The covering problem of a three dimensional body using different radii spheres is considered. The motivating application – the treatment planning of Gamma Knife radiosurgery – is briefly discussed. We approach the problem only by the geometric covering point of view, that is, given a set of spheres and a body, the objective is to cover the body using the smallest possible number of spheres, regardless of the dosage issue. In order to solve this mathematical programming problem, we consider an approach based on the application of penalty and stochastic local search techniques. Finally, some illustrative results and comparisons are presented.
Keywords: Covering problem, global optimization, Gamma Knife radiosurgery
@article{RO_2021__55_S1_S787_0,
author = {Venceslau, Marilis Bahr Karam and Venceslau, Helder Manoel and Pinto, Renan Vicente and Dias, Gustavo and Maculan, Nelson},
title = {A new penalty/stochastic approach to an application of the covering problem: {The} gamma knife treatment},
journal = {RAIRO. Operations Research},
pages = {S787--S810},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
doi = {10.1051/ro/2020016},
zbl = {1472.90116},
mrnumber = {4223080},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2020016/}
}
TY - JOUR AU - Venceslau, Marilis Bahr Karam AU - Venceslau, Helder Manoel AU - Pinto, Renan Vicente AU - Dias, Gustavo AU - Maculan, Nelson TI - A new penalty/stochastic approach to an application of the covering problem: The gamma knife treatment JO - RAIRO. Operations Research PY - 2021 SP - S787 EP - S810 VL - 55 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2020016/ DO - 10.1051/ro/2020016 LA - en ID - RO_2021__55_S1_S787_0 ER -
%0 Journal Article %A Venceslau, Marilis Bahr Karam %A Venceslau, Helder Manoel %A Pinto, Renan Vicente %A Dias, Gustavo %A Maculan, Nelson %T A new penalty/stochastic approach to an application of the covering problem: The gamma knife treatment %J RAIRO. Operations Research %D 2021 %P S787-S810 %V 55 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2020016/ %R 10.1051/ro/2020016 %G en %F RO_2021__55_S1_S787_0
Venceslau, Marilis Bahr Karam; Venceslau, Helder Manoel; Pinto, Renan Vicente; Dias, Gustavo; Maculan, Nelson. A new penalty/stochastic approach to an application of the covering problem: The gamma knife treatment. RAIRO. Operations Research, Tome 55 (2021), pp. S787-S810. doi: 10.1051/ro/2020016
and , Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters. Med. Phys. 26 (1999) 2151–2160. | DOI
, , Non-convex mixed-integer nonlinear programming: A survey. Surv. Oper. Res. Manage. Sci. 17 (2012) 97–106. | MR
and , Sphere Packings, Lattices and Groups, 3rd edition. Springer-Verlag, New York, NY (1999). | MR | Zbl
, CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Math. Program. 31 (1985) 153–191. | MR | Zbl | DOI
, and , Vol. 55 of Discrete Mathematical Problems with Medical Applications. American Mathematical Society, Providence, RI (2000). | MR | Zbl
and , Optimization of Gamma Knife Radiosurgery. In: Vol. 55 of Discrete Mathematical Problems with Medical Applications, edited by , , . DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence, RI (2000) 27–44. | MR | Zbl | DOI
, and , An optimization approach for the radiosurgery treatment planning. SIAM J. Optim. 13 (2003) 921–937. | MR | Zbl | DOI
, Nonlinear and Mixed-integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995). | Zbl | DOI
, An optimization-based treatment planner for gamma knife radiosurgery, Ph.D. thesis, Case Western Reserve University, Cleveland, OH (2005).
, On the Determination of Molecular Fields. II. From the Equation of State of a Gas. In: Vol. 106 of Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society of London, London (1924) 463–477.
, and , Optimal configuration of gamma ray machine radiosurgery units: The sphere covering subproblem. Optim. Lett. 3 (2009) 109–121. | MR | Zbl | DOI
, Optimization in radiation treatment planning, Ph.D. thesis, University of Wisconsin, Madison, WI (2002).
, Self-intersections of offsets of quadratic surfaces: Part I, explicit surfaces. Eng. Comput. 14 (1998) 1–13. | Zbl | DOI
, Self-intersections of offsets of quadratic surfaces: Part II, implicit surfaces. Eng. Comput. 14 (1998) 14–22. | Zbl | DOI
and , Quasi-monte carlo integration. J. Comput. Phys. 122 (1995) 218–230. | MR | Zbl | DOI
, Sur quelques propriétés caractéristiques des ensembles convexes. Atti Acad. Naz. Lincei. Rend. VI 21 (1935) 562–567. | Zbl | JFM
, , , , The discrete ellipsoid covering problem: A discrete geometric programming approach. Discret. Appl. Math. 164 (2014) 276–285. | MR | Zbl | DOI
, A simple scoring ratio to index the conformity of radiosurgical treatment plans. J. Neurosurg. 93 (2000) 219–222. | DOI
and , Vol. 26 of Handbook of Optimization in Medicine, Series Springer Optimization and its Applications. Springer US, New York, NY (2009). | Zbl
, O problema de recobrimento de sólidos por esferas de diâmetros diferentes. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro (2015).
, , , , , , et al., Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int. J. Radiat. Oncol. Biol. Phys. 27 (1993) 1231–1239. | DOI
, , and , Inverse treatment planning for gamma knife radiosurgery. Med. Phys. 27 (2000) 2748–2756. | DOI
and , Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114 (2002) 671–694. | MR | Zbl | DOI
, Classical Topics in Discrete Geometry. Springer US, New York, NY (2010). | MR | Zbl | DOI
and , Packing ellipsoids with overlap. Soc. Ind. Appl. Math. 55 (2013) 4. | MR | Zbl
, O problema de recobrimento mínimo de um corpo em três dimensões por esferas de diferentes raios. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro (2015).
, and , Optimal covering of solid bodies by spheres via the hyperbolic smoothing technique. Optim. Meth. Softw. 30 (2014) 391–403. | MR | Zbl | DOI
and , Optimal covering of plane domains by circles via hyperbolic smoothing. J. Glob. Optim. 31 (2005) 493–504. | MR | Zbl | DOI
Cité par Sources :





