higher scores in math than reading.

6. CONCLUSIONS

An aspect that worries the Spanish educational authorities is the relative low performance of the Spanish
students in terms of scores in international standardized assessments, grade repetition and dropout rates. This
concern is even bigger in the case of the most populated Spanish region, i.e. Andalusia, which is the focus of
our analyses.

In this context, the main purpose of this work has been to find which qualitative aspects of the teaching-
learning process, in terms of the student’s satisfaction, allow to obtain better results for the students’ academic
performance measured by scores in math and reading, and percentage of students reaching a certain threshold
in both subjects. To this end, we have carried out a combined econometric and multiobjective analysis using
data from a representative sample of secondary schools. Through linear regression, we have expressed the four
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objectives (scores in math and reading, and percentage of students reaching a certain threshold in both subjects)
as functions of a set of explanatory variables: respect and attention received by the teachers, overall assessment
of the teacher’s way of teaching, information received on personal and academic progression, initial activities
directed to the knowledge of the classmates and to the union of the group and knowledge of the projects and
educational activities of the secondary school.

To solve our four-objective programming model, we have used a decomposition-based evolutionary multi-
objective algorithm called Global WASF-GA with different scalarizing functions, which allows generating an
approximation of the Pareto optimal front. The approach used, by which we obtain an approximation of the
Pareto optimal front, provides a set of solutions that allows to identify the trade-offs among the objectives and
the values reached by the decision variables in the different solutions.

The results obtained led us to think that there is scope to improve the Spanish educational system based
on our main conclusions. Specifically, we claim that the respect and attention received by teachers is very
important to promote higher levels of students’ academic performance. For this reason, the authorities must
establish educational policies that promote respect and narrower interaction between students and teachers.
A potential way to improve this is to make available to the students a few hours in which pupils can talk with
their tutors and teachers, to make easier the student—teacher mutual understanding and to promote a better
teaching-learning environment. Furthermore, the authorities should settle periodical evaluations to check the
satisfaction of teachers and students in terms of mutual interaction.

Finally, as future lines of research, it could be of interest to analyse alternative ways of evaluating the
students’ performance, besides the quantitative assessment, i.e. to account for students non-cognitive skills and
well-being, which can be considered as objectives of the problem.

APPENDIX A.

TABLE A.1. Descriptive statistics for the satisfaction variables.

Std.

Mean Dev. Min Max
State in which the facilities and equipment of the center are 6.66 0.85 3.52 8.90
Satisfaction with the use made of the facilities and equipment of the center 6.80 0.75 4.52 8.73
Satisfaction with the cleaning and decoration of the installations and equipment 6.46 0.83 4.17 9.00
of the secondary school
Provision of the student body to recommend the center 7.28 0.80 5.00 9.23
Utility of the response given to the complaint or claim presented 5.72 1.04 3.26 9.32
Response time to the complaint or claim presented 5.99 1.09 3.33 9.22
Overall assessment of the teacher’s way of teaching 7.33 0.53 5.69  9.27
Information received about the criteria established to pass the course 7.20 0.50 5.68 8.98
Information received about the criteria established to obtain a title 7.36 0.52 6.04 9.81
Overall assessment of the organization and operation of the center 7.04 0.75 4.59  9.57
Assessment of extracurricular activities 7.25 0.63 5.70 9.09
Assessment of complementary activities 6.00 1.29 2.12 9.35
Operation of support classes in the afternoon 6.48 1.08 3.88 8.85
Respect and attention received by the teachers 7.14 0.58 5.50 9.03
Knowledge of the rules of coexistence 7.62 0.52 6.44 9.41
‘Working of the coexistence classroom 6.40 0.76 4.19  9.13
Information received on personal and academic progression 6.82 0.69 4.92 9.05
Initial activities directed to the knowledge of the classmates and to the union of  7.36 0.71 5.16 9.43
the group
Information about the academic possibilities after finishing the studies 7.12 0.60 4.83 8.96
Knowledge about the academic centers where to continue the studies 7.13 0.89 4.88  9.56
Knowledge of the projects and educational activities of the secondary school 6.25 0.98 3.54  8.87

Notes. Source: Authors’ own calculations.
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TABLE A.2. Labeling of the variables under scrutiny.

Name Notation  Variable Type  Values Description
Math Y1 Mean scores in mathe-
matics
Not normalized Cont.  [357.189, 587.69] Mean of students’ marks in mathemat-
ics by center
Normalized Cont.  [—2.40, 2.55] Normalized mean of students’ marks in
mathematics by center
Reading Y2 Mean scores in reading
Not normalized Cont.  [373.62, 571.99] Mean of students’ marks in reading by
center
Normalized Cont.  [—2.74, 2.04] Normalized mean of students’ marks in
reading by center
LeveldMath Y3 Percentage of students
above level four in
math
Not normalized Cont. [0, 0.61] Percentage of students who perform
above level four (559 points) in math
Normalized Cont. [—41.63, 2.69] Normalized percentage of students
who perform above level four (559
points) in math
Level4Reading Y4 Percentage of students
above level four in
reading
Not normalized Cont. [0, 0.66] Percentage of students who perform
above level four (559 points) in read-
ing
Normalized Cont.  [-1.91, 2.51] Normalized percentage of students
who perform above level four (559
points) in reading
Respect by 1 Cont.  [5.5, 9.03] Respect and attention received by the
teachers teachers
Way to teach T2 Cont.  [5.69, 9.27] Overall assessment of the teacher’s way
of teaching
Progression T3 Cont.  [4.92, 9.05] Information received on personal and
academic progression
Starting T4 Cont.  [5.16, 9.43] Initial activities directed to the knowl-
activities edge of the classmates and classmates
as well as to the union of the group
Projects and 5 Cont.  [3.54, 8.87] Knowledge of the projects and educa-
activities tional activities of the secondary school

Notes. Source: Authors’ own calculations.
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TABLE A.3. Non-normalized solutions.

Number of Mean scores Mean scores % > 559 % > 559
solution in math in reading scores in scores in
math reading
1 553.621 553.832 0.400 0.476
2 553.575 553.460 0.400 0.475
3 553.490 553.887 0.400 0.476
4 553.164 554.148 0.398 0.477
5 553.103 554.121 0.399 0.477
6 553.085 554.157 0.399 0.477
7 552.923 554.178 0.398 0.477
8 552.863 554.389 0.397 0.478
9 552.858 554.324 0.397 0.478
10 552.688 554.619 0.396 0.479
11 552.542 554.740 0.396 0.479
12 552.363 554.885 0.395 0.479
13 552.240 554.931 0.395 0.479
14 552.186 554.930 0.395 0.479
15 551.850 554.621 0.396 0.479
16 551.783 554.931 0.395 0.479
17 551.332 555.710 0.391 0.482
18 550.950 555.797 0.390 0.482
19 550.872 555.954 0.390 0.483
20 550.818 556.091 0.389 0.483
21 550.559 556.204 0.389 0.483
22 550.255 555.796 0.390 0.482
23 550.244 556.369 0.388 0.484
24 550.205 555.997 0.390 0.483
25 550.133 556.367 0.388 0.484
26 549.825 556.584 0.387 0.484
27 549.762 556.221 0.389 0.483
28 549.757 555.763 0.390 0.482
29 549.654 556.675 0.386 0.485
30 548.513 556.885 0.383 0.485
31 547.246 557.097 0.380 0.486

Notes. Source: Authors’ own calculations.
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TABLE A.4. Value of decision variables.

Solution Respect by Way to teach ~ Progression Starting Projects and
number teachers activities activities
1 7.932 5.778 4.925 5.312 4.423
2 7.929 5.778 4.920 5.335 4.417
3 7.927 5.781 4.920 5.309 4.409
4 7.907 5.765 4.921 5.295 4.351
5 7.910 5.775 4.920 5.297 4.359
6 7.909 5.772 4.922 5.295 4.354
7 7.907 5.779 4.921 5.294 4.350
8 7.891 5.757 4.920 5.283 4.303
9 7.892 5.757 4.920 5.288 4.304
10 7.879 5.747 4.920 5.272 4.267
11 7.871 5.742 4.920 5.266 4.243
12 7.862 5.736 4.920 5.258 4.214
13 7.858 5.738 4.920 5.256 4.204
14 7.858 5.741 4.920 5.256 4.204
15 7.875 5.789 4.921 5.272 4.255
16 7.858 5.765 4.920 5.256 4.204
17 7.806 5.703 4.920 5.217 4.050
18 7.788 5.695 4.920 5.215 3.998
19 7.784 5.693 4.921 5.203 3.991
20 7.780 5.690 4.920 5.198 3.975
21 7.771 5.690 4.920 5.192 3.947
22 7.788 5.737 4.920 5.216 3.997
23 7.760 5.690 4.920 5.184 3.915
24 7.785 5.735 4.920 5.202 3.988
25 7.760 5.697 4.920 5.184 3.915
26 7.745 5.690 4.920 5.173 3.872
27 7.771 5.738 4.920 5.191 3.948
28 7.789 5.768 4.920 5.217 4.001
29 7.741 5.693 4.920 5.168 3.859
30 7.700 5.692 4.920 5.164 3.739
31 7.654 5.690 4.920 5.159 3.610

Notes. Source: Authors’ own calculations.
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TABLE A.5. Statistics of solutions.

Mean Min Max
Normalized Non Normalized Non Normalized Non
normalized normalized normalized
Mean scores 1.655 551.434 1.553 547.246 1.709 553.621
in math
Mean scores 1.635 555.279 1.591 553.460 1.679 557.097
in reading
% > 559 1.162 0.393 1.072 0.380 1.213 0.400
scores in
math
% > 559 1.297 0.481 1.261 0.475 1.335 0.486
scores in
reading

Notes. Source: Authors’ own calculations.
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