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USING MULTIFLOW FORMULATIONS TO SOLVE THE STEINER TREE
PROBLEM IN GRAPHS

LAURA BAHIENSE!, ARTHUR BESS0?, ROGERIO T0STAS! AND NELSON MACULAN'*

Abstract. We present three different mixed integer linear models with a polynomial number of vari-
ables and constraints for the Steiner tree problem in graphs. The linear relaxations of these models are
compared to show that a good (strong) linear relaxation can be a good approximation for the problem.
We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, ¢, d
and e.
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1. INTRODUCTION

Using multiflow formulations, we present three mixed integer linear models with a polynomial number of
variables and constraints for the Steiner tree problem in graphs. This approach has been used since the 80’s by
[1-6,9,10,13].

We study the different models and we compare their linear relaxations to show that a good (strong) linear
relaxation can be a good approximation for the problem.

Multiflow formulations with strong linear relaxations are very promising as they can be solved efficiently by
good Lagrangian algorithms despite having a large (although polynomial) number of variables and constraints.

We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, ¢, d and e, that
can be found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.

2. THE STEINER PROBLEM IN GRAPHS

The Steiner Problem derives from the Fermat Problem, which consists in, given a triangle, finding the point
whose sum of the distances to the vertices is minimal. This problem was generalized to any figure in any
dimension is known as the Euclidean Steiner Problem.

The Steiner Problem in Graphs appeared later, and consists in, given a graph G = (V, E), where V is the set
of vertices and E is the set of edges (each edge is associated with a cost), and a subset Vy C V of vertices of G,
finding a connected subgraph G’ = (V’, E’) of minimal cost that contains these vertices.
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The vertices of Vy are mandatory and are called “terminal points”, and the vertices of V' \ Vj are optional.
The elements of V' \ Vj, i.e., the optional vertices that compose the solution, are known as “Steiner’s points”.
The graph-solution is called the Steiner’s Tree, since the existence of cycles always worsens the value of the
objective function.

The Steiner problem in graphs is a classical NP-hard problem [7,8] with many applications in the network
design of communication, distribution and transportation systems in general and VLSI design in particular.

3. MODELS

Let G = (V, E) be a connected graph, where V' = {1,2,3,...,n} is the set of vertices or nodes, and FE is the
set of edges. Let G4 = (V, A) be a directed graph derived from G, where A = {(4,j), (4,¢) | {,j} € E}, and
each edge u = {i, 7} € E is associated with two arcs (4, ) and (j,7) € A.

We consider y = (yu)uer € {0, 1}, TF(i) = {j | (i,5) € A}, T=()) = {j | (j,i) € A}, m = |E|, n = |V|.
We also consider E(i) the set of edges u € E such that an endpoint is ¢ € V. Associated with each edge we have
a weight w, >0, u € E.

Let (Vp, V1) be a partition of V', that is V = Vo U Vi, Vo N Vi = ¢. Supposing 3 < |Vs| < n, we want to find
a connected sub-graph of G, Gr = (Vr, Er), where Vi C Vr such that ZuEET Wy Yy 1S minimum. It is easy to
see that G is a sub-tree of GG, defined as a Steiner tree.

A vertex s € V; is chosen to be the source offering |V \ {s}| commodities for the remaining terminal vertices.
Variables zfj >0, (i,7) € A, k € Vo~ {s} indicate the continuous flow amount of commodity k going through
arc (,7) having s as source and k as terminal.

In this paper we are looking for a special connected subgraph of GG, that contains all points of S with minimum
weight. This subgraph will be a minimum weight tree since w,, > 0,u € E [11].

3.1. First model — STP;

The first model (STP;) is a non-oriented formulation that can be found in [11].

(STPl) : min Z WijYij, (31)
{i,j}e€E

subject to :

Z zfj =1, keVy~{s} (3.2)
JETH(s)
STk Y =1 keVos{s} (3.3)
JerT (k) Jer=(k)

Z zfj— Z zﬁ-:O, ieV~{sk}, keV{s} (3.4)

JETH(3) JET~(3)
2y <wij and 2, <wij, {i,j} € E, ke Vo~ {s}, (3.5)

Zlkaoa (1’7.7)6‘47 kEVb\{S},

Yij € {07 1}a {Zaj} €L (37)

Objective function (3.1) minimizes the Steiner tree weight; equations (3.2)—(3.4) represent flow conservation
for the terminal vertex s chosen to be the source, for the remaining terminal vertices and for the non-terminal
vertices, respectively; constraints (3.5) allow a non-zero flow zfj or zfz through an arc (i,j) € A only if edge
{i,j} € FE is included in the solution; and, finally, constraints (3.6) and (3.7) define flow variables zfj as
continuous and arc variables y;; as binary, respectively.
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3.2. Second model — STP,
If in STP; we replace constraints (3.5) by

2+ 25 <y, {iJ} € B, keVo{s}, (3.8)
we will have a new model STP5.

3.3. Third model — STP3

Model (STP3) represents the relationship between flows and arcs in an oriented way: in this formulation,
each oriented arc has associated an utilization cost that is independent from the opposite arc, even the value of
this cost being equal for both arcs (w;; = w;; >0, (4,7) € A).

In order to distinguish the oriented variables related to the arcs in (STP3), we will change
vij € {0,1}, {i,j} € E by w;; € {0,1}, (4,7) € A in this oriented formulation.

(STPg) min Z W5 Tij, (39)
(i,5)€A

subject to:
Flow constraints (3.2), (3.3), (3.4).

2 < i, (i,)) €A, ke Vo~ {s}, (3.10)
25 >0, (i,j) €A, keVo~{s}, (3.11)
zi; € {0,1}, (i,j) € A. (3.12)

We note that (i, j) € A if and only if (j,4) € A. Let z}; for (i,j) € A be an optimal solution for STP3. It is
easy to observe that x7; + 27, <1, which means that or z7; = zj; = 0, or z}; = 0 and z};, = 1, or zj; = 0 and
zj; = 1, since w;; = wj; > 0. We obtain a minimum directed tree, rooted in s, which also contains all points
of S. This means that we have only one directed path from s to each vertex different from s in the subtree of
the original graph G induced by s. Therefore, if we find an optimal solution for STP3 we are also solving the

indirect Steiner tree problem.

4. LINEAR RELAXATIONS

If in (STPy) and (STP3) we replace y;; € {0,1}, {i,j} € E, by 0 <y;; <1, and in (STP3) we replace
zi; € {0,1}, (i,5) € A, by 0 < z;; < 1, we will have three linear programming relaxations defined by
(LSTP,), (LSTP3) and (LSTP3). We call val(+) the optimum value of the objective function associated with the
optimization problem (-).

We know that val(STP1) = val(STP3) = val(STP3), and also val(LSTP,) < val(STP,),q = 1,2,3. We call
val(LSTP,) a lower bound of val(STP,). In the next two lemmas we address the strengh of these lower bounds.

Lemma 4.1. val(LSTP;) < val(LSTP3).
Proof. In (LSTP;) we have:

zzkj < y;; and zfz <y, {1,j} € E, k€ Vy ~{s}. (4.1)

In (LSTP;) we consider:
zfj—l—zﬁ- <wyij, {i,5} € E, ke Vo~ {s}. (4.2)
All feasible solutions of (4.2) are feasible solutions of (4.1), but some solutions of (4.1) are not feasible

solutions of (4.2). It means that the set of feasible solutions of (LSTP;) is included in the set of feasible
solutions of (LSTP;), which implies that val(LSTP;) < val(LSTPs). O
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Lemma 4.2. val(LSTP3) < val(LSTP3).

Proof. We know that w;; = w;; > 0, for all {¢,j} and {j,i} € A. We will prove that at the optimal solutions of
(LSTP3) and (LSTP3) we have:

(i) zijOandz =0, orz —Oandzk >0;
(i) 25+ 25 <1; and
(iii) val(LSTPy) < val(LSTP3).

In order to prove (i), consider by absurd an optimal solution Wlth z - >0 and z . > 0, which is associated
with a circular flow using both arcs (i, j) and (j,4i) € A. Define d = zJ5 — 2%, |d| < 1, 0 <z <1,(i,4) € A NOW
replacez —dandz 5 =0, ifdzO;andE?i:—dandZ =0, 1fd<0 Thesenewz EZandz +Zz
and from model (STPg) the
i» 11,7} € E and
2 > ZU, (4,7) € A. Therefore, since w;; > 0, we have that w;;y;; > wi;¥;;, and wij (T —|—xﬂ) > wii (Tij +Tji),
Wthh is a contradiction.

The proof of (ii) is straightforward: directly from (i) we have that 25 + 25 < y;; < 1, V {i,j} € E for
(LSTP3); and z i<y <1,V (i,7) € A for (LSTP3).

Finally, in order to prove (iii), if we define z{; = maxgev;\ (s }{z”} and zﬂ = MaXgev,\{s }{z } then:

even for (LSTPg). From model (STP2> We have the correspondence y,; > z 4z zﬂ,

correspondences Tij > Ei and 7;; > z . In addition, we also have that z 4 zk > z 4 Zk

V {i,j} € Ein (LSTPy) : y;; = max{z”, z;?i ; and
Tij = 2
Tj; = Z?z .

V (i,j) € A in (LSTP3) :

Therefore, we have that:

val(LSTP,y) = Z Wi max{z”, ﬂ}; nd

{i,j}€E
val(LSTPs) = Y wy (28 + 25) .
{i,5}€A; i<y
Since 2{; + zé?i > max {z”, ?i}, we have that val(LSTP2) < val(LSTP3). O

Corollary 4.3. val(LSTP;) < val(LSTP2) < val(LSTP3).

Figure 1 shows the strength of (STP3) throughout an example of val(LSTP;) = val(LSTP3) = 6.5 <
val(LSTP3) = val(STP) = 7 (integer problem value). For LSTP; and LSTP, Figure la depicts the same
fractional solution highlighted in bold: y12 = yo3 = Y34 = 1, yas = yag = yss = 0.5, the other values of y;; are
zero. For LSTP3 Figure 1b shows the integer solution highlighted in bold: x15 = x93 = x38 = xg5 = 1, the other
values of x;; are zero. The yellow vertices in Figure 1 form the set Vj, where s = 1.

5. COMPUTATIONAL RESULTS

The models presented in Section 3 were tested over the STP OR-Library (J.E. Beasley) for instances of type
b, ¢, d and e, that can be found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.
Table 1 presents the sizes of these instances.

The computing environment consisted of a computer with Intel XeonTM Processor (3.07 GHz, 48 GBRAM),
running under Ubuntu 12.04 LTS operating system. The modeling software used was AMPL version 20150721
(Linux 64 bits) together with the IBM ILOG CPLEX Optimization Studio Interactive Optimizer 12.6.0.0 as
solver.
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FIGUuRE 1. Example of the strength of (STP3): val(LSTP;) = val(LSTP2) < val(LSTP3).

TABLE 1. Sizes of instances b, ¢,d and e from STP OR-Library.
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Instance |V| |A| [Vp| Instance |V| Al |Vo| Instance |V]| Al |Vo| Instance |V| |A] Vol
bl 50 63 9 c3 500 625 83 d3 1000 1250 167 e3 2500 3125 417
b2 50 63 13 c4 500 625 125 d4 1000 1250 250 e4 2500 3125 625
b3 50 63 25 3] 500 625 250 d5 1000 1250 500 ed 2500 3125 1250
b4 50 100 9 cb 500 1000 5 d6 1000 2000 5 eb 2500 5000 5
b5 50 100 13 c7 500 1000 10 d7 1000 2000 10 e7 2500 5000 10
b6 50 100 25 c8 500 1000 83 ds 1000 2000 167 e8 2500 5000 417
b7 75 94 13 c9 500 1000 125 d9 1000 2000 250 e9 2500 5000 625
b8 75 94 19 cl0 500 1000 250 d10 1000 2000 500 el0 2500 5000 1250
b9 75 94 38 cll 500 2500 5 dll 1000 5000 5 ell 2500 12500 5

b10 75 150 13 cl2 500 2500 10 dl12 1000 5000 10 el2 2500 12500 10

bl11 75 150 19 cl3 500 2500 83 dl3 1000 5000 167 el3 2500 12500 417

b12 75 150 38 cl4 500 2500 125 dl4 1000 5000 250 el4 2500 12500 625

b13 100 125 17 clb 500 2500 250 dl5 1000 5000 500 eld 2500 12500 1250

b14 100 125 25 cl6 500 12500 5 d16 1000 25000 5 el6 2500 62500 5

b15 100 125 50 cl7 500 12500 10 d1v 1000 25000 10 el 2500 62500 10

bl6 100 200 17 cl8 500 12500 83 d18 1000 25000 167 el8 2500 62500 417

b17 100 200 25 cl9 500 12500 125 d19 1000 25000 250 el9 2500 62500 625

b18 100 200 50 c20 500 12500 250 d20 1000 25000 500 e20 2500 62500 1250
cl 500 625 5 dl 1000 1250 5 el 2500 3125 5
c2 500 625 10 d2 1000 1250 10 e2 2500 3125 10

Tables 2—4 show the computational results of models (STP3) and (LSTP3) for the STP OR-Library instances
of type b, ¢, d and e. Of the 78 instances available in the Library, 49 were successfully executed, and the others
required an amount of computational memory above the capacity of the available computer.

Table 2 shows that the linear relaxation (LSTPj3) has performed faster than the integer model (STP3) in
55.56% of type b instances. Besides, both models were able to find all the optimal integer solutions for these

instances.

Table 3 shows that the linear relaxation (LSTPj3) has performed faster than the integer model (STP3) in
63.16% of type b instances. In addition, both models were able to find all the optimal integer solutions for these
instances, except for instance ¢18 where LSTP3 found 11.21 instead of 113.

Table 4 shows that the linear relaxation (LSTPj3) has performed faster than the integer model (STP3) for
all the instances of types d and e that could be solved to optimality, except for instance e7 that could only be
solved by the integer model.
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TABLE 2. Computational results of (STP3) and (LSTP3) for STP OR-Library instances b.

Instance Optimal solution Time STP3 (s) Time LSTP3 (s)

bl 82 0.03 0.01
b2 83 0.02 0.02
b3 138 0.03 0.03
b4 59 0.03 0.03
b5 61 0.03 0.03
b6 122 0.12 0.12
b7 111 0.04 0.03
b8 104 0.03 0.04
b9 220 0.09 0.09
b10 86 0.09 0.06
b11 88 0.10 0.10
b12 174 0.48 0.45
b13 165 0.45 0.44
b14 235 0.11 0.11
b15 318 0.15 0.15
b16 127 0.13 0.13
b17 131 0.20 0.20
b18 218 0.60 0.60

TABLE 3. Computational results of (STP3) and (LSTP3) for STP OR-Library instances c.

Instance  Optimal solution Time STP3 (s) Time LSTP3 (s)
cl 85 0.14 0.06
c2 144 0.49 0.29
c3 754 5.66 6.80
c4 1079 23.60 22.98
ch 1579 60.81 71.32
cb 55 0.69 0.18
c7 102 1.49 1.44
c8 509 149.86 205.77
c9 707 1004.31 2218.25

cl0 1093 1865.51 575.52

cll 32 2.85 1.52

cl2 46 15.91 7.62

cl3 258 4856.99 8440.30

cld 323 4130.90 10246.80

clb 556 7076.49 119 248.00

cl6 11 12.74 5.94

cl7 18 57.15 39.41

cl8 113 (LSTP3 = 112.21) 48 009.80 31724.10

cl9 146 361 601.00 110 588.00

In all but one Beasley problems for which we had enough memory to solve through the linear relaxation
(LSTP3) we were able to find an integer solution. Instance ¢18 was the only exception. However, as the value of
its objective function was equal to 112.21 and all coefficients are integer, the bound to be considered is indeed 113.
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TABLE 4. Computational results of (STP3) and (LSTP3) for STP OR-Library instances d and e.

Instance  Optimal solution Time STP3 (s) Time LSTPs3 (s)

dl 106 1.37 0.29
d2 220 1.92 0.34
d6 67 6.13 1.27
dr 103 11.75 2.78
dll 29 8.13 5.76
dl2 42 49.80 37.59
dl6 13 30.60 22.17
el 11 1.06 0.55
e2 214 3.64 1.77
€6 73 10.10 4.08
e7 145 84.64 Not enough memory

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The hypothesis initially formulated was that linear relaxations derived from multiflow formulations would be
good (strong) approximations for the Steiner problem in graphs.

The computational results presented for the STP OR-Library (J.E. Beasley) instances of type b, ¢, d and
e corroborated the initial hypothesis, since the linear relaxation LSTPj3 presented, in a faster way, the same
results obtained by the integer model.

In addition, it is worth mentioning that the multiflow mixed integer linear formulations presented have
a polynomial number (although very large) of variables and constraints.

As future work we suggest two fronts. The first one is related to the application of VUB (variable upper
bound) techniques [12] to constraints (3.10) in model STP3, as did in [10]. We think this can lead us to solve
much larger problems.

The second front consists in using more sophisticated algorithms, such as Lagrangian relaxation algorithms,
for the resolution of formulation STP3. The works [1,2] have already shown that the Volume Algorithm and
the Revised Volume Algorithm work very well for these kind of multiflow formulations. Besides, the suboptimal
primal solutions generated by these algorithms can be used as a starting point for a Simplex-based method or
for the development of heuristics and metaheuristics that generate better primal solutions.
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