Using multiflow formulations to solve the Steiner tree problem in graphs
RAIRO. Operations Research, Tome 55 (2021), pp. S343-S350

We present three different mixed integer linear models with a polynomial number of variables and constraints for the Steiner tree problem in graphs. The linear relaxations of these models are compared to show that a good (strong) linear relaxation can be a good approximation for the problem. We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, c, d and e.

DOI : 10.1051/ro/2020023
Classification : 90C27, 90Cxx, 90C90
Keywords: Steiner problem in graphs, multiflow formulations, linear relaxations
@article{RO_2021__55_S1_S343_0,
     author = {Bahiense, Laura and Besso, Arthur and Tostas, Rogerio and Maculan, Nelson},
     title = {Using multiflow formulations to solve the {Steiner} tree problem in graphs},
     journal = {RAIRO. Operations Research},
     pages = {S343--S350},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020023},
     mrnumber = {4223131},
     zbl = {1472.90106},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020023/}
}
TY  - JOUR
AU  - Bahiense, Laura
AU  - Besso, Arthur
AU  - Tostas, Rogerio
AU  - Maculan, Nelson
TI  - Using multiflow formulations to solve the Steiner tree problem in graphs
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S343
EP  - S350
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020023/
DO  - 10.1051/ro/2020023
LA  - en
ID  - RO_2021__55_S1_S343_0
ER  - 
%0 Journal Article
%A Bahiense, Laura
%A Besso, Arthur
%A Tostas, Rogerio
%A Maculan, Nelson
%T Using multiflow formulations to solve the Steiner tree problem in graphs
%J RAIRO. Operations Research
%D 2021
%P S343-S350
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020023/
%R 10.1051/ro/2020023
%G en
%F RO_2021__55_S1_S343_0
Bahiense, Laura; Besso, Arthur; Tostas, Rogerio; Maculan, Nelson. Using multiflow formulations to solve the Steiner tree problem in graphs. RAIRO. Operations Research, Tome 55 (2021), pp. S343-S350. doi: 10.1051/ro/2020023

[1] L. Bahiense, N. Maculan and C. Sagastizábal, The volume algorithm revisited: relation with bundle methods. Math. Program. 94 (2002) 41–69. | MR | Zbl | DOI

[2] L. Bahiense, F. Barahona and O. Porto, Solving Steiner tree problems in graphs with lagrangian relaxation. J. Comb. Optim. 7 (2003) 259–282. | MR | Zbl | DOI

[3] J. E. Beasley, An algorithm for the Steiner problem in graphs. Networks 14 (1984) 147–159. | MR | Zbl | DOI

[4] A. Besso, Problema de Steiner em grafos: Uma experiência numérica para problemas de médio porte utilizando formulações compactas de multi-fluxo. Master’s thesis. Programa de Engenharia de Sistemas e Computação, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (2015).

[5] A. Claus and N. Maculan, Une nouvelle formulation du problème de Steiner sur un graphe orienté. In: Publication 315, Centre de Recherche sur les Transports, Université de Montréal, Montréal (1983).

[6] M. X. Goemans and Y. S. Myung, A catalog of Steiner tree formulations. Networks 23 (1993) 19–28. | MR | Zbl | DOI

[7] F. K. Hwang, D. S. Richards and P. Winter, The Steiner tree problem. In: Vol. 53 of Annals of Discrete Mathematics. North-Holland, Amsterdam (1992). | MR | Zbl

[8] R. M. Karp, Reducibility among combinatorial problems, edited by R. E. Miller, J. W. Thatcher and J. D. Bohlinger. In: Complexity of Computer Computations. The IBM Research Symposia Series. Springer, New York, NY (1972) 85–103. | MR | Zbl

[9] N. Maculan, The Steiner problem in graphs. Ann. Discrete Math. 31 (1987) 185–211. | Zbl | MR

[10] N. Maculan, D. Arpin and S. Nguyen, Le problème de Steiner sur un graphe orienté: formulations et relaxations. Comput. Appl. Math. 7 (1988) 109–118. | MR | Zbl

[11] N. Maculan, G. Plateau and A. Lisser, Integer linear models with a polynomial number of variables and constraints for some classical combinatorial optimization problems. Pesquisa Oper. 23 (2003) 161–168. | DOI

[12] L. Schrage, Implicit representation of generalized variable upper bounds in linear programming. Math. Program. 14 (1978) 11–20. | MR | Zbl | DOI

[13] R. T. Wong, A dual ascent approach to Steiner tree problems on a directed graph. Math. Program. 28 (1984) 271–287. | MR | Zbl | DOI

Cité par Sources :