A Branch-and-Cut and MIP-based heuristics for the Prize-Collecting Travelling Salesman Problem
RAIRO. Operations Research, Tome 55 (2021), pp. S719-S726

The Prize Collecting Traveling Salesman Problem (PCTSP) represents a generalization of the well-known Traveling Salesman Problem. The PCTSP can be associated with a salesman that collects a prize in each visited city and pays a penalty for each unvisited city, with travel costs among the cities. The objective is to minimize the sum of the costs of the tour and penalties, while collecting a minimum amount of prize. This paper suggests MIP-based heuristics and a branch-and-cut algorithm to solve the PCTSP. Experiments were conducted with instances of the literature, and the results of our methods turned out to be quite satisfactory.

DOI : 10.1051/ro/2020002
Classification : 90C10, 90C11, 90C08, 90C05
Keywords: prize-collecting traveling salesman problem, MIP heuristics, Branch-and-cut
@article{RO_2021__55_S1_S719_0,
     author = {Cl{\'\i}maco, Glaubos and Simonetti, Luidi and Rosseti, Isabel},
     title = {A {Branch-and-Cut} and {MIP-based} heuristics for the {Prize-Collecting} {Travelling} {Salesman} {Problem}},
     journal = {RAIRO. Operations Research},
     pages = {S719--S726},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2020002},
     mrnumber = {4223136},
     zbl = {1472.90109},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2020002/}
}
TY  - JOUR
AU  - Clímaco, Glaubos
AU  - Simonetti, Luidi
AU  - Rosseti, Isabel
TI  - A Branch-and-Cut and MIP-based heuristics for the Prize-Collecting Travelling Salesman Problem
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S719
EP  - S726
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2020002/
DO  - 10.1051/ro/2020002
LA  - en
ID  - RO_2021__55_S1_S719_0
ER  - 
%0 Journal Article
%A Clímaco, Glaubos
%A Simonetti, Luidi
%A Rosseti, Isabel
%T A Branch-and-Cut and MIP-based heuristics for the Prize-Collecting Travelling Salesman Problem
%J RAIRO. Operations Research
%D 2021
%P S719-S726
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2020002/
%R 10.1051/ro/2020002
%G en
%F RO_2021__55_S1_S719_0
Clímaco, Glaubos; Simonetti, Luidi; Rosseti, Isabel. A Branch-and-Cut and MIP-based heuristics for the Prize-Collecting Travelling Salesman Problem. RAIRO. Operations Research, Tome 55 (2021), pp. S719-S726. doi: 10.1051/ro/2020002

T. Achterberg and T. Berthold, Hybrid branching. In: International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems. Springer (2009) 309–311.

B. Awerbuch, Y. Azar, A. Blum and S. Vempala, New approximation guarantees for minimum-weight k -trees and prize-collecting salesmen. SIAM J. Comput. 28 (1998) 254–262. | MR | Zbl | DOI

E. Balas, The prize collecting traveling salesman problem. Networks 19 (1989) 621–636. | MR | Zbl | DOI

E. Balas, The Prize Collecting Traveling Salesman Problem and its Applications. Springer, Boston, MA (2007). | DOI

T. Berthold, Primal heuristics for mixed integer programs (2006).

T. Berthold, Heuristics of the branch-cut-and-price-framework scip. In: Operations Research Proceedings 2007. Springer (2008) 31–36. | Zbl | DOI

D. Bienstock, M. X. Goemans, D. Simchi-Levi and D. Williamson, A note on the prize collecting traveling salesman problem. Math. Program. 59 (1993) 413–420. | MR | Zbl | DOI

A. A. Chaves and L. A. N. Lorena, Hybrid algorithms with detection of promising areas for the prize collecting travelling salesman problem. In: Fifth International Conference on Hybrid Intelligent Systems (HIS’05). IEEE (2005) 49–54.

L. Ciupala and E. Ciurea, About preflow algorithms for the minimum flow problem. WSEAS Trans. Comput. Res. 3 (2008) 35–42.

G. Clímaco, I. Rosseti, L. Simonetti and M. Guerine, Combining integer linear programming with a state-of-the-art heuristic for the 2-path network design problem. Int. Trans. Oper. Res. 26 (2018) 615–641. | MR | Zbl | DOI

M. Dell’Amico, F. Maffioli, and A. Sciomachen, A lagrangian heuristic for the prize collectingtravelling salesman problem. Ann. Oper. Res. 81 (1998) 289–306. | MR | Zbl | DOI

M. Fischetti and P. Toth, An additive approach for the optimal solution of the prize collecting traveling salesman problem. Veh. Routing: Methods Stud. 231 (1988) 319–343. | MR | Zbl

M. Gendreau, A. Hertz and G. Laporte, New insertion and postoptimization procedures for the traveling salesman problem. Oper. Res. 40 (1992) 1086–1094. | MR | Zbl | DOI

M. T. Goodrich and R. Tamassia, The christofides approximation algorithm. In: Algorithm Design and Applications. Wiley (2015) 513–514.

O. Kramer, Genetic Algorithm Essentials. In Vol. 670 of Studies in Computational Intelligence. Springer (2017). | MR | Zbl

M. Laguna, Tabu search. In: Handbook of Heuristics (2018) 741–758. | DOI

N. Mladenović, D. Urošević, S. Hanafi and A. Ilić, A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. Eur. J. Oper. Res. 220 (2012) 270–285. | MR | Zbl | DOI

PassMark, CPU Benchmarks. Available from: https://www.cpubenchmark.net/compare.php (2019).

O. Pedro, R. Saldanha and R. Camargo, A Tabu Search Approach for the Prize Collecting Traveling Salesman Problem. Electron. Notes Discrete Math. 41 (2013) 261–268. | DOI

B. Q. Pinto, C. C. Ribeiro, I. Rosseti and A. Plastino, A biased random-key genetic algorithm for the maximum quasi-clique problem. Eur. J. Oper. Res. 271 (2018) 849–865. | MR | Zbl | DOI

M. G. C. Resende and C. C. Ribeiro, Optimization by GRASP. Springer (2016). | MR | Zbl

C. F. M. Toledo, M. Da Silva Arantes, M. Y. B. Hossomi, P. M. França and K. Akartunalı, A relax-and-fix with fix-and-optimize heuristic applied to multi-level lot-sizing problems. J. Heuristics 21 (2015) 687–717. | Zbl | DOI

R. D. Torres and J. A. M. Brito, Problemas de coleta de prêmios seletiva. In: Simpósio Brasileiro de Pesquisa Operacional (SBPO) 35 (2003) 1359–1371.

L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization. John Wiley & Sons (2014). | MR | Zbl

Cité par Sources :