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A NEW PENALTY/STOCHASTIC APPROACH TO AN APPLICATION OF THE
COVERING PROBLEM: THE GAMMA KNIFE TREATMENT

Marilis Bahr Karam Venceslau1,2, Helder Manoel Venceslau1,3,∗,
Renan Vicente Pinto1,4, Gustavo Dias5 and Nelson Maculan1

Abstract. The covering problem of a three dimensional body using different radii spheres is consid-
ered. The motivating application – the treatment planning of Gamma Knife radiosurgery – is briefly
discussed. We approach the problem only by the geometric covering point of view, that is, given a set
of spheres and a body, the objective is to cover the body using the smallest possible number of spheres,
regardless of the dosage issue. In order to solve this mathematical programming problem, we consider
an approach based on the application of penalty and stochastic local search techniques. Finally, some
illustrative results and comparisons are presented.

Mathematics Subject Classification. 90C90, 52C17, 90C26, 90C27.

Received January 2, 2018. Accepted February 19, 2020.

1. Introduction

Covering regions of the Euclidean space using regular geometric figures are classic problems in the literature.
Their theoretical aspects are studied in the areas of discrete geometry and combinatorial geometry [24] as well
as mathematical optimization [25,27,28].

Discrete mathematics and optimization techniques applied to medicine emerged as a new and important
research area [5]. In the last years a large number of medical procedures have benefited from the use of optimiza-
tion techniques. Among them, radiotherapy is unquestionably the most popular area in the medical treatment
planning where optimization techniques are used [12,19].

This article deals with the covering problem of three dimensional bodies using different radii spheres. Our
formulation is motivated by the treatment planning of Gamma Knife radiosurgery [1, 6, 7, 22]. It is one of the
most advanced means for treatment of brain tumors, vascular malformations and functional disorders. A Gamma
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Knife unit accurately delivers a suitable dose of ionizing radiation, called shot, to the target tumor region.
In good approximation, these shots can be modeled as spheres of different sizes. Multiple shots can be used to
cover the tumor, while avoiding an excessive dose to the surrounding healthy tissue. The intrinsic characteristics
of this problem enable its formulation as a covering problem in the three-dimensional Euclidean space R3.

Most of the existing literature about the use of optimization techniques and mathematical models to automate
the treatment focus on obtaining complete solutions for the planning process, including the dosage in addition to
the positions of the shots. Jitprapaikulsarn [9] contains a detailed summary of some of the existing approaches.
On the other hand, Liberti et al. [11], Nascimento et al. [17], Soutou et al. [23] and Pinto [20] approached the
problem only by the geometric point of view. In other words, they aimed to solve just the covering problem of
a three dimensional body using different radii spheres, without dealing with the dosage issue in their formulations.

Pinto [20] formulated the problem as a non-convex Mixed Integer Nonlinear Programming (non-convex
MINLP) with quadratic constraints and a linear objective function. Discretization techniques were used to
obtain a linear model.

Our proposal is to provide a different method to solve the non-convex formulation proposed in [20]. After
reformulating the model, we adopt an alternative approach in order to search for its solutions. More specifi-
cally, global optimization heuristics which mix stochastic searches and penalty techniques are used. Although
we cannot ensure optimality of the solutions, our method selects the best solution from a set of prominent
candidates.

The remainder of this paper is organized as follows. Section 2 introduces the covering problem and its basic
mathematical formulation. A description of our new proposed formulation and solving method is presented
at the end of this section. In Section 3, a smooth version of the spheres constraints and a heuristic for the
“best” distance between unequal spheres are developed. Section 4 develops the security region concept, included
in our formulation of the covering problem. Section 5 defines some important measures of coverage quality
in our context. Section 6 deals with the combinatorial aspects of the problem. Section 7 presents illustrative
computational results. Finally, Section 8 summarizes and presents the conclusions.

2. Problem definition

There is a myriad of variations of the covering problem, depending on the main object to be covered and the
objects used to build the covering. This article firstly discusses a general version of the covering problem that
uses different radii spheres to cover a solid body. It can be seen as an initial stage for the development of our
proposed formulation, which will include additional constraints.

2.1. Mathematical preliminaries

The cardinality of a set A will be denoted by |A| and the symmetric difference between two arbitrary sets A
and B will be denoted by A ∆ B = (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Given an integer n > 0, let us define L(n) = {1, . . . , n} and denote its power set (the set of all its subsets)
by P(L(n)). Let Ω denote an arbitrary subset of P(L(n)), such that ∅ ∈ Ω. This set will be described as
Ω = {Ωk | k ∈ {0, . . . ,K}}, such that K + 1 = |Ω| is the number of subsets of L(n) in Ω and we will always fix
the assignment Ω0 = ∅.

A (solid) sphere (or closed ball) in three dimensional space will be denoted by S(x, r), where x ∈ R3 is its
center location and r is its radius. An indexed location will be denoted by xi, with i in a predefined index set.
Whenever the location and radius of a sphere are not the focus of an analysis, they will be suppressed.

The volume (Lebesgue measure in R3) of a solid T will be denoted by VT . The distances considered in the
presented formulations will always use the Euclidean norm.

2.2. The optimal full covering problem

We start with the covering problem version presented in [11], which can be mathematically described as:
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(P ): Given a compact set T ⊂ R3, an integer n > 0, a finite set R ⊂ R+ of radii, a function ρ: L(n)→ R and
a subset Ω ⊆ P(L(n)), find a set of spheres B = {S(xi, ρ(i)) | i ∈ Ωk}, k ∈ {0, . . . ,K}, of minimum cardinality
covering each point of T .

The subset Ω is chosen intentionally to eliminate elements of the full power set P(L(n)) which via ρ generate
equivalent spheres selections. This formulation implicitly defines k and xi as decision variables and the number
of spheres, which must be minimized, as the objective function. A particular configuration of selected spheres
and their locations will be referred as a covering structure and generically denoted as B.

This problem can be formulated as a mathematical programming problem, which searches for the appropriate
subset of a pool of n spheres, with respective radii associated via function ρ, and the appropriate places for
their centers, such that the union of these spheres covers the set T .

Problem (P ) will be referred to just as the optimal covering problem, and a feasible solution will be a full
covering of T . In practice, however, insisting on obtaining full coverings may come into conflict with other
specific constraints of the problem at hand. Thus, we also define a partial covering as a covering structure that
partially covers T . For example, an 80% partial covering of T means a covering structure that covers 80% of
the volume of T . Without additional remarks, in this text a covering will always be assumed to be a partial
covering.

2.3. Motivation for a new partial covering problem for the Gamma Knife radiosurgery
application

The intrinsic characteristics of the Gamma Knife radiosurgery treatment planning problem enables its for-
mulation as a covering problem using definition (P ). Modeling shots as spheres, covering structures for Gamma
Knife should have the following special attributes:

• No sphere is totally overlapped by the other spheres;
• Each sphere (normally a part of it) contributes to cover the tumor;
• The total number of spheres is small to prevent use of high doses of radiation;
• No sphere covers a significant part of healthy tissue.

The last item is a constraint not included in the original definition of problem (P ). One of its most important
consequences is to make it extremely difficult to obtain full coverings that do not put healthy tissue in danger
of receiving excessive doses of radiation. In other words, for the Gamma Knife treatment planning, 90% partial
coverings can be considered totally acceptable when compared to full coverings that may submit healthy tissue
to high doses of radiation [12].

A convenient way to enforce healthy tissue protection is to define an enlarged version of the tumor and keep
all spheres inside this region, which will be denominated the security region associated to a tumor. Note that
this is a constraint commonly found in packing formulations. As the spheres in a covering are allowed to overlap
each other, we are actually facing a sort of relaxed packing inside the security region.

Containment in a security region will be an important constraint in the forthcoming formulations. A detailed
analysis of this concept and the associated constraint will be presented in Section 4.

We will now develop some assessment tools to measure the quality of (partial) coverings. They will be used
to justify the modeling techniques that will be employed soon.

Let us fix a certain covering structure B, which means to fix a selection of spheres Ωk and the location of
their centers. For the purpose of this analysis, let us renumber the set of selected spheres and denote it by
S = {S1, . . . , Sm}, where m = |Ωk|. Free indexes in the expressions below will take values from L(m), which
means we will simply write B =

⋃
Si.

For the considered covering structure B, let Ŝi = Si \ (
⋃
j 6=i Sj). If Ŝi 6= ∅, ∀i ∈ L(m), then we will say that

this covering is a nonredundant covering. In a nonredundant covering each sphere contributes to the volume
VB .
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Figure 1. Solid T partially covered by a (supposed) admissible covering structure B. Label
SR denotes the boundary of the security region.

Additionally, if VT ⋂ Ŝi
> 0, ∀i ∈ L(m), then we will say that this covering is an effective covering (clearly

effective implies nonredundant). In this context, “effective” means that each sphere cannot be discarded because
it effectively contributes to cover T .

An arbitrary covering structure B does not need to be effective (neither nonredundant), which means that
some spheres may have to be discarded to obtain an effective covering. It is important to notice that the
discard order matters, affecting the resulting final effective covering. A simple example consists of a covering
using spheres S1 and S2 with T ⊂ (S1

⋂
S2). Either S1 or S2 can be discarded in order to obtain two different

effective coverings. It is clear that some kind of ordering is necessary to organize the selection of spheres by
an optimization process in order to minimize m = |Ωk| using effective coverings. This will be discussed in
Section 6.

Covering structures that are contained in the security region, abbreviated to SR, will be denominated SR-
compliant coverings. Security regions are the subject of Section 4.

Partial coverings may not integrally cover a set T , which is not desirable. On the other hand, it is considered
acceptable (but not desirable for applications like Gamma Knife) that points outside T are covered. Therefore,
a covering index I∆ measuring the covering fitness can be defined as any monotonic function of the volume of the
symmetric difference VB ∆ T . A covering whose index I∆ attains a certain predefined threshold, which prescribes
a low symmetric difference volume, will be denominated an attaining I∆ covering. Section 5 introduces different
covering indexes, including the Paddick index, which is widely used and convenient in our context.

Finally, for some applications the total volume of the intersection of two (or more) spheres must be kept
below some predefined threshold (for example, to prevent excessive doses of radiation at some regions of the
tumor). Thus, we also define I∩ indexes taking into account this volume, and partial coverings satisfying this
constraint will be denominated attaining I∩ coverings. Section 5 introduces the I∩ indexes IB2, IB3 and IB4.

We define a pre-admissible covering as an SR-compliant effective covering, and an admissible covering as
a pre-admissible covering that is also an attaining I∆ and I∩ covering. Figure 1 illustrates an admissible partial
covering.

Specific actual applications of coverings like Gamma Knife look for admissible coverings. It is now clear
that covering optimality in our context has to do with obtaining the “best admissible covering”, whose precise
meaning will be explained at the end of Section 2.4.

2.4. Mathematical formulation of the new partial covering problem

Instead of solving the classical covering problem (P ), which is not adequate for applications like Gamma
Knife, the approach taken by [20] is to develop an alternative formulation based on desirable properties of
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partial coverings, hereafter named (P1), which will be the foundation of our proposed formulation in the next
section.

Considering a solid T and a set S = {S1, . . . , Sn} of n spheres, possibly with different radii ri, the formulation
(P1) is defined using decision variables x and y:

• x ∈ Tn;
• y ∈ {0, 1}n.

where:

• x = {x1, . . . , xn} is a vector containing the centers of the spheres;
• y = {y1, . . . , yn} specifies which spheres of the set S are present in the solution (an alternative way to express

a subset Ωk of S).

In order to present the formulation (P1), let us firstly define the parameters

αij , 1 ≤ i < j ≤ n,

such that
0 < αij < min{ri, rj},

which are used to derive the minimum allowed distances

dij = ri + rj − αij ,

between spheres Si and Sj , as depicted in Figure 2, and the real numbers

ci, 1 ≤ i ≤ n,

which are used to select what spheres are employed in a specific covering.
Let us present a detailed description of these parameters and their roles. The parameters dij , derived from

the parameters αij , are used, in the final analysis, to define the maximum allowed intersection of two spheres.
This is accomplished by requiring that

d(Si, Sj) = ||xi − xj || ≥ dij = ri + rj − αij .

For a specific sphere Si, the upper bound on parameter αij implies that ri − αij > 0. As a consequence,
d(Si, Sj) − rj > 0, for 1 ≤ j ≤ n, j 6= i. If we define γi = min

j 6=i
{d(Si, Sj)− rj}, then γi > 0. This last

expression means that a hypothetical sphere S̄ with center xi and radius less than γi can be drawn such that
S̄
⋂

(
⋃
j 6=i Sj) = ∅, which immediately implies that Ŝi = Si \ (

⋃
j 6=i Sj) 6= ∅. In other words, we get a nonre-

dundant covering.
Additionally, if xi ∈ T then T

⋂
S̄ 6= ∅ and, as a consequence, we have VT

⋂
S̄ > 0, which implies that

VT
⋂
Ŝi
> 0 (because S̄ ⊂ Ŝi). In other words, we get an effective covering.

The parameters ci are “weights” associated to the spheres Si, which increase in direct proportion with r3
i .

They are used in the objective function to favor the choice of bigger spheres, which tends to reduce the number
of necessary spheres used to cover T , in accordance with the optimization direction of the classical covering
problem (P ), as discussed in [20].

Finally, we have the mathematical programming formulation (P1):

(P1) : max
n∑
i=1

ci yi (2.1)

s. t. ||xi − xj ||2 ≥ d2
ij (yi + yj − 1), 1 ≤ i < j ≤ n, (2.2)

x ∈ Tn, (2.3)
y ∈ {0, 1}n. (2.4)
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Figure 2. Parameters describing the intersection of two spheres.

This formulation can be analyzed using the definitions of the previous section to conclude that it is designed to
produce effective partial coverings. Constraints (2.2) prevent excessive overlap of the selected spheres, producing
nonredundant coverings. Constraints (2.3) force the centers of the spheres to be inside T , which together with
constraints (2.2), produce effective coverings. Constraints (2.4) define which spheres are selected from the set
of available spheres. The objective function (2.1) includes the different weights given to the different spheres,
based on their radii, which provides a mechanism to favor the bigger ones. Problem (P1) is clearly a non-convex
MINLP [2,8].

Formulation (P1) produces effective partial coverings with high coverage of the solid T . On the other hand,
it does not produce SR-compliant coverings6. It also does not consider any kind of fitness or intersection indexes.
But formulation (P1) is sufficiently flexible to be the base for an improved formulation, which will be presented
in the next paragraphs.

In this work, the adopted approach to solve (P1) involves the following steps:

• Organize the selected spheres into nodes of an underlying sphere allocation tree (each node is composed of
a fixed selection Ωk of spheres);

• Penalize violations of the “spheres overlap” constraints (2.2);
• Penalize violations of the “spheres” centers in solid” constraints (2.3).

The way we integrate the three points above into our method uses the following unconstrained mathematical
programming (MP) formulation, valid for the kth node of the sphere allocation tree:

(PN) : max Ck −
∑
i,j∈Ωk
i<j

pu

(
‖xi − xj‖

dij

)
−
∑
i∈Ωk

qµ(di, xi) (2.5)

where

• Ck =
∑
i∈Ωk

ci, because yi = 1 for i ∈ Ωk and yi = 0 for i /∈ Ωk;

• Function pu penalizes violations of the “spheres overlap” constraints (Sect. 3);
• Function qµ penalizes violations of the “spheres centers in solid” constraints (Sect. 4, which defines the

parameter di).

6In Pinto [20] the author subsequently includes his version of security region to deal with Gamma Knife treatment.
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This approach results in some interesting consequences:

• The formulation (PN) is not linked to the sphere selection combinatorial aspect of the original problem.
It is used just to reduce penalization of the constraints violations in order to obtain effective partial coverings.

• Function qµ can be designed to incorporate the security region constraint in order to obtain pre-admissible
partial coverings.

• Quality criteria based on I∆ and I∩, which are not present in the objective function of (P1), can now be
used to deal only with admissible partial coverings (Sect. 5).

It is important to note that penalization methods are adequate for this problem because small deviations
of the locations of the spheres’ centers still produces viable solutions in the context of partial coverings. The
overall strategy to solve our modified version of problem (P1) can then be stated as:

• Find a reasonable way to organize the spheres into nodes of a sphere allocation tree, where each node is
composed of a fixed selection of spheres (Sect. 6);

• Heuristically determine a solution of (PN) satisfying the security region constraint, for each node of the
sphere allocation tree (Sects. 3 and 4);

• Measure the quality of the covering, keeping track of admissible covering nodes, and iterate until it is no
more possible to get admissible covering nodes (Sects. 5 and 6).

This strategy will finally choose the best covering from a set of admissible coverings. From now on this will
be the meaning of “best (admissible) covering” in our context.

3. Penalty for violation of spheres overlap constraints

3.1. Definition of the penalty function pu
In order to define pu, let us firstly define the penalty function pv, which is based on a left shifted version of

the Van der Walls potential [10]:

pv(t) = E

(
1− 1

((1− bk) t+ bk)4

)k
,

where
bk =

1
4

√
k
√
L/E + 1

,

and k ≥ 2 is an even number. The parameter L is the penalty value for t = 0 and the parameter E is the
asymptotic penalty value when t → ∞. The minimum value zero is attained for t = 1 (pv(1) = 0), which can
then be used to penalize violations of the equality ‖xi − xj‖ = dij through the inclusion of a penalty term in
the objective function.

The function pv, as defined above, has the following characteristics that make it very adequate as a penalty
function for the spheres overlap:

• As pv(0) = L, solvers will not have to deal with not defined values of the penalty function. This is why a
left shift has been applied to the original Van der Walls potential: it is not defined for t = 0 (goes to +∞ as
t→ 0);

• The asymptotic value E implies that spheres that are far apart from each other will not present too much
mutual influence when compared to spheres that are close to each other. But they will tend to bunch
together (if there are no other spheres in between them to prevent it) due to the small decrease on the
distance associated penalty values;

• The width and depth of the basin of low penalty values (pv(t) ≤ 0.5E) can be varied adjusting the parameters
L, E and k.
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Figure 3. Graph of functions pv(t) and pu(t) for δ = 0.3.

The function pv has only one minimum at t = 1. But the study of optimal coverings of R3 using equal radii
spheres shows that, different from the case of covering of R2 using equal radii circles, dij cannot be taken as
only one fixed value (more details in Sect. 3.2).

This means that it is convenient to define a null penalty interval that would allow a certain degree of freedom
for the placement of the spheres. This can be achieved starting with function pv, shifting it down by δ, eliminating
its negative values and squaring the result to obtain a differentiable penalty function pu:

pu(t) = [max(0, pv(t)− δ)]2 ,

where the pv parameters L =
√
L2 + δ and E =

√
E2 + δ are obtained from the definition of the equivalent

parameters L2 = pu(0) = (L− δ)2 and E2 = limt→∞ pu(t) = (E − δ)2 of pu.
It is worth noting that for δ = 0, pu defined using pv with parameters k, L =

√
L2 and E =

√
E2 is exactly

the same as pv with parameters 2k, L = L2 and E = E2.
Figure 3 depicts a function pu built from a function pv with k = 2, L =

√
L2 + δ and E =

√
E2 + δ which,

for small values of δ, is very close to a function pv with k = 4, L = L2 and E = E2. Setting k = 2 is enough for
our purposes and will be adopted hereafter.

Points 0 < t1 < 1 and t2 > 1 are the ends of the null penalty interval. They can be obtained solving pv(t) = δ:

t1 =

1
4
√

1+
√
δ/E
− b2

1− b2
, t2 =

1
4
√

1−
√
δ/E
− b2

1− b2
·

Substituting b2 by its definition, calculating the quotient of t2 and t1 and simplifying the final expression
we get

t2
t1

=

4

√
1+
√
L/E

1−
√
δ/E
− 1

4

√
1+
√
L/E

1+
√
δ/E
− 1
·

Considering that the distances between the centers xi and xj of the spheres Si and Sj , 1 ≤ i < j ≤ n, will
be allowed to vary, with null penalty, between positive lower and upper bounds

mij ≤
∥∥xi − xj∥∥ ≤Mij ,



A NEW PENALTY/STOCHASTIC APPROACH TO AN APPLICATION OF THE COVERING PROBLEM S795

Figure 4. Truncated octahedron.

it is necessary to determine a certain δ∗ such that

t2
t1

=
Mij

mij
≥ 1.

A straightforward analysis shows that for δ = 0 we have t1 = t2 = 1 and for δ →∞ we have t1 → 0 and t2 →∞.
This means that it is always possible to find a number δ∗ such that the fraction t2/t1 assumes any desirable
value greater than or equal to one. The numeric value of δ∗ can be determined using Newton’s method, for
example.

Proportionality then enables the determination of the parameter dij to be used in function pu:

dij =
mij

t1
=
Mij

t2
·

3.2. Values of αij
An important question has now to be answered: How much two spheres should be allowed to overlap in order

to obtain a satisfactory covering by spheres?

3.2.1. Values of αij for same radii spheres

For the case of spheres with identical radii the optimum space covering arrangement of spheres is the body-
centred cubic (bcc) lattice where each sphere circumscribes a truncated octrahedron (see [3], for example). The
plane containing the intersection of two spheres also contains one face of their respective truncated octahedron,
and the value of α (Fig. 2) depends on how each octrahedron “kisses” the other: using square faces or hexagonal
faces.

Due to this fact, there are two different values of α for spheres with centers in a bcc lattice, one for truncated
octahedra square faces and another for truncated octahedra hexagonal faces, respectively:

αm ∼= 0, 2111R and αM ∼= 0, 4508R,

where R is the common radius of the spheres. The truncated octahedron, inscribed in an octahedron and in
a cube, is presented in Figure 4.

3.2.2. Values of αij for different radii spheres

For the case of different sphere radii, we decided to use a heuristic approach: apply a conformal mapping
(which preserves angles) to a regular arrangement of spheres. A basic conformal mapping for R2, here represented
by a complex function, is

f (z) =
z

cz + 1
,

which is the identity for parameter c = 0. The effect of applying this conformal map to an hexagonal covering
of R2 by circles can be realized by comparing Figures 5 and 6.
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Figure 5. Seven circles from an hexagonal covering of R2 by circles.

Figure 6. The same seven circles, after applying a basic conformal map f with c = 0.06. Due
to the mapping distortion, the new centers are not obtained as images of the original centers.

A similar reasoning can be applied for the covering of R3 by spheres with centers pertaining to the bcc
lattice7. As the conformal mappings preserve the angles, the analysis of the distances between the spheres can
be performed on their intersections with a plane that contains their centers. The angles before the transformation
can be easily determined using basic geometry and the fact that the radii are the same. After the transformation,
the angles are preserved and the distances can then be determined using the law of cosines.

Based on this process, it is possible to calculate the values of dij (associated to the values of αij) for the bcc
lattice:

• m2
ij = r2

i + r2
j + 2

5rirj , associated to αM .
• M2

ij = r2
i + r2

j + 6
5rirj , associated to αm.

7Smooth conformal mappings on a domain of R3 (Rn in general, for n > 2) are Möbius transformations. This is the celebrated
Liouville’s theorem of conformal geometry.
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Figure 7. Security region of a solid T (ε is the tolerance).

As presented in the previous section, the determination of t1 and t2 for function pu implies finding δ∗ such
that:

t2
t1

=
Mij

mij
=

√√√√√√r2
i + r2

j +
6
5
rirj

r2
i + r2

j +
2
5
rirj

=

√√√√1 +
4

5
(
ri

rj
+ rj

ri

)
+ 2
·

But the radii of the spheres (previously chosen) are known, which means that:

• the quotients t2/t1 are known;
• the values of δ∗ can be pre-calculated (via Newton’s method);
• the parameters t1 and t2 can be calculated;
• finally, the parameters dij of pu can be calculated.

4. Penalty for violation of security region and spheres’ centers constraints

4.1. Definition of the security region

We now turn our attention to the security region. For practical applications like Gamma Knife treatment
planning (as mentioned in Sect. 2.3) it is important to avoid that a large volume of the covering spheres be
located outside the target volume T . In our model that is accomplished maintaining all spheres inside the
security region. Figure 7 depicts a plane section of a solid T and its security region with tolerance parameter ε.

In order to simplify our mathematical8 development, we will assume that T ⊂ R3 is homeomorphic to the
unitary ball B3 = {(u, v, w) ∈ R3 | u2 + v2 + w2 ≤ 1}. In other words, T is compact (closed and bounded),
connected, with uniform dimension equal to three and its boundary ∂T is homeomorphic to the sphere S2 = ∂B3.
It will also be assumed that the boundary ∂T is either a differentiable (smooth) surface or is composed of
a finite number of differentiable surfaces.

By convention, the unitary vector n̂(x), normal to the surface ∂T at x, will point outside T . This normal
vector can always be defined for points on the differentiable pieces of ∂T . To any point x located on the junction
of two or more differentiable surfaces (like the edges or vertices of a polyhedron’s surface) we associate not only
one vector, but a set of unitary vectors, hereafter denominated N(x), obtained from the normalization of the
conic combinations of the normal vectors of each surface at the junction point x. These normal vectors can
be obtained calculating the limit limy→x n̂(y) using points y close do x on each differentiable surface of the
junction. This definition can be extended to all points x ∈ ∂T if we specify that N(x) = {n̂(x)} for x located
on a differentiable piece of ∂T .

As will be shown in the next paragraphs, keeping a sphere inside the security region is equivalent to keeping
its center inside an internal parallel body. The parallel body, on the other hand, will be defined in terms of
parallel surfaces.

8In this paragraph we temporarily use the traditional topological notation.
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Figure 8. x ∈ T pertains to three distinct parallel surfaces.

The parallel surfaces to the boundary surface ∂T of a solid T will be represented by (∂T )d and defined as

(∂T )d = {y ∈ R3 | y = x+ d ·N(x), x ∈ ∂T},

where, for each x ∈ ∂T , x + d ·N(x) is the subset composed of the vectors obtained from the vector sum of x
and each d scaled vector n̂ ∈ N(x).

It is important to notice that |d| can be interpreted as distance, but depending on the sign of d we have:

• d > 0: Parallel surfaces (∂T )d are in general external to T . It is clear that for T convex the surfaces (∂T )d
are always external and never self-intersect.

• d ≤ 0: Parallel surfaces (∂T )d can be internal or external to T (even for T convex) but are always internal
for small values of |d|.

To simplify the analysis, from this point on we will deal only with convex bodies T , although it will not be
required that the parallel surfaces (∂T )d are differentiable.

We define the internal (d ≤ 0) parallel body at a (signed) distance d as the set of points inside T that are
at a distance greater than or equal to |d| from ∂T . To unambiguously define the internal parallel body it would
be necessary that each point inside T was located over only one parallel surface. But the internal surfaces often
present self-intersections [13, 14] as d decreases starting from zero, which can be verified in a section of T , as
shown in Figure 8.

To overcome this difficulty, let us define the following auxiliary function (d ≤ 0):

D(x) = arg max
x∈(∂T )d

d, ∀x ∈ R3.

This function helps to eliminate parallel surface ambiguity whenever x pertains to more than one surface
(∂T )d. It is straightforward to verify that it measures the (signed) distance from x ∈ T to ∂T , given by
D(x) = −D(x, ∂T ), where D represents the distance function from a point to a geometric object.

The main properties of D(x) are:

• If x ∈ ∂T then D(x) = 0;
• D(x) is continuous (because distance functions are continuous);
• D(x) attains the minimum value inside T (by the extreme value theorem);
• If T ⊂ R3 is homeomorphic to the unitary ball and convex then D(x) is a convex function.

A proof of the last property can be found in [26]. It makes it possible to define the body parallel to T at
(signed) distance d as:

Td = {x ∈ R3|D(x) ≤ d}.

Some examples of parallel bodies are presented in Figures 9 and 10.
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Figure 9. Prolate ellipsoid section: ∂T regular, but D(x) is non-differentiable in segment AB.

Figure 10. Parallelepiped section: ∂T non regular and D(x) is non-differentiable in segments
MN , AI, DI, IM , HJ , EJ , JM , CK, BK, KN , GL, FL e LN .

Since T convex implies D(x) convex, the parallel body Td, as a sublevel set of a convex function, is conse-
quently a convex set. The Motzkin theorem [16], from Convex Analysis, ensures then that the distance function
D(x, Td) is always differentiable for x ∈ R3\Td. Using D(x, Td) in our definitions is therefore a simple way to
work with functions that are always differentiable, which simplifies implementations using non-linear solvers.
This comes into play when we consider the following equivalence:

Si ⊂ Tε ⇐⇒ xi ∈ Tε−ri
, i ∈ L(n).

Figure 11 shows geometrically the meaning of this equivalence, which is very intuitive. A formal proof is
presented in [26].

The second part of the equivalence can also be expressed as:

D(xi) ≤ ε− ri, i ∈ L(n). (4.1)

4.2. Definition of the penalty function qµ

If now we define the function

q(d, x) =

{
0, D(x) ≤ d (in other words, x ∈ Td)
+∞, D(x) > d (in other words, x /∈ Td)

,
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Figure 11. Solids Tε, T and Tε−ri . Sphere Si is tangent to ∂Tε with common normal line m at P .

the constraints (4.1) can also be expressed as:

q(ε− ri, xi) = q(di, xi) ≤ 0, i ∈ N,

where di = ε − ri. It is worth to notice that defining di = min(0, ε − ri) automatically includes the constraint
x ∈ T .

Despite its useful theoretical value, function q cannot be implemented in practice. But a smooth version of it
can be created to be used as a penalty function qµ, such that qµ → q when µ→∞. The most natural smooth
version of q is:

qµ (d, x) = µD(x, Td)2.

It is clear that the function qµ is built to be differentiable for all x ∈ R3, even for x ∈ ∂Td, a side effect of
squaring the generally non-differentiable function D(x, Td).

Assuming the definition di = min(0, ε − ri), the function qµ can then be used to simultaneously penalize
violations of the “security region” and “spheres’ centers in solid” constraints in the problem formulation (PN)
for each node of the sphere allocation tree (defined later).

4.3. qµ for specific solids

The function qµ depends directly on the parallel body Td, which in general can be difficult to describe. The
simplest case to be considered is a (solid) sphere T centered at the origin and with radius R. It is straightforward
to verify that for this solid we have

qµ (d, x) = µ[max(0, ||x|| − (R− d))]2.

Other solids T are considered in Section 7, which demanded the design of specific functions qµ for each one
of them.

5. Covering indexes

Measuring the quality of a covering is an important issue in Gamma Knife radiosurgery and some conformity
indexes have already been proposed. In this simplified approach we suppose that the radiation energy density
is constant over the balls that represent the shots. It means that the aspects affecting the quality of a covering
are the following ones:
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(1) Is each point of the solid T covered?
(2) Are all covered points inside the solid T?
(3) Is every covered point covered by only one ball of the covering?

As already mentioned before, the aspect #1 is a prerequisite in a traditional mathematical covering problem.
This is not our case because a full covering of T can severely impact the aspect #2, which means that healthy
tissue is being irradiated. Finally, the aspect #3 means that part of the tissue (maybe healthy) is receiving an
extra dose of radiation, which is undesirable from a medical point of view.

Instead of considering isolated points, it is better to consider volumes in order to measure compliance with
the above mentioned aspects. Let us firstly define some basic volumes:

• VT : Volume of solid T ;
• VB : Volume of the covering structure B =

⋃
i∈Ωk

Si;

• VT∪B : Volume of the union T ∪B;
• VT∩B : Volume of the intersection T ∩B;
• VT∆B : Volume of the symmetric difference T∆B;
• VIBi: Volume of all the intersections of “i” or more spheres, for i ∈ {2, 3, 4}.

Using the basic volumes, we are now able to build a set of conformity indexes:

• The covering index ICOV =
VT∩B
VT

: This index measures what fraction of the solid T is covered by the set of

spheres B;

• The efficiency index IE1 =
VT∩B
VB

: This index measures what fraction of the set of spheres B is used to cover

the solid T ;

• The Intersection index IBi =
VIBi
VB

, for i ∈ {2, 3, 4}: This index measures what fraction of the set of spheres

B is composed of the intersection of “i” or more spheres;

The conformity indexes most mentioned in literature and widely used in radiosurgery centers are:

• PITV index: The best known and most used index, before the appearance of the Paddick index. It is described
by Shaw et al. [21] and defined by

IPITV =
VT∩B
VT

= ICOV.

• Paddick index: Better than the Shaw index because it also takes into consideration the relative position of
the volumes VT and VB . It is described by Paddick in [18] and defined by

IPDK =
V 2
T∩B
VTVB

=
VT∩B
VT

VT∩B
VB

= ICOVIE1 =
(VB + VT − VT∆B)2

4VTVB
·

Paddick calls ICOV the “target coverage” and IE1 the “plan selectivity”.

As ∅ ⊆ T∆B ⊆ T ∪ B, it follows that 0 ≤ VT∆B ≤ VT∪B . If VT∆B = VT∪B we have IPDK = 0 and if
VT∆B = 0 we have IPDK = 1. It is clear that IPDK is a monotonic function of VT∆B , thus an I∆ index. By
definition we always have IPDK ≤ ICOV and IPDK ≤ IE1. Thus IPDK is a lower bound for ICOV and IE1, which
means that improving (increasing) IPDK automatically improves ICOV and IE1.

Considering their definitions, it is also clear that IB2, IB3 and IB4 are I∩ indexes. We obviously always have
IB4 ≤ IB3 ≤ IB2. Thus IB2 is an upper bound for the other intersection indexes and improving (decreasing)
IB2 automatically improves IB3 and IB4.

Figure 12 depicts the typical behaviour of the main indexes as functions of the number NS of equal spheres
in a covering structure:
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Figure 12. General behaviour of the conformity indexes.

As the indexes IPDK and IB2 are bounds to all the other mentioned indexes, they were chosen as the main
quality indexes. Based on preliminary results of our experiments, it was clearly difficult to obtain values of
IPDK superior than 75% and insisting on increasing the number of spheres made the intersection index IB2 to
increase, reaching values above 35%. Both indexes are then used to together measure the quality of a covering,
by the prescription of a minimum value for IPDK and a maximum value for IB2.

6. Sphere allocation tree

The previous sections deal with the problem of covering a solid T using a fixed selection of different radii
spheres, which was formulated as the (PN) problem. It has already been mentioned that solving (PN) results
in pre-admissible partial coverings, which are viable solutions for practical problems like the Gamma Knife
planning process. The Paddick and Intersection indexes were presented as a way to measure the quality of the
covering solutions associated to each selection of spheres.

Now, assuming we have a heuristic method for solving the problem (PN) associated to each selection of
spheres, there is a final step to be accomplished: find a way to choose the best selection of spheres. The most
convenient way to do this is to firstly define a structure to organize the selections of spheres and then define
a search strategy to get nodes from this structure. The adopted structure is denominated a sphere allocation
tree and each node of this tree represents a particular selection of spheres. The root of the tree is the empty
set of spheres and the new node choice, taken at each node during the search procedure, is associated to the
conformity indexes.

A point that deserves attention is the fact that the tree nodes are not readily available: they must be created.
This prompts for the definition of a node generation procedure.

The following subsections will detail the sphere allocation tree, the search strategy and the node generation
procedure.

6.1. Sphere allocation tree structure

Given a set Ω ⊆ P(L(n)), the underlying sphere allocation tree organizes its elements (Ωk nodes representing
spheres selections for k ∈ {0, 1, . . . ,K}) in order to make a search. For example, suppose we have a pool of
spheres such that:

• F is the total number of different radii. For each radius we say we have a different “type” of sphere;
• G is the total number of spheres of each radius.
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Of course n = FG and we could simply define Ω = P(L(n)). In this case we would have the number of
nonempty subsets of spheres K calculated as

K = 2FG − 1 = 2n − 1.

But it is clear that organizing the spheres by radius, such that for each radius the first spheres are always
selected before the last ones, eliminates symmetries and reduces the size of the set of nonempty subsets of
spheres to

K = (G+ 1)F − 1.

Both expressions for K are the same for G = 1, but the second is always less than the first for G > 1 (since
2G > G+ 1 for G > 1). This second definition of Ω is obviously better and will be adopted hereafter.

In order to identify each node Ωk, let us define what we will call the signature of the kth node, for
k ∈ {0, 1, . . . ,K}:

ηk = (l1, l2, . . . , lF ),

where li is the number of spheres for each different radius, with 0 ≤ li ≤ G, i = 1, . . . , F . In other words,
ηk ∈ {0, 1, . . . , G}F . A sphere allocation tree can then be created and organized by signatures.

6.2. Search strategy

We want to search and locate good nodes within the tree, organized by signatures, using the covering indexes
to guide the selection of the subsequent node. The following search strategy was designed, due to the influence of
the Gamma Knife application, which aims to obtain a good tumor covering while minimizing the total number
of shots:

• Firstly select the bigger spheres;
• Increase the number or spheres of the current selected size;
• If the quality criteria, based on the covering indexes, rejects the current set of spheres, we backtrack to the

previous selection of spheres (by removing the last added sphere) and start using spheres of immediately
smaller size;

• This process is repeated until it is no more possible to increase the number of spheres used in the covering.

The sphere allocation diagram, depicting the search strategy, is shown in Figure 13.
Some details of the search decision at each node are listed below:

• Quality criteria: the biggest Paddick index IPDK associated to an acceptable intersection index IB2.
In practice, the Paddick index must be bigger than the parameter IPdkMin and the intersection index
IB2 must be smaller than the parameter IB2Max to get a valid node;

• The first valid node becomes the incumbent node;
• The IPDK index of a new valid node is compared with the IPDK index of the incumbent node. If it is greater,

the new node is set to be the incumbent node.

6.3. Node generation

The search strategy considers that all tree nodes are available when taking a decision to jump from the current
node to another node. As the nodes are heuristic solutions of (PN) problems associated to a fixed selection of
spheres, there must be a way to generate a new node, starting from the current node. We introduce now the
stochastic component of our method. The new node is generated by inserting a new sphere into the current set
of covering spheres, at a spatially uniform random location outside them. The optimization process then runs
for this new (PN) problem and we get the new node.

Considering the full search space, which includes the selection of spheres and their locations, this strategy
can be seen as a stochastic local search whose candidate generator procedure is the process describe above.
Since new nodes are heuristic solutions, in practice this node generation process is iterated a limited number of
times to choose the best valid node, based on its IPDK index.
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Figure 13. Sphere allocation diagram, detailing the search strategy in the set S, for F = 4
and G = 6.

7. Computational implementation and results

7.1. Algorithm pseudocode

The proposed method was implemented and tested. For the sake of clarity, a simplified pseudocode of the
method is listed in Algorithm 1. It describes how the various components of the method, as presented in the
previous sections, are put together. Some parameters and variables used in the pseudocode are explained below:

• Parameter IPdkMin: Minimum acceptable value for the Paddick index;
• Parameter IB2Max: Maximum acceptable value for the intersection index IB2;
• Variable CNode: Represents the current node with a specific selection of spheres and spheres’ centers con-

figuration. It is used as an index for the computed conformity indexes, for example, as in IPdk(CNode).
An optimized CNode is a current node after solving (PN), which heuristically chooses the best place for
the centers of the spheres;

• Parameter NumIterEachNode: The number of times a CNode is optimized;
• Variable BestCNode: Stores the best CNode found after NumIterEachNode iterations;
• Variable IncumbentNode: The so far best CNode that satisfies IPdk(CNode) ≥ IPdkMin and
IB2(CNode) ≤ IB2Max, representing an admissible covering structure.

Some of the details that were omitted in the pseudocode listing include, for example, timestamping calls and
events logging, which are important in a practical implementation.

7.2. Test instances

The test instances were created based on the Gamma Knife application. The set of available spheres is
presented in Table 1.

The selected solids for the experiments are all convex, but the surface ∂T of some solids is non differentiable.
They are listed in Table 2.

The specific parallel body Td associated to each solid was calculated and implemented in order to define the
function D(x, Td) used to create the function qµ.

7.3. Setup for the computational experiments

We list below the main characteristics of the computational environment used to run the experiments:
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Algorithm 1. Find a heuristic covering of the solid T .
Input: A solid T to be covered and an ordered pool of balls
Output: A heuristic covering with IPdk ≥ IPdkMin and IB2 ≤ IB2Max

Create a T based grid for quasi-Monte Carlo calculation [15] of conformity indexes
IncumbentNode← null
Build pu for each sphere and qµ for the solid T
Get first available ball and create CNode
loop

Locate last included ball at a random outside position
Optimize CNode heuristically solving the associated PN
BestCNode← CNode
for i = 1 to NumIterEachNode do

Locate last included ball at a random outside position
Optimize CNode heuristically solving the associated PN
if IPdk(CNode) > IPdk(BestCNode) and IB2(CNode) ≤ IB2Max then

BestCNode← CNode
end if

end for
CNode← BestCNode
if IB2(CNode) > IB2Max then

Backtrack and select next ball type
else if IPdk(CNode) ≥ IPdkMin then

if IncumbentNode = null or IPdk(CNode) > IPdk(IncumbentNode) then
IncumbentNode← CNode

end if
end if
Get Next Available ball and create CNode
if it was not possible to get another ball from the pool then

break
end if

end loop
if IncumbentNode 6= null then

print IncumbentNode
end if

Table 1. Pool of available spheres for Gamma Knife application.

Sphere type Radius Available

Type a 9 8
Type b 7 8
Type c 4 8
Type d 2 10

Table 2. Characteristics of the selected solids.

Solid Length Width Height ∂T

Parallelepiped 15 9 9 Non diff.
Cube 12 12 12 Non diff.
Sphere 12 12 12 Diff.
Prolate ellipsoid 15 9 9 Diff.
Oblate ellipsoid 9 15 15 Diff.
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Table 3. Results of the computational experiments.

Solid Signature
Parameters Covering indexes

IPm IB2M ICOV IE1 IB2 IB3 IPDK

Parallelepiped
(3, 1, 5, 0) 70% 34% 80% 91% 33% 6% 73%
(2, 6, 0, 0) 70% 40% 85% 89% 40% 14% 76%

Cube (4, 4, 1, 0) 70% 34% 91% 91% 26% 6% 83%
Sphere (2, 2, 8, 0) 70% 34% 91% 89% 34% 13% 82%
Prolate ellipsoid (2, 2, 2, 0) 70% 34% 99% 77% 31% 10% 76%
Oblate ellipsoid (3, 2, 4, 0) 70% 34% 95% 87% 34% 6% 83%

• Non linear solver: CONOPT v 3.14 [4];
• Parameter ε was arbitrarily set to 1.5, an adequate fraction of the linear dimensions of the selected solids;
• Too big spheres are immediately rejected, if they don’t fit in Tε;
• A 10.000 points grid was set for Quasi-Monte Carlo volume computations [15];
• Three iterations were employed to generate each new node, taking the best one;
• Valid node: IPdkMin = 70% and IB2Max = 34% (or 40% for some hard cases).

Some comments must be made regarding the last item. Firstly, increasing IPdkMin too much (setting it to
75%, for example), reduces drastically the success rate of the algorithm: it finishes without finding valid nodes.
This is caused by the fact that IPDK is an I∆ index, harder to be satisfied than a simpler covering index like
IPITV.

Secondly, reducing IB2Max too much (setting it to 30%, for example), again reduces drastically the success
rate of the algorithm. The value 34%, for example, was adequate for solids with differentiable ∂T surfaces, but
we had to allow bigger values (like 40%, for example) for some cube and parallelepiped instances, apparently
because these solids present non differentiable ∂T surfaces.

7.4. Results

A small sample of the results of the computational experiments are presented in Table 3, where the parameters
IPdkMin and IB2Max are abbreviated to IPm and IB2M .

The running times were always low, in general considerably less than 300 s. This was caused in part by the
small size of the chosen instances of the (actual) problem to be solved, but also by the “bigger spheres first”
characteristic of the proposed search strategy.

It is interesting to visually assess the quality of a covering. For this purpose, and based on the results presented
in Table 3, Figure 14 presents the covering of a cube, Figure 15 presents the covering of a prolate ellipsoid and
Figure 16 presents the covering of an oblate ellipsoid.

7.5. Comparisons with other works

Albeit it is not possible to make direct comparisons between the presented method and other methods
mentioned in the literature, mainly due to the specific combination of indexes IPDK and IB2 used to measure
covering quality, this section presents some trade-off comparisons.

In [20] alternative methods are presented to cover a parallelepiped T with dimensions 14×12×10 and security
region with ε = 1 using spheres with radii in the same set {9, 7, 4, 2}. The best methods, “XPRESS SLP”, “Heur
IPOPT” and “Graph B&C”, were chosen to make the comparisons, as presented in Table 4. “XPRESS SLP”
is an algorithm that employs sucessive linear programming (SLP) techniques, “Heur IPOPT” is a VNS-based
heuristic that uses IPOPT as its main subsolver for nonlinear programming and “Graph B&C” encodes a branch
and cut algorithm based on a graph representation of the solutions. The first column lists the compared aspects,
where |S| indicates the number of spheres used in the covering structure and t (sec) indicates the running time
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Figure 14. Covering a cube with unequal spheres.

Figure 15. Covering a prolate ellipsoid with unequal spheres.

in seconds. Indexes IPDK and IB2 were calculated using their spheres’ centers positions. Due to its stochastic
nature, two results obtained via Algorithm 1, “Sol. 1” and “Sol. 2”, are also presented.

Despite not being specifically designed to maximize the covering index, both solutions obtained with the
method developed in this work present better ICOV values. Better Paddick values were expected and ultimately
obtained. Also, it is remarkable that the number of spheres used is much smaller than the number of spheres
used by the other methods, which is certainly a good property in the context of Gamma Knife treatment
planning. The drawbacks are a worse IB2 index and a higher running time than the first two methods (although
perfectly acceptable for the intended application). Increasing IB2Max to 42% allowed us to obtain “Sol. 2”,
which presents even better ICOV and IPDK indexes, at the cost of even worse values for the index IB2 and the
running time.

Still using the same radii set {9, 7, 4, 2}, Pinto [20] includes comparisons with the instances presented in
Liberti et al. [11]. The instance bt4 is a sphere T with radius 10 and security region defined with ε = 6. It was
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Figure 16. Covering an oblate ellipsoid with unequal spheres.

Table 4. Comparison of results for parallelepiped solid using different methods.

Parallelepiped T XPRESS Heur Graph Algorithm 1
ε = 1 SLP IPOPT B&C Sol. 1 Sol. 2

|S| 35 29 74 19 20
t (sec) 5 15 747 46 51

ICOV 89.15 91.41 92.62 94.13 95.13
IPDK 74.58 76.81 74.25 78.81 78.91
IB2 15.83 15.33 24.30 33.75 40.94

Table 5. Comparison of results for instance bt4.

Sphere T Liberti et al. Pinto

ε = 6 P
′′
2 (CPLEX) B&C Algorithm 1

|S| 3 6 1
t (sec) 58608 1 52

ICOV 90.7 98.1 73.5
IPDK – 41.5 73.5
IB2 – 30.8 0.0

chosen to make the comparison, as presented in Table 5, because of the peculiar behavior of Algorithm 1 when
dealing with this instance9.

At first glance it may be surprising to have a covering structure using only one sphere, as obtained by using
Algorithm 1. But considering that this algorithm looks for the valid node with the best IPDK, it will reject some
valid nodes, even with better ICOV values (which can be obtained during the search process), in favor of valid
nodes with better IPDK values. For the instance bt4, the high value of ε implies that increasing ICOV means
including new spheres inside the security region, but with a large portion of their volumes outside the solid T ,

9It was not possible to compute IPDK and IB2 for the result presented in reference [11] because it did not publish the locations
of the spheres’ centers.
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which reduces IPDK. This instance is a good example of the difference between a conventional optimal covering
(best ICOV) and the specific optimal covering considered in this work (best IPDK).

8. Conclusion and future research

The results presented in this article demonstrate that it is possible to obtain good solutions for practical
covering problems like the Gamma Knife treatment planning employing the presented method.

The use of the Paddick index to select valid nodes gives to the method an early compliance with the expected
good coverings, and better nodes are just promoted to be the incumbent. On the other hand, the first intersection
index provides a way to avoid accumulating radiation exposure beyond acceptable values on certain parts of
a tumor (or healthy tissue on the security region).

It is the aim of future research to:

• Analyze whether it is worthy or not to expand the search scope, currently constrained to the order imposed
by the sizes of the available spheres;

• Explore alternative penalty curves for the distance between two spheres;
• Explore the possibility of creating constraints that directly restrict the values of the intersection indexes.
• Deal with non-convex solids, starting with simple geometric configurations.
• Develop general constraints to deal with complex solids.
• Analyze the possibility of proposing a single index that takes into consideration the values of the intersection

indexes.
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