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USING MULTIFLOW FORMULATIONS TO SOLVE THE STEINER TREE
PROBLEM IN GRAPHS

Laura Bahiense1, Arthur Besso2, Rogerio Tostas1 and Nelson Maculan1,∗

Abstract. We present three different mixed integer linear models with a polynomial number of vari-
ables and constraints for the Steiner tree problem in graphs. The linear relaxations of these models are
compared to show that a good (strong) linear relaxation can be a good approximation for the problem.
We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, c, d
and e.
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1. Introduction

Using multiflow formulations, we present three mixed integer linear models with a polynomial number of
variables and constraints for the Steiner tree problem in graphs. This approach has been used since the 80’s by
[1–6,9, 10,13].

We study the different models and we compare their linear relaxations to show that a good (strong) linear
relaxation can be a good approximation for the problem.

Multiflow formulations with strong linear relaxations are very promising as they can be solved efficiently by
good Lagrangian algorithms despite having a large (although polynomial) number of variables and constraints.

We present computational results for the STP OR-Library (J.E. Beasley) instances of type b, c, d and e, that
can be found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.

2. The Steiner problem in graphs

The Steiner Problem derives from the Fermat Problem, which consists in, given a triangle, finding the point
whose sum of the distances to the vertices is minimal. This problem was generalized to any figure in any
dimension is known as the Euclidean Steiner Problem.

The Steiner Problem in Graphs appeared later, and consists in, given a graph G = (V,E), where V is the set
of vertices and E is the set of edges (each edge is associated with a cost), and a subset V0 ⊆ V of vertices of G,
finding a connected subgraph G′ = (V ′, E′) of minimal cost that contains these vertices.
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The vertices of V0 are mandatory and are called “terminal points”, and the vertices of V r V0 are optional.
The elements of V ′ r V0, i.e., the optional vertices that compose the solution, are known as “Steiner’s points”.
The graph-solution is called the Steiner’s Tree, since the existence of cycles always worsens the value of the
objective function.

The Steiner problem in graphs is a classical NP-hard problem [7, 8] with many applications in the network
design of communication, distribution and transportation systems in general and VLSI design in particular.

3. Models

Let G = (V,E) be a connected graph, where V = {1, 2, 3, . . . , n} is the set of vertices or nodes, and E is the
set of edges. Let Gd = (V,A) be a directed graph derived from G, where A = {(i, j), (j, i) | {i, j} ∈ E}, and
each edge u = {i, j} ∈ E is associated with two arcs (i, j) and (j, i) ∈ A.

We consider y = (yu)u∈E ∈ {0, 1}|E|, Γ+(i) = {j | (i, j) ∈ A}, Γ−(i) = {j | (j, i) ∈ A}, m = |E|, n = |V |.
We also consider E(i) the set of edges u ∈ E such that an endpoint is i ∈ V . Associated with each edge we have
a weight wu > 0, u ∈ E.

Let (V0, V1) be a partition of V , that is V = V0 ∪ V1, V0 ∩ V1 = φ. Supposing 3 ≤ |V0| < n, we want to find
a connected sub-graph of G, GT = (VT , ET ), where V0 ⊂ VT such that

∑
u∈ET

wuyu is minimum. It is easy to
see that GT is a sub-tree of G, defined as a Steiner tree.

A vertex s ∈ V0 is chosen to be the source offering |V0 r{s}| commodities for the remaining terminal vertices.
Variables zk

ij ≥ 0, (i, j) ∈ A, k ∈ V0 r {s} indicate the continuous flow amount of commodity k going through
arc (i, j) having s as source and k as terminal.

In this paper we are looking for a special connected subgraph of G, that contains all points of S with minimum
weight. This subgraph will be a minimum weight tree since wu > 0, u ∈ E [11].

3.1. First model – STP1

The first model (STP1) is a non-oriented formulation that can be found in [11].

(STP1) : min
∑
{i,j}∈E

wijyij , (3.1)

subject to :∑
j∈Γ+(s)

zk
sj = 1, k ∈ V0 r {s}, (3.2)

∑
j∈Γ+(k)

zk
kj −

∑
j∈Γ−(k)

zk
jk = −1, k ∈ V0 r {s}, (3.3)

∑
j∈Γ+(i)

zk
ij −

∑
j∈Γ−(i)

zk
ji = 0, i ∈ V r {s, k}, k ∈ V r {s}, (3.4)

zk
ij ≤ yij and zk

ji ≤ yij , {i, j} ∈ E, k ∈ V0 r {s}, (3.5)

zk
ij ≥ 0, (i, j) ∈ A, k ∈ V0 r {s}, (3.6)

yij ∈ {0, 1}, {i, j} ∈ E. (3.7)

Objective function (3.1) minimizes the Steiner tree weight; equations (3.2)–(3.4) represent flow conservation
for the terminal vertex s chosen to be the source, for the remaining terminal vertices and for the non-terminal
vertices, respectively; constraints (3.5) allow a non-zero flow zk

ij or zk
ji through an arc (i, j) ∈ A only if edge

{i, j} ∈ E is included in the solution; and, finally, constraints (3.6) and (3.7) define flow variables zk
ij as

continuous and arc variables yij as binary, respectively.
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3.2. Second model – STP2

If in STP1 we replace constraints (3.5) by

zk
ij + zk

ji ≤ yij , {i, j} ∈ E, k ∈ V0 r {s}, (3.8)

we will have a new model STP2.

3.3. Third model – STP3

Model (STP3) represents the relationship between flows and arcs in an oriented way: in this formulation,
each oriented arc has associated an utilization cost that is independent from the opposite arc, even the value of
this cost being equal for both arcs (wij = wji > 0, (i, j) ∈ A).

In order to distinguish the oriented variables related to the arcs in (STP3), we will change
yij ∈ {0, 1}, {i, j} ∈ E by xij ∈ {0, 1}, (i, j) ∈ A in this oriented formulation.

(STP3) : min
∑

(i,j)∈A

wij xij , (3.9)

subject to:
Flow constraints (3.2), (3.3), (3.4).

zk
ij ≤ xij , (i, j) ∈ A, k ∈ V0 r {s}, (3.10)

zk
ij ≥ 0, (i, j) ∈ A, k ∈ V0 r {s}, (3.11)

xij ∈ {0, 1}, (i, j) ∈ A. (3.12)

We note that (i, j) ∈ A if and only if (j, i) ∈ A. Let x∗ij for (i, j) ∈ A be an optimal solution for STP3. It is
easy to observe that x∗ij + x∗ji ≤ 1, which means that or x∗ij = x∗ji = 0, or x∗ij = 0 and x∗ji = 1, or x∗ij = 0 and
x∗ji = 1, since wij = wji > 0. We obtain a minimum directed tree, rooted in s, which also contains all points
of S. This means that we have only one directed path from s to each vertex different from s in the subtree of
the original graph G induced by s. Therefore, if we find an optimal solution for STP3 we are also solving the
indirect Steiner tree problem.

4. Linear relaxations

If in (STP1) and (STP2) we replace yij ∈ {0, 1}, {i, j} ∈ E, by 0 ≤ yij ≤ 1, and in (STP3) we replace
xij ∈ {0, 1}, (i, j) ∈ A, by 0 ≤ xij ≤ 1, we will have three linear programming relaxations defined by
(LSTP1), (LSTP2) and (LSTP3). We call val(·) the optimum value of the objective function associated with the
optimization problem (·).

We know that val(STP1) = val(STP2) = val(STP3), and also val(LSTPq) ≤ val(STPq), q = 1, 2, 3. We call
val(LSTPq) a lower bound of val(STPq). In the next two lemmas we address the strengh of these lower bounds.

Lemma 4.1. val(LSTP1) ≤ val(LSTP2).

Proof. In (LSTP1) we have:

zk
ij ≤ yij and zk

ji ≤ yij , {i, j} ∈ E, k ∈ V0 r {s}. (4.1)

In (LSTP2) we consider:
zk
ij + zk

ji ≤ yij , {i, j} ∈ E, k ∈ V0 r {s}. (4.2)

All feasible solutions of (4.2) are feasible solutions of (4.1), but some solutions of (4.1) are not feasible
solutions of (4.2). It means that the set of feasible solutions of (LSTP2) is included in the set of feasible
solutions of (LSTP1), which implies that val(LSTP1) ≤ val(LSTP2). �
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Lemma 4.2. val(LSTP2) ≤ val(LSTP3).

Proof. We know that wij = wji > 0, for all {i, j} and {j, i} ∈ A. We will prove that at the optimal solutions of
(LSTP2) and (LSTP3) we have:

(i) zk
ij ≥ 0 and zk

ji = 0, or zk
ij = 0 and zk

ji ≥ 0 ;
(ii) zk

ij + zk
ji ≤ 1 ; and

(iii) val(LSTP2) ≤ val(LSTP3).

In order to prove (i), consider by absurd an optimal solution with zk
ij > 0 and zk

ji > 0, which is associated
with a circular flow using both arcs (i, j) and (j, i) ∈ A. Define d = zk

ij−zk
ji, |d| < 1, 0 ≤ zk

ij ≤ 1, (i, j) ∈ A. Now
replace zk

ij = d and zk
ji = 0, if d ≥ 0 ; and zk

ji = −d and zk
ij = 0, if d < 0. These new zk

ji ∈ Z and zk
ij + zk

ji ≤ 1,
even for (LSTP3). From model (STP2) we have the correspondence yij ≥ zk

ij + zk
ji, and from model (STP3) the

correspondences xij ≥ zk
ij and xji ≥ zk

ji. In addition, we also have that zk
ij + zk

ji ≥ zk
ij + zk

ji, {i, j} ∈ E and
zk
ij ≥ zk

ij , (i, j) ∈ A. Therefore, since wij > 0, we have that wijyij ≥ wijyij , and wij(xij +xji) ≥ wij(xij +xji),
which is a contradiction.

The proof of (ii) is straightforward: directly from (i) we have that zk
ij + zk

ji ≤ yij ≤ 1, ∀ {i, j} ∈ E for
(LSTP2); and zk

ij ≤ xij ≤ 1, ∀ (i, j) ∈ A for (LSTP3).
Finally, in order to prove (iii), if we define za

ij = maxk∈V0\{s}
{
zk
ij

}
and zb

ji = maxk∈V0\{s}
{
zk
ji

}
, then:

∀ {i, j} ∈ E in (LSTP2) : yij = max
{
za
ij , z

b
ji

}
; and

∀ (i, j) ∈ A in (LSTP3) :

{
xij = za

ij ,

xji = zb
ji .

Therefore, we have that:

val(LSTP2) =
∑
{i,j}∈E

wij max
{
za
ij , z

b
ji

}
; and

val(LSTP3) =
∑

{i,j}∈A; i<j

wij

(
za
ij + zb

ji

)
.

Since za
ij + zb

ji ≥ max
{
za
ij , z

b
ji

}
, we have that val(LSTP2) ≤ val(LSTP3). �

Corollary 4.3. val(LSTP1) ≤ val(LSTP2) ≤ val(LSTP3).

Figure 1 shows the strength of (STP3) throughout an example of val(LSTP1) = val(LSTP2) = 6.5 <
val(LSTP3) = val(STP) = 7 (integer problem value). For LSTP1 and LSTP2 Figure 1a depicts the same
fractional solution highlighted in bold: y12 = y23 = y34 = 1, y45 = y48 = y58 = 0.5, the other values of yij are
zero. For LSTP3 Figure 1b shows the integer solution highlighted in bold: x12 = x23 = x38 = x85 = 1, the other
values of xij are zero. The yellow vertices in Figure 1 form the set V0, where s = 1.

5. Computational results

The models presented in Section 3 were tested over the STP OR-Library (J.E. Beasley) for instances of type
b, c, d and e, that can be found at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html.
Table 1 presents the sizes of these instances.

The computing environment consisted of a computer with Intel XeonTM Processor (3.07 GHz, 48 GB RAM),
running under Ubuntu 12.04 LTS operating system. The modeling software used was AMPL version 20150721
(Linux 64 bits) together with the IBM ILOG CPLEX Optimization Studio Interactive Optimizer 12.6.0.0 as
solver.

http://people. brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
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Figure 1. Example of the strength of (STP3): val(LSTP1) = val(LSTP2) < val(LSTP3).

Table 1. Sizes of instances b, c, d and e from STP OR-Library.

Instance |V | |A| |V0| Instance |V | |A| |V0| Instance |V | |A| |V0| Instance |V | |A| |V0|

b1 50 63 9 c3 500 625 83 d3 1000 1250 167 e3 2500 3125 417

b2 50 63 13 c4 500 625 125 d4 1000 1250 250 e4 2500 3125 625

b3 50 63 25 c5 500 625 250 d5 1000 1250 500 e5 2500 3125 1250
b4 50 100 9 c6 500 1000 5 d6 1000 2000 5 e6 2500 5000 5

b5 50 100 13 c7 500 1000 10 d7 1000 2000 10 e7 2500 5000 10

b6 50 100 25 c8 500 1000 83 d8 1000 2000 167 e8 2500 5000 417
b7 75 94 13 c9 500 1000 125 d9 1000 2000 250 e9 2500 5000 625

b8 75 94 19 c10 500 1000 250 d10 1000 2000 500 e10 2500 5000 1250

b9 75 94 38 c11 500 2500 5 d11 1000 5000 5 e11 2500 12 500 5
b10 75 150 13 c12 500 2500 10 d12 1000 5000 10 e12 2500 12 500 10

b11 75 150 19 c13 500 2500 83 d13 1000 5000 167 e13 2500 12 500 417

b12 75 150 38 c14 500 2500 125 d14 1000 5000 250 e14 2500 12 500 625
b13 100 125 17 c15 500 2500 250 d15 1000 5000 500 e15 2500 12 500 1250

b14 100 125 25 c16 500 12 500 5 d16 1000 25 000 5 e16 2500 62 500 5
b15 100 125 50 c17 500 12 500 10 d17 1000 25 000 10 e17 2500 62 500 10

b16 100 200 17 c18 500 12 500 83 d18 1000 25 000 167 e18 2500 62 500 417

b17 100 200 25 c19 500 12 500 125 d19 1000 25 000 250 e19 2500 62 500 625
b18 100 200 50 c20 500 12 500 250 d20 1000 25 000 500 e20 2500 62 500 1250

c1 500 625 5 d1 1000 1250 5 e1 2500 3125 5

c2 500 625 10 d2 1000 1250 10 e2 2500 3125 10

Tables 2–4 show the computational results of models (STP3) and (LSTP3) for the STP OR-Library instances
of type b, c, d and e. Of the 78 instances available in the Library, 49 were successfully executed, and the others
required an amount of computational memory above the capacity of the available computer.

Table 2 shows that the linear relaxation (LSTP3) has performed faster than the integer model (STP3) in
55.56% of type b instances. Besides, both models were able to find all the optimal integer solutions for these
instances.

Table 3 shows that the linear relaxation (LSTP3) has performed faster than the integer model (STP3) in
63.16% of type b instances. In addition, both models were able to find all the optimal integer solutions for these
instances, except for instance c18 where LSTP3 found 11.21 instead of 113.

Table 4 shows that the linear relaxation (LSTP3) has performed faster than the integer model (STP3) for
all the instances of types d and e that could be solved to optimality, except for instance e7 that could only be
solved by the integer model.
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Table 2. Computational results of (STP3) and (LSTP3) for STP OR-Library instances b.

Instance Optimal solution Time STP3 (s) Time LSTP3 (s)

b1 82 0.03 0.01
b2 83 0.02 0.02
b3 138 0.03 0.03
b4 59 0.03 0.03
b5 61 0.03 0.03
b6 122 0.12 0.12
b7 111 0.04 0.03
b8 104 0.03 0.04
b9 220 0.09 0.09

b10 86 0.09 0.06
b11 88 0.10 0.10
b12 174 0.48 0.45
b13 165 0.45 0.44
b14 235 0.11 0.11
b15 318 0.15 0.15
b16 127 0.13 0.13
b17 131 0.20 0.20
b18 218 0.60 0.60

Table 3. Computational results of (STP3) and (LSTP3) for STP OR-Library instances c.

Instance Optimal solution Time STP3 (s) Time LSTP3 (s)

c1 85 0.14 0.06
c2 144 0.49 0.29
c3 754 5.66 6.80
c4 1079 23.60 22.98
c5 1579 60.81 71.32
c6 55 0.69 0.18
c7 102 1.49 1.44
c8 509 149.86 205.77
c9 707 1004.31 2218.25

c10 1093 1865.51 575.52
c11 32 2.85 1.52
c12 46 15.91 7.62
c13 258 4856.99 8440.30
c14 323 4130.90 10 246.80
c15 556 7076.49 119 248.00
c16 11 12.74 5.94
c17 18 57.15 39.41
c18 113 (LSTP3 = 112.21) 48 009.80 31 724.10
c19 146 361 601.00 110 588.00

In all but one Beasley problems for which we had enough memory to solve through the linear relaxation
(LSTP3) we were able to find an integer solution. Instance c18 was the only exception. However, as the value of
its objective function was equal to 112.21 and all coefficients are integer, the bound to be considered is indeed 113.
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Table 4. Computational results of (STP3) and (LSTP3) for STP OR-Library instances d and e.

Instance Optimal solution Time STP3 (s) Time LSTP3 (s)

d1 106 1.37 0.29
d2 220 1.92 0.34
d6 67 6.13 1.27
d7 103 11.75 2.78

d11 29 8.13 5.76
d12 42 49.80 37.59
d16 13 30.60 22.17
e1 11 1.06 0.55
e2 214 3.64 1.77
e6 73 10.10 4.08
e7 145 84.64 Not enough memory

6. Conclusions and suggestions for future work

The hypothesis initially formulated was that linear relaxations derived from multiflow formulations would be
good (strong) approximations for the Steiner problem in graphs.

The computational results presented for the STP OR-Library (J.E. Beasley) instances of type b, c, d and
e corroborated the initial hypothesis, since the linear relaxation LSTP3 presented, in a faster way, the same
results obtained by the integer model.

In addition, it is worth mentioning that the multiflow mixed integer linear formulations presented have
a polynomial number (although very large) of variables and constraints.

As future work we suggest two fronts. The first one is related to the application of VUB (variable upper
bound) techniques [12] to constraints (3.10) in model STP3, as did in [10]. We think this can lead us to solve
much larger problems.

The second front consists in using more sophisticated algorithms, such as Lagrangian relaxation algorithms,
for the resolution of formulation STP3. The works [1, 2] have already shown that the Volume Algorithm and
the Revised Volume Algorithm work very well for these kind of multiflow formulations. Besides, the suboptimal
primal solutions generated by these algorithms can be used as a starting point for a Simplex-based method or
for the development of heuristics and metaheuristics that generate better primal solutions.
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