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TREES WITH UNIQUE MINIMUM GLOBAL OFFENSIVE ALLIANCE

Mohamed Bouzefrane1,∗, Isma Bouchemakh2, Mohamed Zamime3 and
Noureddine Ikhlef-Eschouf4

Abstract. Let G = (V, E) be a simple graph. A non-empty set D ⊆ V is called a global offensive
alliance if D is a dominating set and for every vertex v in V −D, |NG [v] ∩D| ≥ |NG [v]−D|. The global
offensive alliance number is the minimum cardinality of a global offensive alliance in G. In this paper,
we give a constructive characterization of trees having a unique minimum global offensive alliance.
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1. Introduction

In this paper, G = (V,E) is a simple graph with vertex set V = V (G) and edge set E = E(G). The open
neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is NG [v] =
NG(v) ∪ {v}. The degree of a vertex v ∈ V, denoted by dG (v), is the cardinality of its open neighborhood.
A vertex of degree one is called a leaf and its neighbor is called a support vertex. If v is a support vertex of
a tree T , then LT (v) will denote the set of the leaves adjacent to v, and let lT (v) = |LT (v)|. The set of leaves
and support vertices of T is denoted by L(T ) and S(T ), respectively. Further, let l (T ) = |L(T )|. As usual, the
path of order n is denoted by Pn, and the star of order n by K1,n−1. A double star, denoted by Sp,q, is a tree
obtained from P2 by joining p pendent edges to one end and q pendent edges to other end of P2. A subdivision
of an edge uv is obtained by introducing a new vertex w and replacing the edge uv by the edges uw and wv.
A subdivided star, denoted by SSk, is a star K1,k such that each edge is subdivided exactly once. A wounded
spider is the tree formed by subdividing r edges of K1,k, where 1 ≤ r ≤ k − 1. For a vertex v, in a rooted tree
T, let C(v) and D(v) denote the set of children and descendants of v, respectively. Let D[v] = D(v)∪ {v}. The
maximal subtree at v, denoted by Tv, is the subtree of T induced by D[v].
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4 Faculty of Sciences, Department of Mathematics and Computer Science, University of Médéa, Médéa, Algeria.
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If G and H are two vertex-disjoint graphs, the union of G and H is the graph G ∪ H whose vertex-set is
V (G) ∪ V (H) and edge-set is E(G) ∪ E(H). For an integer k ≥ 2, the union of k copies of graph G is denoted
kG and the union of graphs G1, G2, . . . , Gk is denoted ∪k

i=1Gi.
Let D ⊆ V be a non-empty set of vertices of graph G. D is a dominating set of G if every vertex in V −D

has at least one neighbor in D. The domination number of G,denoted by γ(G), is the minimum cardinality of
a dominating set of G. D is an offensive alliance of G if for every v ∈ V −D, we have

|NG [v] ∩D| ≥ |NG [v]−D| . (1.1)

D is a global offensive alliance, or briefly a goa, of G if D is both an offensive alliance and a dominating set of
G. The global offensive alliance number, denoted by γo(G), is the minimum cardinality of a goa of G. Note that
γo is defined for every graph. For a graph G, the vertex set V of G is a goa, as V − V = ∅, and the condition
for V to be a goa is (vacuously) true. A goa of G of cardinality γo(G) is called a γo(G)-set. G is a unique global
offensive alliance graph, or briefly an ugoa-graph, if G has a unique γo(G)-set. A unique global offensive alliance
on a graph G allows vertices to have a unique assignment. This can be used for an extension of the graph while
keeping the same layout which existed.

The literature on the concept of domination and its variants has been surveyed and detailed in the books of
Haynes et al. [25,26]. Among these variants, there are the alliances in graphs. The study of alliances in graphs is
first investigated by Kristiansen et al. [31]. Favaron et al. [11] initiated and made a thorough study of offensive
alliances, they derived several bounds on the offensive alliance number. Several other bounds on (global) offensive
alliance number are obtained by Rodŕıguez-Velázquez and Sigarreta [34,35], Rad [33], Harutyunyan [22,23] and,
Yero and Rodŕıguez-Velá zquez [38]. Concerning the computational complexity, the NP-completeness is proved
by Balakrishnan et al. [1] for the problem of global offensive alliance and by Fernau et al. [12] for both problems
(offensive and global offensive alliances) in general graphs. More results can be found in [3–6,10,32].

Graphs with a unique minimum µ-set, where µ is some domination parameter, has attracted the interest of
several researchers over the last decades. In particular, graphs with a unique minimum dominating sets have
been studied, by Gunther et al. [21]. These authors initiated this related concept to uniqueness in the domination
theory and investigated some of the structural properties of graphs having this property. Some works have been
established on different classes of graphs, for example, by Fischermann and Volkmann [15] for trees and in [16]
for cactus graphs, by Fischermann [13] for block graphs, by Hedetniemi [27] for some cartesian product graphs
and in [28] for some repeated cartesian products graphs. Regarding the uniqueness related to other invariants of
domination, studies have been undertaken by Blidia et al. [2] for the locating-domination number, by Chellali
and Haynes for paired-domination number in [7] and for double domination number in [8], Chellali and Rad [9]
for roman domination number, and by Haynes and Henning [24] for total domination number. Further works
on this topic can be found in [14,17–20,29,30,36,37].

In this paper, we are interested in determining the structure of trees that are ugoa-trees. The paper is
organized as follows. Section 2 deals with the preservation of the ugoa-tree property after having performed
some operation on it. In Section 3, we provide a constructive characterization of ugoa-tree. Finally, we conclude
by setting some problems that we seem interesting.

2. Preliminary results

We first present some elementary facts concerning the ugoa-trees. Some results are straightforward and so
their proofs are omitted.

Observation 2.1. Let T be a tree of order at least three and let u ∈ S(T ). Then,

(i) there is a γo(T )-set that contains all support vertices of T ,
(ii) if D is a unique γo(T )-set, then D contains all support vertices of T but no leaf,

(iii) if lT (u) ≥ 2, then u belongs to any γo (T )-set.
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Proof. (i) and (ii) are obvious. Let S be any γo(T )-set and assume that item (iii) is not satisfied. In this case, all
leaves adjacent to u would be contained in S and the set (S − LT (u)) ∪ {u} would be a goa of T of cardinality
less than γo (T ) , a contradiction. �

Observation 2.2. Let T be a tree obtained from a nontrivial tree T ′ by joining a new vertex v at a support
vertex u of T ′. Let D and D′ be γo (T ) -sets of T and T ′, respectively. Then,

(i) |D′| = |D|,
(ii) D ∩ V (T ′) is a γo (T ′)-set,
(iii) if T is an ugoa-tree such that u is in any γo(T ′)-set, then T ′ is an ugoa-tree.

Proof. According to Observation 2.1(iii), and since lT (u) ≥ 2, u must be in D.

(i) D is clearly a goa of T ′, and then |D′| ≤ |D|. By Observation 2.1(i) we can assume that u ∈ D′. Hence,
D′ can be extended to a goa of T , which leads to |D| ≤ |D′| . Thus, equality holds.

(ii) Since D ∩ V (T ′) = D is a goa of T ′ of cardinality |D| = |D′|, we deduce that D ∩ V (T ′) is a γo (T ′)-set.
(iii) Item (i) together with the fact that u belongs to any γo (T ′) imply that D′ can be extended to a γo (T )-set.

Therefore, the uniqueness of D as a γo (T )-set leads to D′ = D. Hence, D′ is the unique γo (T ′) .

�

Observation 2.3. Let T be a tree obtained from a nontrivial tree T ′, different from P2, by joining the center
vertex y of the path P3 = x–y–z at a support vertex v of T ′. Let D and D′ be γo(T )-sets of T and T ′, respectively
such that each of them contains all support vertices. Then,

(i) |D′| = |D| − 1,
(ii) D ∩ V (T ′) is a γo (T ′)-set,
(iii) if T is an ugoa-tree, then T ′ is an ugoa-tree.

Proof. (i) Since y ∈ D and v ∈ D∩D′, the set D−{y} is a goa of T ′ and then |D′| ≤ |D|− 1. Moreover, since
v ∈ D′, D′ can be extended to a goa of T by adding y. It follows, |D| ≤ |D′ ∪ {y}| = |D′|+ 1 and equality
holds.

(ii) Since D ∩ V (T ′) = D − {y} is a goa of T ′ of cardinality |D| − 1 = |D′| , D ∩ V (T ′) is a γo (T ′)-set.
(iii) Let B = {y}. In view of item (i), D′ can be extended to a γo (T )-set by adding the unique vertex of B.

This and item (ii) together with the uniqueness of D imply that D′ = D ∩ V (T ′) is the unique γo(T ′)-set.
�

Observation 2.4. Let T be a tree obtained from a nontrivial tree T ′ by adding a subdivided star SSk with k
leaves, k ≥ 1, and then identifying its center to some leaf v of T ′. Let w be the support vertex adjacent to v in
T ′, and let D and D′ be γo (T )-sets of T and T ′, respectively. If w ∈ D∩D′, then the following three properties
are satisfied.

(i) |D′| = |D| − k,
(ii) D ∩ V (T ′) is a γo(T ′)-set,
(iii) if T is an ugoa-tree, then T ′ is an ugoa-tree.

Proof. Let B = {y1, y2, . . . , yk} be the set of support vertices of SSk. Definition of T implies that every vertex
in B is adjacent to v.

(i) Obviously, each vertex in B remains a support vertices in T. Hence, in view of Observation 2.1(i), we can
assume that D contains all vertices of B. Therefore, since w ∈ D and v /∈ D, D − B is a goa of T ′, and
consequently, |D′| ≤ |D −B| = |D| − k. We now prove the opposite inequality. w ∈ D′ implies that D′ can
be extended to a goa of T by adding all vertices of B. Hence, |D| ≤ |D′ ∪B| = |D′|+k and equality holds.
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(ii) The proof is similar to that of Observation 2.3(ii), by taking D ∩ V (T ′) = D −B.
(iii) The proof is similar to that of Observation 2.3(iii).

�

Observation 2.5. Let V (T ′) be the vertex set of a nontrivial tree T ′, and let D′ be a γo(T ′)-set such that
V (T ′) −D′

has a vertex w of degree q ≥ 2 in T ′ and |NT ′(w) ∩ (V (T ′)−D′)| ≤ 1. Let p be a positive integer
such that  p ≤ q − 1, if |NT ′(w) ∩ (V (T ′)−D′)| = 0,

or
p ≤ q − 3, if |NT ′(w) ∩ (V (T ′)−D′)| = 1.

(2.1)

Let T be a tree obtained from T ′ by adding p subdivided stars SSk1 , . . . , SSkp
, ki ≥ 2 for 1 ≤ i ≤ p, and joining

each center xi of SSki , 1 ≤ i ≤ p, at w. Let D be a γo(T )-set. If w and x1, x2, . . . , xp are not in D, then the
following three properties are satisfied.

(i) |D′| = |D| −
∑p

i=1ki,
(ii) D ∩ V (T ′) is a γo (T ′)-set,

(iii) if T is an ugoa-tree, then T ′ is also an ugoa-tree.

Proof. For i ∈ {1, . . . , p}, let Bi the set of the support vertices of SSki
.

(i) Since the vertices w, x1, x2, . . . , xp are not in D, all vertices of ∪p
i=1Bi must be in D. Therefore, D−∪p

i=1Bi

is a goa of T ′, giving that |D′| ≤ |D| −
∑p

i=1ki. For the opposite inequality, we first prove that the set
A = ∪p

i=1Bi ∪D′ is a goa of T , that is, |NT [z] ∩A| ≥ |NT [z]−A| holds, for each z ∈ {w, x1, x2, . . . , xp}.
For this, we consider two cases depending on the value of z.

Case 1. z = xi, for some i ∈ {1, . . . , p}.
We then have

|NT [z] ∩A| = |NT [z] ∩ (∪p
i=1Bi) | = ki ≥ 2,

and
|NT [z]−A| = |{z, w}| = 2.

Thus, |NT [z] ∩A| ≥ |NT [z]−A|, for each z ∈ {x1, x2, . . . , xp}.

Case 2. z = w.
We have

|NT [z] ∩A| =
{
q, if |NT ′(w) ∩ (V (T ′)−D′)| = 0,
q − 1, if |NT ′(w) ∩ (V (T ′)−D′)| = 1,

and

|NT [z]−A| =
{
p+ 1, if |NT ′(w) ∩ (V (T ′)−D′)| = 0,
p+ 2, if |NT ′(w) ∩ (V (T ′)−D′)| = 1.

According to (2.1), we have in this case also, |NT [z] ∩ A| ≥ |NT [z]−A|, for z = w. Therefore, A is a goa
of T, and

|D| ≤ |A| = |D′|+
p∑

i=1

ki.

Hence, the equality holds, as required.
(ii) Using the fact that D ∩ V (T ′) = D − ∪p

i=1Bi, the proof is similar to that of Observation 2.3(ii).
(iii) The proof is similar to that of Observation 2.3(iii), by taking B = ∪p

i=1Bi.

�
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3. The main result

In order to characterize the trees with a unique minimum global offensive alliance, we define a family F of
all trees T that can be obtained from a sequence T1, T2, . . . , Tr, r ≥ 1, of trees, where T1 is the path P3 centered
at a vertex y, T = Tr, and, if r ≥ 2, the tree Ti+1 is obtained from Ti, 1 ≤ i ≤ r − 1, by one of the following
operations listed below. Let A (T1) = {y} .
– Operation O1: Attach a vertex by joining it to any support vertex of Ti. Let A (Ti+1) = A (Ti).
– Operation O2: Attach a path P3 = u-v-w by joining v to any support vertex of Ti. Let A (Ti+1) = A (Ti)∪{v}.
– Operation O3: Adding a subdivided star SSk with k leaves, k ≥ 1, and then identifying the center of it to

the leaf of Ti, where its support vertex w in Ti satisfies the following condition C0.
(C0) : If |NTi

[w] ∩A(Ti)| ≥ |NTi
(w) ∩ (V (Ti)−A(Ti))|+ 1, then

• either lTi(w) = 2 and NTi(w) − A(Ti) has a least one vertex wt, such that |NTi(wt) ∩A(Ti)| ≤
|NTi

[wt] ∩ (V (Ti)−A(Ti))|+ 1,
• or lTi

(w) = 1 and NTi
(w) − A(Ti) has two vertices wp and wq, such that, |NTi

(wl) ∩A(Ti)| ≤
|NTi [wl] ∩ (V (Ti)−A(Ti))|+ 1, for l = p, q.

Let A (Ti+1) = A (Ti) ∪B, where B is the set of support vertices of SSk.

– Operation O4: Let w ∈ V (Ti) − A (Ti) be a vertex of degree q ≥ 2 in Ti, such that
|NTi

(w) ∩ (V (Ti)−A (Ti))| ≤ 1. Attach p ≥ 1 subdivided stars SSki
, ki ≥ 2 for 1 ≤ i ≤ p, by joining

each center xi of SSki , at w, such that

p ≤
{
q − 1 if |NTi

(w) ∩ (V (Ti)−A (Ti))| = 0,
q − 3 if |NTi

(w) ∩ (V (Ti)−A (Ti))| = 1.

Let A (Ti+1) = A (Ti) ∪ (∪p
i=1Bi, where Bi is the set of support vertices of SSki .

Before stating our main result, we need to prove an additional lemma.

Lemma 3.1. If T ∈ F , then A (T ) is the unique γo (T )-set.

Proof. Let T ∈ F . We proceed by induction on the number of operations, say r, required to construct T . The
property is true if r = 1, since T = T1 is the path P3 centered at y and A (T ) = {y} is the unique γo (T )-set.
This establishes the base case.

Assume that for any tree T ′ ∈ F that can be constructed with r− 1 operations from T1, A(T ′) is the unique
γo(T ′)-set. Let T = Tr, with r ≥ 2, and T ′ = Tr−1. We consider four cases, depending on the used operation.

Case 1. T is obtained from T ′ by using Operation O1.
Assume that T is obtained from T ′ by attaching an extra vertex at a support vertex u of T ′. In view of

Observation 2.1(ii), u ∈ A(T ′). Hence, A(T ′) can be extended to a goa of T . By Observation 2.2(i), γo (T ) =
γo(T ′), and then A(T ′) is a γo (T )-set. Since A(T ′) is the unique γo (T ′)-set, we infer that A(T ) = A (T ′) is the
unique γo (T )-set.

Case 2. T is obtained from T ′ by using Operation O2.
A (T ′) ∪ {v} is a goa of T . By Observation 2.3(i), γo (T ) = γo (T ′) + 1, and then A (T ′) ∪ {v} is a γo (T )-set.

Since A (T ′) is the unique γo (T ′)-set, we infer that A (T ) = A (T ′) ∪ {v} is the unique γo (T )-set.

Case 3. T is obtained from T ′ by using Operation O3.
A (T ′) ∪ B is a goa of T . By Observation 2.4(i), γo (T ) = γo (T ′) + k, and then A (T ′) ∪ B is a γo (T )-set.

Since A (T ′) is the unique γo (T ′)-set, we infer that, A (T ) = A (T ′) ∪B is the unique γo (T )-set.

Case 4. T is obtained from T ′ by using Operation O4.
A (T ′)∪ (∪p

i=1Bi) is a goa of T . By Observation 2.5(i), γo (T ) = γo (T ′)+
∑p

i=1 ki, and then A (T ′)∪ (∪p
i=1Bi)

is a γo (T )-set. Since A (T ′) is the unique γo (T ′)-set, we infer that A (T ) = A (T ′) ∪ (∪p
i=1Bi) is the unique

γo (T )-set. �



S868 M. BOUZEFRANE ET AL.

Note that in each one of the previously four cases, A(Ti+1) is obtained from A(Ti) by adding all support
vertices in Ti+1 − Ti. Hence, the following corollary is immediate.

Corollary 3.2. Let T ∈ F and S(T ) be a set of support vertices in T . Then, γo (T ) > |S(T )|.

We are now ready to prove our main result.

Theorem 3.3. A tree T is an ugoa-tree if and only if T = K1 or T ∈ F .

Proof. It is obvious that T = K1 is an ugoa-tree. Also, Lemma 3.1 states that any member of F is an ugoa-tree.
We prove the converse by induction on the number n of vertices of T . For n = 1 or n = 3, the result trivially
holds, but not for n = 2, since P2 is not an ugoa-tree. For n = 4, T ∈ {K1,3, P4}. Clearly P4 is not an ugoa-tree,
whilst K1,3 is an ugoa-tree that can be obtained from a P3 using Operation O1. Hence, K1,3 ∈ F . For n = 5,
T ∈ {S1,2,K1,4, P5}. The double star S1,2 is not an ugoa-tree, while K1,4 and P5 are ugoa-trees, since K1,4

can be obtained from K1,3 by using Operation O1, and P5 can be obtained from a P3 by using Operation O3.
Therefore, K1,4 and P5 are in F . This establishes the base case.

Assume now n ≥ 6, and any tree T ′ of order n′, 3 ≤ n′ < n, has a unique γo (T ′)-set in F . Let T be a tree of
order n with the unique γo (T )-set D and let s ∈ S(T ). By Observation 2.1(ii), we have s ∈ D. If lT (s) ≥ 3, then
let T ′ be the tree obtained from T by removing a leaf adjacent to s and let D′ be a γo (T ′)-set. Then, clearly
n′ = |V (T ′)| = n− 1 ≥ 5, lT ′ (s) ≥ 2 and so, s ∈ D′ by Observation 2.1(iii). According to Observation 2.2(iii),
T ′ is an ugoa-tree. Applying the inductive hypothesis to T ′, we get T ′ ∈ F . Thus, T is obtained from T ′ by
Operation O1, implying that T ∈ F . Assume now that

for each x ∈ S(T ), lT (x) ≤ 2. (3.1)

Root T at a vertex r of maximum eccentricity. Let u be a support vertex of maximum distance from r and let
u′ be a leaf adjacent to u. Let v and w be the parents of u and v, respectively, in the rooted tree. We consider
two cases.

Case 1. v ∈ D.
If lT (u) = 1, then D ∪ {u′} − {u} is a γo(T )-set, contradicting the uniqueness of D as a γo(T )-set. Hence,

by (3.1), lT (u) = 2. We claim that v ∈ S(T ). Assume to the contrary that v 6∈ S(T ). Then, either w ∈ D and
so, D − {v} is a goa of T of cardinality less than |D| , contradicting the minimality of D, or w /∈ D and so,
D − {v} ∪ {w} is a γo (T )-set, contradicting the uniqueness of D as a γo(T )-set. This completes the proof of
the claim. Let T ′ = T − Tu and D′ be a γo(T ′)-set. By Observation 2.1(i), we can assume that D′ contains
all support vertices in T ′. Since |V (Tu)| = 3, it follows that n′ = |V (T ′)| = n − 3 ≥ 3 and so, T ′ 6= P2. By
Observation 2.3(iii), T ′ is an ugoa-tree. Applying our inductive hypothesis, we get T ′ ∈ F . Thus, T can be
obtained from T ′ by Operation O2 and so, T ∈ F .

Case 2. v /∈ D.
According to Observation 2.1(ii), v /∈ S(T ) and then, lT (v) = 0. Let k = |NT (v)−{w}|. We have dT (v) = k+1

and since u ∈ NT (v)−{w}, we infer that k ≥ 1. For i ∈ {1, . . . , k}, let ui ∈ NT (v)−{w} such that u1 = u. The
choice of v sets that

ui ∈ S(T ), lT (ui) ≥ 1 and so, ui ∈ D for all i. (3.2)

Hence, by (3.1), we have 1 ≤ lT (ui) ≤ 2 for all i. Assume first that lT (uj) = 2 for some j ∈ {1, . . . , k}. Without
loss of generality, let j = 1. Then, u has another neighbor u′′ 6= u′ in T. Let T ′ = T − {u′′} and D′ be any
γo(T ′)-set. Clearly u′ is the unique leaf of u in T ′. We claim that u ∈ D′. Suppose to the contrary that u 6∈ D′.
Then, u′ and v must be in D′. It follows that D′′ = (D′ − {u′}) ∪ {u} is a γo (T )-set which is different from
D (since v belongs to D′′ and not to D), a contradiction. This completes the proof of the claim. We have
n′ = n − 1 ≥ 5. By Observation 2.2(iii), T ′ is an ugoa-tree. Applying our inductive hypothesis to T ′, we get
T ′ ∈ F . Hence, T is obtained from T ′ by Operation O1, implying that T ∈ F . Assume now that

lT (ui) = 1 and hence, dT (ui) = 2 for all i. (3.3)
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For all i ∈ {1, . . . , k}, let u′i be the unique leaf adjacent to ui (with u′1 = u′). We distinguish two subcases,
depending on whether w belongs to D or not.

Case 2.1. w ∈ D.
In view of (3.3), Tv is a subdivided star SSk centered at v. Let T ′ = T − (Tv − {v}) . Clearly v ∈ L(T ′) and

w ∈ S(T ′). If n′ = |V (T ′)| = 2, then T is a wounded spider with exactly one non-subdivided edge and in this
case, it is not difficult to see that such a graph is not an ugoa-tree. Hence, assume that n′ ≥ 3. We claim the
following.

If |NT [w] ∩D| ≥ |NT (w) ∩ (V (T )−D)|+ 1 with lT (w) ∈ {0, 1}, then

– when lT (w) = 1, NT (w)−D has at least one vertex wt such that

|NT (wt) ∩D| ≤ |NT [wt] ∩ (V (T )−D)|+ 1. (3.4)

– When lT (w) = 0, NT (w)−D has at least two vertices wp and wq for which (3.4) is fulfilled.

Indeed, assume first that lT (w) = 1 and suppose there is no vertex in NT (w)−D for which (3.4) is fulfilled. Let
w′ be the leaf adjacent to w in T . In this case (D−{w})∪{w′} is a γo (T )-set different from D, a contradiction.
Now, assume that lT (w) = 0. Suppose first that NT (w) −D has exactly one vertex, say w′′ for which (3.4) is
fulfilled. Then (D−{w})∪{w′′} is a γo (T )-set different from D, a contradiction. Suppose now there is no vertex
in NT (w)−D for which (3.4) is fulfilled. Then (D−{w})∪{v} is a γo (T )-set different from D, a contradiction.
This complete the proof of the claim.

Observe that when lT ′(w) ∈ {1, 2}, the previous claim remains true by replacing D by D′ and T by T ′. Thus,
according to Observation 2.4(iii), T ′ is an ugoa-tree. By induction on T ′, we get T ′ ∈ F . Since T is obtained
from T ′ by using Operation O3, we directly obtain T ∈ F .

Case 2.2. w /∈ D.
By Observation 2.1(ii), w /∈ S(T ) and so, lT (w) = 0. Since v and w are in V (T ) −D, v must have at least

two neighbors in D. Hence, dT (v) = k + 1 ≥ 3. Let t be the parent of w, and let X,Y and Z be the following
sets

Y = C(w) ∩ S(T ), X = C(w)− Y and Z = D(w) ∩ (S(T )− Y ) .

Observe that v ∈ X, u ∈ Z, NT (w) = {t} ∪X ∪ Y and every vertex in Z plays the same role as u. Therefore,
by (3.2), we have Z ⊂ D since Z ⊂ S(T ). We also have, by (3.3), every vertex in Z has exactly two neighbors
such that one of them is a leaf and the other one is in X. Furthermore, as v ∈ X, ui ∈ Z for all i ∈ {1, . . . , k}
and so, |Z| ≥ k ≥ 2. Notice also that |X| ≥ 1 since v ∈ X. Likewise |Y | ≥ 1 since D is a γo(T )-set. It is clear
that Y ⊆ S(T ) and then, by Observation 2.1(ii), Y ⊆ D. Put

X = {x1, x2, . . . xp}, p ≥ 1, with x1 = v and |Y | = q − 1 , q ≥ 2.

The fact that every vertex in X plays the same role as v, xi ∈ V (T )−D for all i ∈ {1, . . . , p}, let

pi = |NT (xi)− {w}| for i = 1, . . . , p.

We have p1 = k and since for all i ∈ {1, . . . , p}, xi and w are in V (T )−D, xi must have at least two neighbors
in Z. Hence, dT (xi) = pi + 1 ≥ 3. This means that for all i ∈ {1, . . . , p}, V (Txi

) induces a subdivided star SSpi

of order pi + 1 centered at xi. Because w ∈ V (T )−D, inequality (1.1) is valid by replacing v by w. This gives

p ≤ q − 1 if t ∈ D, or p ≤ q − 3 otherwise. (3.5)

Let T ′ = T−(∪p
i=1Txi

) and D′ be a γo(T ′)-set. Observe that T ′ contains at least one P3 as an induced subgraph,
which means that n′ = |V (T ′)| ≥ 3. For all i ∈ {1, . . . , p}, let Bi be the support vertex set of SSpi

. We have
∪p

i=1Bi = Z and NT ′(w) = Y ∪ {t}, so
dT ′(w) = q ≥ 2.
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According to Observation 2.1(i), we can assume that Y ⊂ D′ since Y ⊂ S(T ′). Then, t is the only neighbor of
w in T ′ that may not be in D′, that is

|NT ′(w) ∩ (V (T ′)−D′)| ≤ 1.

If t ∈ D′, then the minimality of D′ leads to w ∈ V (T ′)−D′, because otherwise, we could replace w by t in D′.
By Observation 2.5(ii) and (iii), we have D′ = D∩V (T ′). Hence, t ∈ D if and only if t ∈ D′. Notice that if t ∈ D′,
then NT ′(w)∩ (V (T ′)−D′) is an empty-set, otherwise, t would be the unique vertex of NT ′(w)∩ (V (T ′)−D′).
Thus, (3.5) can be rewritten as follows:

If |NT ′(w) ∩ (V (T ′)−D′)| = 0, then p ≤ q − 1,

and
if |NT ′(w) ∩ (V (T ′)−D′)| = 1, then p ≤ q − 3.

By Observation 2.5(iii), T ′ is an ugoa-tree. Applying the inductive hypothesis to T ′, we deduce that T ′ ∈ F .
Since T can be obtained from T ′ by Operation O4, we finally conclude that T ∈ F . This completes the
proof. �

Theorem 3.3 suggests a polynomial algorithm for testing if a given tree T with n vertices belongs to F and,
if so, the algorithm returns the set A(T ). The steps of this algorithm can be summarized as follows. If T is
a path on 2 or 4 vertices, answer T /∈ F and stop. Else if n ≤ 5, answer T ∈ F , return the obvious set A(T ), and
stop. Suppose n ≥ 6. If T has a strong support vertex, say s such that lT (s) ≥ 3, call the algorithm recursively
on the tree T ′ obtained from T by removing a leaf neighbor of s; if the answer to the recursive call is T ′ ∈ F ,
then answer T ∈ F , return A(T ) = A(T ′) and stop, else answer T /∈ F and stop. Assume now that for each
x ∈ S(T ), lT (x) ≤ 2. Pick a vertex r, root the tree T at r, pick a vertex u′ at maximum distance from r. Let u
be the parent of u′ in the rooted tree and v be the parent of u. If v ∈ S(T ) and lT (u) = 2, call the algorithm
recursively on the tree T ′ = T − Tu; if the answer to the recursive call is T ′ ∈ F , then answer T ∈ F , return
A(T ) = A(T ′) ∪ {u} and stop, else answer T /∈ F and stop. If v ∈ S(T ) and lT (u) = 1, then return the answer
T /∈ F and stop. Assume now that v /∈ S(T ). If some child of v has two leaves u′, u′′, then call the algorithm
recursively on the tree T ′ = T − {u′′} ; if the answer to the recursive call is T ′ ∈ F , then answer T ∈ F , return
A(T ) = A(T ′) and stop, else answer T /∈ F and stop. Now, assume that every child of v is a support vertex of
degree two. Let w the parent of v and further let X = {x1, x2, . . . xp} and Y be two subset of V (T ) defined as in
the proof of Theorem 3.3. Assume first that w ∈ S (T ) or |Y | < |X| . Call the algorithm recursively on the tree
T ′ = T − (Tv − {v}); if the answer to the recursive call is T ′ ∈ F and w fulfills the condition C0 (see operation
O3), then answer T ∈ F and return A(T ) = A(T ′)∪B and stop, else answer T /∈ F and stop. Assume now that
w /∈ S (T ) and |Y | ≥ |X| . Call the algorithm recursively on the tree T ′ = T − (∪p

i=1Txi); if the answer to the
recursive call is T ′ ∈ F , and w /∈ A (T ′), then answer T ∈ F and return A(T ) = A(T ′) ∪ (∪p

i=1Bi) and stop,
else answer T /∈ F and stop.

4. Conclusion

In this paper, we have provided a constructive characterization of all ugoa-trees. After this work, several
problems could be raised. The following seem of particular interest:

(1) Although the case of trees was solved in this paper, it is still interesting to find a characterization of all
ugoa-graphs in the class of unicyclic graphs, or more generally, cactus graphs.

(2) The characterization problem of all ugoa-graphs does not seem easy, nevertheless it is an attractive point
to explore.

(3) Apart from the constructive characterization of ugoa-trees, it is interesting to investigate other types of
characterizations.
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(4) Knowing that any graph is not necessarily an ugoa-graph, it would therefore be interesting to characterize
all graphs G with the property that each vertex of G belongs to at least one γo(G)-set.

(5) We can prospect another type of alliance, that is defensive alliance. A non-empty set of vertices D ⊆ V , of
a graph G, is a defensive alliance of G, if for every v ∈ D, |NG[v]∩D| ≥ |NG[v]−D|. D is a global defensive
alliance, or briefly a gda, of G, if D is a defensive alliance and a dominating set of G. An interesting problem
consists to investigating all trees with a unique minimum global defensive alliance.
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