Let G = (V, E) be a simple graph. A non-empty set D ⊆ V is called a global offensive alliance if D is a dominating set and for every vertex ν in V − D, |$$ [ν] ∩ D|≥|$$ [ν] − D|. The global offensive alliance number is the minimum cardinality of a global offensive alliance in G. In this paper, we give a constructive characterization of trees having a unique minimum global offensive alliance.
Keywords: Tree, domination, global offensive alliance, characterization
@article{RO_2021__55_S1_S863_0,
author = {Bouzefrane, Mohamed and Bouchemakh, Isma and Zamime, Mohamed and Ikhlef-Eschouf, Noureddine},
title = {Trees with unique minimum global offensive alliance},
journal = {RAIRO. Operations Research},
pages = {S863--S872},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
doi = {10.1051/ro/2020017},
mrnumber = {4223086},
zbl = {1469.05126},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2020017/}
}
TY - JOUR AU - Bouzefrane, Mohamed AU - Bouchemakh, Isma AU - Zamime, Mohamed AU - Ikhlef-Eschouf, Noureddine TI - Trees with unique minimum global offensive alliance JO - RAIRO. Operations Research PY - 2021 SP - S863 EP - S872 VL - 55 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2020017/ DO - 10.1051/ro/2020017 LA - en ID - RO_2021__55_S1_S863_0 ER -
%0 Journal Article %A Bouzefrane, Mohamed %A Bouchemakh, Isma %A Zamime, Mohamed %A Ikhlef-Eschouf, Noureddine %T Trees with unique minimum global offensive alliance %J RAIRO. Operations Research %D 2021 %P S863-S872 %V 55 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2020017/ %R 10.1051/ro/2020017 %G en %F RO_2021__55_S1_S863_0
Bouzefrane, Mohamed; Bouchemakh, Isma; Zamime, Mohamed; Ikhlef-Eschouf, Noureddine. Trees with unique minimum global offensive alliance. RAIRO. Operations Research, Tome 55 (2021), pp. S863-S872. doi: 10.1051/ro/2020017
, , and , On the complexity of finding optimal global alliances. J. Combin. Math. Combin. Comput. 58 (2006) 23–31. | MR | Zbl
, , and , Characterizations of trees with a unique minimum locating-dominating sets. J. Combin. Math. Combin. Comput. 76 (2011) 225–232. | MR | Zbl
and , On the global offensive alliance number of a tree. Opuscula Math. 29 (2009) 223–228. | MR | Zbl | DOI
and , A note on global alliances in trees. Opuscula Math. 31 (2011) 153–158. | MR | Zbl | DOI
and , On the global offensive alliance in unicycle graphs. AKCE Int. J. Graphs Comb. 15 (2018) 72–78. | MR | Zbl | DOI
, Offensive alliances in bipartite graphs. J. Combin. Math. Combin. Comput. 73 (2010) 245–255. | MR | Zbl
and , Trees with unique minimum paired domination sets. Ars Combin. 73 (2004) 3–12. | MR | Zbl
and , A characterization of trees with unique minimum double domination sets. Util. Math. 83 (2010) 233–242. | MR | Zbl
and , Trees with unique Roman dominating functions of minimum weight. Discrete Math. Algorithms Appl. 06 (2014) 1450038. | MR | Zbl | DOI
and , Independence and global offensive alliance in graphs. Australas. J. Combin. 47 (2010) 125–131. | MR | Zbl
, , , , , , and , Offensive alliances in graphs. Discuss. Math. Graph Theory 24 (2004) 263–275. | MR | Zbl | DOI
, and , Offensive -alliances in graphs. Discrete Appl. Math. 157 (2009) 177–182. | MR | Zbl | DOI
, Block graphs with unique minimum dominating sets. Discrete Math. 240 (2001) 247–251. | MR | Zbl | DOI
and , Domination parameters and their unique realizations, Ph.D. thesis. Techn. Hochsch. Bibl. (2002).
and , Unique minimum domination in trees. Australas. J. Combin. 25 (2002) 117–124. | MR | Zbl
and , Cactus graphs with unique minimum dominating sets. Util. Math. 63 (2003) 229–238. | MR | Zbl
and , Unique independence, upper domination and upper irredundance in graphs. J. Combin. Math. Combin. Comput. 47 (2003) 237–249. | MR | Zbl
, and , Maximum graphs with a unique minimum dominating set. Discrete Math. 260 (2003) 197–203. | MR | Zbl | DOI
, and , Unique irredundance, domination, and independent domination in graphs. Discrete Math. 305 (2005) 190–200. | MR | Zbl | DOI
and , Maximum graphs with unique minimum dominating set of size two. Australas. J. Combin. 46 (2010) 91–99. | MR | Zbl
, , and , Graphs with unique minimum dominating sets. In: Vol. 101 of Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer., Springer, New York, NY (1994) 55–63. | MR | Zbl
, Some bounds on global alliances in trees. Discrete Appl. Math. 161 (2013)1739–1746. | MR | Zbl | DOI
, Global offensive alliances in graphs and random graphs. Discrete Appl. Math. 164 (2014) 522–526. | MR | Zbl | DOI
and , Trees with unique minimum total dominating sets. Discuss. Math. Graph Theory 22 (2002) 233–246. | MR | Zbl | DOI
, and , Fundamentals of Domination in graphs. Marcel Dekker, New York, NY (1998). | MR | Zbl
, and , Domination in Graphs: Advanced Topics. Marcel Dekker, New York, NY (1998). | MR | Zbl
, On unique minimum dominating sets in some cartesian product graphs. Discuss. Math. Graph Theory 34 (2015) 615–628. | MR | Zbl | DOI
, On unique minimum dominating sets in some repeated cartesian products. Australas. J. Combin. 62 (2015) 91–99. | MR | Zbl
, On unique realizations of domination chain parameters. J. Combin. Math. Combin. Comput. 101 (2017) 193–211. | MR | Zbl
and , Graphs with unique maximum independent sets. Discrete Math. 57 (1985) 245–251. | MR | Zbl | DOI
, and , Alliance in graphs. J. Comb. Math. Combin. Comput. 48 (2004) 157–177. | MR | Zbl
, and , Alliances in graphs: parameters, properties and applications-a survey. AKCE Int. J. Graphs Comb. 15 (2018) 115–154. | MR | Zbl | DOI
, A note on the global offensive alliances in graphs. Discrete Appl Math 250 (2018) 373–337. | MR | Zbl | DOI
and , Global offensive alliances in graphs. Electron. Notes Discrete Math. 25 (2006) 157–164. | MR | Zbl | DOI
and , Spectral study of alliances in graphs. Discuss. Math. Graph Theory 27 (2007) 143–157. | MR | Zbl | DOI
, and , On unique independent sets in graphs. In Vol. 131 of Discrete Math. Elsevier, New York, NY (1994) 279–285. | MR | Zbl | DOI
, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices. Discrete Math. 121 (1993) 199–210. | MR | Zbl | DOI
and , Computing global offensive alliances in Cartesian product graphs. Discrete Appl. Math. 161 (2013) 284–293. | MR | Zbl | DOI
Cité par Sources :





