RATIRO-Oper. Res. 55 (2021) S863-S872 RAIRO Operations Research
https://doi.org/10.1051/ro/2020017 WWW.rairo-ro.org

TREES WITH UNIQUE MINIMUM GLOBAL OFFENSIVE ALLIANCE

MOHAMED BOUZEFRANE!*, ISMA BOUCHEMAKH?, MOHAMED ZAMIME® AND
NOUREDDINE IKHLEF-ESCHOUF*

Abstract. Let G = (V, E) be a simple graph. A non-empty set D C V is called a global offensive
alliance if D is a dominating set and for every vertex vin V—D, |Ng [v] N D| > |Ng [v] — D|. The global
offensive alliance number is the minimum cardinality of a global offensive alliance in G. In this paper,
we give a constructive characterization of trees having a unique minimum global offensive alliance.
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1. INTRODUCTION

In this paper, G = (V, E) is a simple graph with vertex set V = V(G) and edge set E = E(G). The open
neighborhood of a vertex v € V is Ng(v) = {u € V | uv € E} and the closed neighborhood of v is Ng [v] =
Ng(v) U {v}. The degree of a vertex v € V, denoted by dg (v), is the cardinality of its open neighborhood.
A vertex of degree one is called a leaf and its neighbor is called a support vertex. If v is a support vertex of
a tree T, then Ly (v) will denote the set of the leaves adjacent to v, and let I7(v) = |Lr(v)|. The set of leaves
and support vertices of T is denoted by L(T') and S(T'), respectively. Further, let [ (T') = |L(T')|. As usual, the
path of order n is denoted by P,, and the star of order n by Ki ,_1. A double star, denoted by S, 4, is a tree
obtained from P, by joining p pendent edges to one end and ¢ pendent edges to other end of P,. A subdivision
of an edge uv is obtained by introducing a new vertex w and replacing the edge uv by the edges uw and wwv.
A subdivided star, denoted by 5SSy, is a star K j such that each edge is subdivided exactly once. A wounded
spider is the tree formed by subdividing r edges of K, where 1 <r < k — 1. For a vertex v, in a rooted tree
T, let C(v) and D(v) denote the set of children and descendants of v, respectively. Let D[v] = D(v) U{v}. The
maximal subtree at v, denoted by T, is the subtree of T' induced by D[v].
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If G and H are two vertex-disjoint graphs, the union of G and H is the graph G U H whose vertex-set is
V(G) UV (H) and edge-set is F(G) U E(H). For an integer k > 2, the union of k copies of graph G is denoted
kG and the union of graphs G1, Ga, ..., G}, is denoted UF_,G;.

Let D C V be a non-empty set of vertices of graph G. D is a dominating set of G if every vertex in V — D
has at least one neighbor in D. The domination number of G,denoted by v(G), is the minimum cardinality of
a dominating set of G. D is an offensive alliance of G if for every v € V. — D, we have

|Ng [v] N D| > |Ng [v] — D|. (1.1)

D is a global offensive alliance, or briefly a goa, of G if D is both an offensive alliance and a dominating set of
G. The global offensive alliance number, denoted by 7,(G), is the minimum cardinality of a goa of G. Note that
v, is defined for every graph. For a graph G, the vertex set V of G is a goa, as V — V = (), and the condition
for V to be a goa is (vacuously) true. A goa of G of cardinality v,(G) is called a v,(G)-set. G is a unique global
offensive alliance graph, or briefly an ugoa-graph, if G has a unique 7,(G)-set. A unique global offensive alliance
on a graph G allows vertices to have a unique assignment. This can be used for an extension of the graph while
keeping the same layout which existed.

The literature on the concept of domination and its variants has been surveyed and detailed in the books of
Haynes et al. [25,26]. Among these variants, there are the alliances in graphs. The study of alliances in graphs is
first investigated by Kristiansen et al. [31]. Favaron et al. [11] initiated and made a thorough study of offensive
alliances, they derived several bounds on the offensive alliance number. Several other bounds on (global) offensive
alliance number are obtained by Rodriguez-Veldzquez and Sigarreta [34,35], Rad [33], Harutyunyan [22,23] and,
Yero and Rodriguez-Veld zquez [38]. Concerning the computational complexity, the NP-completeness is proved
by Balakrishnan et al. [1] for the problem of global offensive alliance and by Fernau et al. [12] for both problems
(offensive and global offensive alliances) in general graphs. More results can be found in [3-6,10,32].

Graphs with a unique minimum p-set, where p is some domination parameter, has attracted the interest of
several researchers over the last decades. In particular, graphs with a unique minimum dominating sets have
been studied, by Gunther et al. [21]. These authors initiated this related concept to uniqueness in the domination
theory and investigated some of the structural properties of graphs having this property. Some works have been
established on different classes of graphs, for example, by Fischermann and Volkmann [15] for trees and in [16]
for cactus graphs, by Fischermann [13] for block graphs, by Hedetniemi [27] for some cartesian product graphs
and in [28] for some repeated cartesian products graphs. Regarding the uniqueness related to other invariants of
domination, studies have been undertaken by Blidia et al. [2] for the locating-domination number, by Chellali
and Haynes for paired-domination number in [7] and for double domination number in [8], Chellali and Rad [9]
for roman domination number, and by Haynes and Henning [24] for total domination number. Further works
on this topic can be found in [14,17-20,29, 30, 36, 37].

In this paper, we are interested in determining the structure of trees that are ugoa-trees. The paper is
organized as follows. Section 2 deals with the preservation of the ugoa-tree property after having performed
some operation on it. In Section 3, we provide a constructive characterization of ugoa-tree. Finally, we conclude
by setting some problems that we seem interesting.

2. PRELIMINARY RESULTS

We first present some elementary facts concerning the ugoa-trees. Some results are straightforward and so
their proofs are omitted.

Observation 2.1. Let T be a tree of order at least three and let u € S(T). Then,

(i) there is a 7,(T)-set that contains all support vertices of T,
(ii) if D is a unique 7,(T)-set, then D contains all support vertices of T' but no leaf,
(iii) if Ip(u) > 2, then u belongs to any ~, (T)-set.
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Proof. (i) and (ii) are obvious. Let S be any 7,(T")-set and assume that item (iii) is not satisfied. In this case, all
leaves adjacent to u would be contained in S and the set (S — Ly (u)) U {u} would be a goa of T' of cardinality
less than ~, (T') , a contradiction. O

Observation 2.2. Let T be a tree obtained from a nontrivial tree 7’ by joining a new vertex v at a support
vertex u of T'. Let D and D’ be ~, (T') -sets of T' and T”, respectively. Then,

(i) [D'| = |DI,
(i) DNV (T") is a 7y, (T")-set,
(iii) if T is an ugoa-tree such that u is in any ~,(7")-set, then 7" is an ugoa-tree.

Proof. According to Observation 2.1(iii), and since Ir(u) > 2, v must be in D.

(i) D is clearly a goa of 7", and then |D’| < |D|. By Observation 2.1(i) we can assume that v € D’. Hence,
D’ can be extended to a goa of T, which leads to |D| < |D’|. Thus, equality holds.
(ii) Since DNV(T") = D is a goa of T' of cardinality |D| = |D’|, we deduce that DNV (T") is a v, (T')-set.
(iii) Item (i) together with the fact that u belongs to any ~y, (7”) imply that D’ can be extended to a v, (T)-set.
Therefore, the uniqueness of D as a 7, (T')-set leads to D’ = D. Hence, D’ is the unique ~, (7”) .

O

Observation 2.3. Let T be a tree obtained from a nontrivial tree T”, different from P, by joining the center
vertex y of the path Py = z—y—2z at a support vertex v of T'. Let D and D’ be v,(T)-sets of T and T”, respectively
such that each of them contains all support vertices. Then,

(i) |D'| = [D| -1,
(ii) DNV(T’) is a v, (T")-set,
(iii) if T is an ugoa-tree, then T” is an ugoa-tree.

Proof. (i) Since y € D and v € DN D’, the set D —{y} is a goa of T” and then |D’| < |D|— 1. Moreover, since
v € D', D' can be extended to a goa of T' by adding y. It follows, |D| < |D'U{y}| = |D’| + 1 and equality
holds.

(ii) Since DNV (T') = D — {y} is a goa of T' of cardinality |D| — 1= |D'|, DNV (T") is a v, (T")-set.
(iii) Let B = {y}. In view of item (i), D’ can be extended to a =, (T')-set by adding the unique vertex of B.
This and item (ii) together with the uniqueness of D imply that D’ = D NV(T") is the unique ~,(T")-set.
(]

Observation 2.4. Let T be a tree obtained from a nontrivial tree 77 by adding a subdivided star SSy with k
leaves, k > 1, and then identifying its center to some leaf v of T'. Let w be the support vertex adjacent to v in
T’, and let D and D’ be v, (T')-sets of T and T", respectively. If w € D N D’; then the following three properties
are satisfied.

(i) | D] = |D| =k,
(ii) DNV (T") is a v,(T")-set,
(iii) if T is an ugoa-tree, then 7" is an ugoa-tree.

Proof. Let B = {y1,y2,...,yr} be the set of support vertices of SSj. Definition of T' implies that every vertex
in B is adjacent to v.

(i) Obviously, each vertex in B remains a support vertices in 7. Hence, in view of Observation 2.1(i), we can
assume that D contains all vertices of B. Therefore, since w € D and v ¢ D, D — B is a goa of T’, and
consequently, |D’| < |D — B| = |D| — k. We now prove the opposite inequality. w € D’ implies that D’ can
be extended to a goa of T' by adding all vertices of B. Hence, |D| < |D’U B| = |D’| 4+ k and equality holds.



S866 M. BOUZEFRANE ET AL.

(ii) The proof is similar to that of Observation 2.3(ii), by taking DNV (T') = D — B.
(iii) The proof is similar to that of Observation 2.3(iii).

O

Observation 2.5. Let V(1”) be the vertex set of a nontrivial tree 7", and let D’ be a v,(1")-set such that
V(T') — D' has a vertex w of degree ¢ > 2 in 7" and | N+ (w) N (V(T") — D')| < 1. Let p be a positive integer
such that
p<q-—1, if |Np(w)n(V(T")—D")| =0,
or (2.1)
p<q—3, if |[Np(w)n(V(I")-D')[=1

Let T' be a tree obtained from 7" by adding p subdivided stars SSy,,...,SSk,, ki > 2 for 1 <14 < p, and joining
each center x; of SSy,, 1 < i < p, at w. Let D be a v,(T)-set. If w and 1,2, ...,2, are not in D, then the
following three properties are satisfied.

(i) [D'] = [D| =327 ki,
(i) DNV (T") is a 7y, (T")-set,
(iii) if T is an ugoa-tree, then T’ is also an ugoa-tree.

Proof. For i € {1,...,p}, let B; the set of the support vertices of SSk,.

(i) Since the vertices w, x1, 2, ..., z, are not in D, all vertices of UY_; B; must be in D. Therefore, D —UY_, B;
is a goa of 1", giving that |D’| < |D| — >_¥_,k;. For the opposite inequality, we first prove that the set
A=U"_ B, UD"is a goa of T, that is, |Nr [2] N A| > |Nr [z] — 4] holds, for each z € {w,z1,x2,...,2,}.
For this, we consider two cases depending on the value of z.

Case 1. z =z, for some i € {1,...,p}.
We then have
INz[2] N Al = [Nr [2] N (U2, Bi) | = ki > 2,

and
INT 2] = Al = {z, w}| = 2.

Thus, |[Np[z]) N A| > |Nr [2] — Al, for each z € {z1,22,...,2p}.

Case 2. z = w.

We have
: it |Ngs(w) N (V(T) — D')| =0,
NT[Z]W”{Z—L if iNﬁf/EwngvET%_D%I:L
and
+1, if  |Np(w) N (V(T') — D) =0,
B ER A vt

According to (2.1), we have in this case also, |Np[z] N A| > |Nr [z] — Al, for z = w. Therefore, A is a goa
of T, and

P
D <A =[D'| +> k.
i=1
Hence, the equality holds, as required.

(ii) Using the fact that D NV(T") = D — UY_, B, the proof is similar to that of Observation 2.3(ii).
(iii) The proof is similar to that of Observation 2.3(iii), by taking B = UY_, B;.
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3. THE MAIN RESULT

In order to characterize the trees with a unique minimum global offensive alliance, we define a family F of
all trees T' that can be obtained from a sequence 11,75, ..., T, 7 > 1, of trees, where T} is the path P; centered
at a vertex y, T = T,, and, if » > 2, the tree T;11 is obtained from T;, 1 < ¢ < r — 1, by one of the following
operations listed below. Let A (T1) = {y}.

— Operation O;: Attach a vertex by joining it to any support vertex of T;. Let A (T;41) = A (T3).
— Operation Os: Attach a path P; = u-v-w by joining v to any support vertex of T;. Let A (Tj41) = A (T;)U{v}.
— Operation O3: Adding a subdivided star SSy with k leaves, k > 1, and then identifying the center of it to
the leaf of T;, where its support vertex w in 7T; satisfies the following condition Cj.
(Co) : If [N w] N AT3)| > | N, (w) 0 (V(T}) — A(T}))| + 1, then

e cither I, (w) = 2 and Nr,(w) — A(T;) has a least one vertex wy, such that |Ng,(w¢) N A(T;)| <
[Nz, [we] 0 (V(T3) = A(T3))| + 1,
e or Ir,(w) = 1 and Np,(w) — A(T;) has two vertices w, and wg, such that, [N, (w;)NA(T;)] <

| Nz, [wi] N (V(T;) — A(T3))| + 1, for I = p, q.
Let A(T;+1) = A(T;) U B, where B is the set of support vertices of SS.
— Operation O4: Let w € V(T;) — A(T;) be a vertex of degree ¢ > 2 in T;, such that

[Nt (w) N (V (T;) — A(T;))| < 1. Attach p > 1 subdivided stars SSy,, k; > 2 for 1 < ¢ < p, by joining
each center x; of SSk,, at w, such that

pé{qlif | N, (w) 0 (V (T3) — A(

q—3if [Nz, (w) N (V(T;) — A(T;

|
NI =1.

Let A(Ti41) = A(T;) U (UY_, B;, where B; is the set of support vertices of SSj, .

Before stating our main result, we need to prove an additional lemma.

Lemma 3.1. If T € F, then A(T) is the unique 7, (T)-set.

Proof. Let T € F. We proceed by induction on the number of operations, say r, required to construct 7. The
property is true if » = 1, since T' = T} is the path P centered at y and A (T') = {y} is the unique ~, (T)-set.
This establishes the base case.

Assume that for any tree 7’ € F that can be constructed with r — 1 operations from Ty, A(T") is the unique
Yo(T")-set. Let T = T,., with r > 2, and T" = T,._. We consider four cases, depending on the used operation.

Case 1. T is obtained from T” by using Operation O;.

Assume that T is obtained from T’ by attaching an extra vertex at a support vertex u of T”. In view of
Observation 2.1(ii), u € A(T"). Hence, A(T") can be extended to a goa of T. By Observation 2.2(i), v, (T) =
vo(T"), and then A(T") is a v, (T')-set. Since A(T”) is the unique 7, (1”)-set, we infer that A(T) = A (1”) is the
unique v, (T')-set.

Case 2. T is obtained from T’ by using Operation Os.
A(T")U{v} is a goa of T. By Observation 2.3(i), v, (T') = v, (T”) + 1, and then A (7") U {v} is a 7, (T)-set.
Since A (T") is the unique 7, (I”)-set, we infer that A (T) = A (T") U {v} is the unique ~, (T)-set.

Case 3. T is obtained from T” by using Operation Os.
A(T')U B is a goa of T. By Observation 2.4(i), v, (T') = 7, (I") + k, and then A (T") U B is a v, (T)-set.
Since A (T") is the unique 7, (T")-set, we infer that, A (T) = A (T') U B is the unique =, (T)-set.

Case 4. T is obtained from T’ by using Operation Oj.

A(TU(UY_ B;) is a goa of T. By Observation 2.5(i), v (T') = o (I") +>_%_, ki, and then A (T")U(UY_, B;)
is a 7, (T)-set. Since A (T”) is the unique v, (T”’)-set, we infer that A(T) = A(T") U (UY_,B;) is the unique
Yo (T')-set. O
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Note that in each one of the previously four cases, A(T;11) is obtained from A(T;) by adding all support
vertices in T;41 — T;. Hence, the following corollary is immediate.

Corollary 3.2. Let T € F and S(T') be a set of support vertices in T. Then, v, (T) = |S(T)|.
We are now ready to prove our main result.
Theorem 3.3. A tree T is an ugoa-tree if and only if T = Ky or T € F.

Proof. 1t is obvious that T' = K is an ugoa-tree. Also, Lemma 3.1 states that any member of F is an ugoa-tree.
We prove the converse by induction on the number n of vertices of T'. For n = 1 or n = 3, the result trivially
holds, but not for n = 2, since P, is not an ugoa-tree. For n =4, T' € {K; 3, P1}. Clearly P, is not an ugoa-tree,
whilst K 3 is an ugoa-tree that can be obtained from a P3 using Operation O;. Hence, K; 3 € F. For n = 5,
T € {S1,2,K1,4,Ps}. The double star Sy 2 is not an ugoa-tree, while K 4 and P5 are ugoa-trees, since Kj 4
can be obtained from K 3 by using Operation O;, and P5 can be obtained from a P3 by using Operation Os.
Therefore, K1 4 and P5 are in F. This establishes the base case.

Assume now n > 6, and any tree T’ of order n’, 3 < n’ < n, has a unique v, (T”)-set in F. Let T be a tree of
order n with the unique 7, (T)-set D and let s € S(T'). By Observation 2.1(ii), we have s € D. If I7 (s) > 3, then
let T be the tree obtained from T by removing a leaf adjacent to s and let D’ be a ~, (T")-set. Then, clearly
n' =|V(T)=n—-1>5,lp(s) > 2 and so, s € D’ by Observation 2.1(iii). According to Observation 2.2(iii),
T’ is an ugoa-tree. Applying the inductive hypothesis to T’, we get T" € F. Thus, T is obtained from T’ by
Operation 01, implying that T' € F. Assume now that

for each x € S(T), Ir(z) <2. (3.1)

Root T at a vertex r of maximum eccentricity. Let u be a support vertex of maximum distance from r and let
u’ be a leaf adjacent to u. Let v and w be the parents of u and v, respectively, in the rooted tree. We consider
two cases.

Case 1. v € D.

If ip (u) = 1, then DU {u'} — {u} is a v,(T)-set, contradicting the uniqueness of D as a 7,(T)-set. Hence,
by (3.1), I (u) = 2. We claim that v € S(T). Assume to the contrary that v ¢ S(T'). Then, either w € D and
so, D — {v} is a goa of T of cardinality less than |D|, contradicting the minimality of D, or w ¢ D and so,
D — {v} U {w} is a 7, (T)-set, contradicting the uniqueness of D as a 7,(T)-set. This completes the proof of
the claim. Let 7" = T — T,, and D’ be a v,(T")-set. By Observation 2.1(i), we can assume that D’ contains
all support vertices in T”. Since |V (Ty,)| = 3, it follows that n’ = |[V(T7)| = n — 3 > 3 and so, T" # P,. By
Observation 2.3(iii), 7" is an ugoa-tree. Applying our inductive hypothesis, we get 7" € F. Thus, T can be
obtained from T’ by Operation O and so, T € F.

Case 2. v ¢ D.

According to Observation 2.1(ii), v ¢ S(T) and then, lr(v) = 0. Let k = |[Np(v) —{w}|. We have dr(v) = k+1
and since u € Np(v) —{w}, we infer that k¥ > 1. For i € {1,...,k}, let u; € Np(v) — {w} such that uy = u. The
choice of v sets that

u; € S(T), lr(u;) > 1 and so, u; € D for all 1. (3.2)

Hence, by (3.1), we have 1 < Ip(u;) < 2 for all i. Assume first that i7(u;) = 2 for some j € {1,...,k}. Without
loss of generality, let j = 1. Then, u has another neighbor v” # v’ in T. Let 7" = T — {u"} and D’ be any
Yo(T")-set. Clearly v is the unique leaf of u in T”. We claim that u € D’. Suppose to the contrary that u & D’.
Then, v’ and v must be in D’. Tt follows that D” = (D’ — {u'}) U {u} is a v, (T)-set which is different from
D (since v belongs to D" and not to D), a contradiction. This completes the proof of the claim. We have
n’ =n—1 > 5. By Observation 2.2(iii), 7" is an ugoa-tree. Applying our inductive hypothesis to T’, we get
T’ € F. Hence, T is obtained from T' by Operation 01, implying that T' € F. Assume now that

Ir(u;) =1 and hence, dr(u;) = 2 for all i. (3.3)
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For all ¢ € {1,...,k}, let u} be the unique leaf adjacent to u; (with v} = u'). We distinguish two subcases,
depending on whether w belongs to D or not.

Case 2.1. w e D.

In view of (3.3), T}, is a subdivided star SS centered at v. Let T/ =T — (T}, — {v}). Clearly v € L(T") and
we ST). Ifn' =|V(T")| =2, then T is a wounded spider with exactly one non-subdivided edge and in this
case, it is not difficult to see that such a graph is not an ugoa-tree. Hence, assume that n’ > 3. We claim the
following.

If |INp[w] N D] > |[Np(w) N (V(T) — D)| + 1 with Ip(w) € {0,1}, then

— when Ip(w) = 1, Np(w) — D has at least one vertex w; such that
| Nt (we) N D| < |Np[w] N (V(T) — D)| + 1. (3.4)

— When Ip(w) = 0, Np(w) — D has at least two vertices w, and w, for which (3.4) is fulfilled.

Indeed, assume first that i7(w) = 1 and suppose there is no vertex in Np(w)— D for which (3.4) is fulfilled. Let
w’ be the leaf adjacent to w in T'. In this case (D — {w})U{w'} is a 7, (T')-set different from D, a contradiction.
Now, assume that Ir(w) = 0. Suppose first that Np(w) — D has exactly one vertex, say w” for which (3.4) is
fulfilled. Then (D —{w})U{w"} is a v, (T')-set different from D, a contradiction. Suppose now there is no vertex
in Np(w)— D for which (3.4) is fulfilled. Then (D — {w})U{v} is a 7, (T)-set different from D, a contradiction.
This complete the proof of the claim.

Observe that when I/ (w) € {1,2}, the previous claim remains true by replacing D by D’ and T by T”. Thus,
according to Observation 2.4(iii), 7" is an ugoa-tree. By induction on 7", we get 7" € F. Since T is obtained
from T” by using Operation O3, we directly obtain T' € F.

Case 2.2. w ¢ D.

By Observation 2.1(ii), w ¢ S(T) and so, lp(w) = 0. Since v and w are in V(T') — D, v must have at least
two neighbors in D. Hence, dr(v) = k+ 1 > 3. Let ¢ be the parent of w, and let X, Y and Z be the following
sets

Y=Clw)nS(T), X=C(w)—Y and Z=D(w)N(S(T)-Y).

Observe that v € X, u € Z, Np(w) = {t} UX UY and every vertex in Z plays the same role as u. Therefore,
by (3.2), we have Z C D since Z C S(T). We also have, by (3.3), every vertex in Z has exactly two neighbors
such that one of them is a leaf and the other one is in X. Furthermore, as v € X, u; € Z for all i € {1,...,k}
and so, |Z| > k > 2. Notice also that |X| > 1 since v € X. Likewise |Y'| > 1 since D is a 7,(T)-set. It is clear
that Y C S(T') and then, by Observation 2.1(ii), Y C D. Put

X ={z1,22,...2p}, p>1, withzy=vand |[YV|=¢g—-1, ¢>2.
The fact that every vertex in X plays the same role as v, z; € V(T) — D for all i € {1,...,p}, let
pi = |Np(x;) —{w}| fori=1,...,p.

We have p; = k and since for all i € {1,...,p}, z; and w are in V(T) — D, x; must have at least two neighbors
in Z. Hence, dr(x;) = p; +1 > 3. This means that for all ¢ € {1,...,p}, V(T},) induces a subdivided star S5,
of order p; + 1 centered at z;. Because w € V(T') — D, inequality (1.1) is valid by replacing v by w. This gives

p<qg—1ifte D, or p<q— 3 otherwise. (3.5)

Let T/ =T —(U_,T,,) and D’ be a 7,(T")-set. Observe that T” contains at least one Pj as an induced subgraph,
which means that n’ = |V(T")| > 3. For all i € {1,...,p}, let B; be the support vertex set of SS,,. We have
U?_1B; = Z and Np/(w) =Y U{t}, so

dT/(w) =q > 2.
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According to Observation 2.1(i), we can assume that Y C D’ since Y C S(7”). Then, ¢ is the only neighbor of
w in T” that may not be in D', that is

[N (w) A (V(T) = D) < L.

If t € D', then the minimality of D’ leads to w € V(T") — D’, because otherwise, we could replace w by ¢ in D’.
By Observation 2.5(ii) and (iii), we have D’ = DNV (T"). Hence, t € D if and only if ¢ € D’. Notice that if t € D’,
then N/ (w) N (V(T') — D') is an empty-set, otherwise, ¢t would be the unique vertex of Np/(w) N (V(T") — D).
Thus, (3.5) can be rewritten as follows:

If [Ny (w) N (V(T') = D')| =0, then p < q — 1,

and
if |Np/(w)N(V(T")—D")|=1, thenp <q—3.

By Observation 2.5(iii), 7" is an ugoa-tree. Applying the inductive hypothesis to 7", we deduce that 7" € F.
Since T can be obtained from 7’ by Operation O4, we finally conclude that 77 € F. This completes the
proof. O

Theorem 3.3 suggests a polynomial algorithm for testing if a given tree 1" with n vertices belongs to F and,
if so, the algorithm returns the set A(T'). The steps of this algorithm can be summarized as follows. If T' is
a path on 2 or 4 vertices, answer T' ¢ F and stop. Else if n < 5, answer T' € F, return the obvious set A(T), and
stop. Suppose n > 6. If T has a strong support vertex, say s such that I (s) > 3, call the algorithm recursively
on the tree T' obtained from T by removing a leaf neighbor of s; if the answer to the recursive call is 7' € F,
then answer T' € F, return A(T) = A(T") and stop, else answer T ¢ F and stop. Assume now that for each
x € S(T), lr(x) < 2. Pick a vertex r, root the tree T at r, pick a vertex v’ at maximum distance from r. Let u
be the parent of u’ in the rooted tree and v be the parent of u. If v € S(T) and Ir(u) = 2, call the algorithm
recursively on the tree 7/ = T — T,; if the answer to the recursive call is 77 € F, then answer T € F, return
A(T) = A(T") U{u} and stop, else answer T' ¢ F and stop. If v € S(T') and Ir(u) = 1, then return the answer
T ¢ F and stop. Assume now that v ¢ S(T'). If some child of v has two leaves u/, u”, then call the algorithm
recursively on the tree 77 = T — {u''} ; if the answer to the recursive call is 7" € F, then answer T' € F, return
A(T) = A(T") and stop, else answer T ¢ F and stop. Now, assume that every child of v is a support vertex of
degree two. Let w the parent of v and further let X = {z1,22,...2,} and Y be two subset of V(T') defined as in
the proof of Theorem 3.3. Assume first that w € S (T') or |Y| < |X|. Call the algorithm recursively on the tree
T' =T — (T, — {v}); if the answer to the recursive call is T’ € F and w fulfills the condition Cy (see operation
Os), then answer T' € F and return A(T') = A(T") U B and stop, else answer T' ¢ F and stop. Assume now that
w ¢ S(T) and Y| > | X|. Call the algorithm recursively on the tree 77 = T — (U?_, T}.); if the answer to the
recursive call is 77 € F, and w ¢ A(T"), then answer T' € F and return A(T) = A(T") U (UY_, B;) and stop,
else answer T' ¢ F and stop.

4. CONCLUSION

In this paper, we have provided a constructive characterization of all ugoa-trees. After this work, several
problems could be raised. The following seem of particular interest:

(1) Although the case of trees was solved in this paper, it is still interesting to find a characterization of all
ugoa-graphs in the class of unicyclic graphs, or more generally, cactus graphs.

(2) The characterization problem of all ugoa-graphs does not seem easy, nevertheless it is an attractive point
to explore.

(3) Apart from the constructive characterization of ugoa-trees, it is interesting to investigate other types of
characterizations.
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Knowing that any graph is not necessarily an ugoa-graph, it would therefore be interesting to characterize
all graphs G with the property that each vertex of G belongs to at least one 7,(G)-set.

We can prospect another type of alliance, that is defensive alliance. A non-empty set of vertices D C V', of
a graph G, is a defensive alliance of G, if for every v € D, |[Ng[v]ND| > |Ng[v] — D|. D is a global defensive
alliance, or briefly a gda, of G, if D is a defensive alliance and a dominating set of G. An interesting problem
consists to investigating all trees with a unique minimum global defensive alliance.
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