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A BRANCH-AND-CUT AND MIP-BASED HEURISTICS FOR THE
PRIZE-COLLECTING TRAVELLING SALESMAN PROBLEM

Glaubos Cĺımaco1,∗, Luidi Simonetti1 and Isabel Rosseti2

Abstract. The Prize Collecting Traveling Salesman Problem (PCTSP) represents a generalization
of the well-known Traveling Salesman Problem. The PCTSP can be associated with a salesman that
collects a prize in each visited city and pays a penalty for each unvisited city, with travel costs among
the cities. The objective is to minimize the sum of the costs of the tour and penalties, while collecting a
minimum amount of prize. This paper suggests MIP-based heuristics and a branch-and-cut algorithm
to solve the PCTSP. Experiments were conducted with instances of the literature, and the results of
our methods turned out to be quite satisfactory.
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1. Introduction

The prize-collecting traveling salesman problem (PCTSP) is a var of the well-known traveling salesman
problem (TSP), and so an NP-hard problem. In the PCTSP, a salesman collects a prize pi in each city visited
and pays a penalty wi for each city not visited, considering travel costs cij between the cities. The objective
function is to minimize the sum of travel costs and penalties paid, while including in the tour enough cities
to collect a minimum prize pmin. In this tour, each city can be visited at most one time. Figure 1 illustrates a
PCTSP solution containing seven vertices, and for visual purposes, consider a Euclidean distance between the
vertices.

The PCTSP was initially formulated by Balas [3] as a model for scheduling the daily operations of a steel
rolling mill, and since then has been studied by several researchers to solve problems such as, the helicopter
tour planning for offshore oil platforms, and the design of tourist routes [4]. Several authors proposed different
approaches to tackle PCTSP. Fischetti and Toth [12] presented some bounding procedures, as well as a branch-
and-bound algorithm, and applied it to instances with up to 200 nodes.

Bienstock et al. [7] devised a new formulation for PCTSP which uses cut-set constraints for sub-cycle elim-
inations in the route. Bienstock et al. [7] equally developed an approximation algorithm with constant bound
that combines a linear relaxation, with the Christofides algorithm [14], widely used for resolution of the TSP.
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Figure 1. A PCTSP solution with seven vertices.

Dell’Amico et al. [11] presented a Lagrangian heuristic to obtain an upper bound, by relaxing the minimum
prize constraint, dualizing it in a Lagrangian way, and then applying the sub-gradient method. Awerbuch et al.
[2] elaborated an algorithm of complexity (log2 n) for the Quota TSP. This last problem is similar to the
PCTSP, with the only difference being that it does not consider penalties for unvisited cities. Therefore, with
some transformations, the algorithm proposed by these authors also includes the PCTSP. Torres et al. [23]
proposed GRASP [21] heuristics for the orienteering problem (OP) and the PCTSP, and a new formulation for
the PCTSP, based on flow constraints for the sub-cycle elimination.

Chaves et al. [8] proposed: (i) a new mathematical formulation by combining both models of Torres et al. [23]
and Balas [3]; and (ii) two heuristics based on clustering search to solve the PCTSP. These heuristics are similar,
and their main difference is how initial solutions are built. The first heuristic generates solutions making use
of an evolutionary process (ECS), while the second one creates initial solutions employing a GRASP heuristic
associated with a VNS/VND [17] method (CS*).

Lastly, to the best of our knowledge, the last work addressing the PCTSP was carried out by Pedro et al. [19],
in which the authors proposed a solution through a Tabu Search (TS) [16], which incorporates the GENIUS
[13] heuristic to its construction phase, and a 2-opt local search.

The scientific contributions of this work can be summarized as: a branch-and-cut algorithm, which has
obtained unknown optimal solutions so far; and two new MIP-based heuristics. The remainder of this paper
is organized as follows. In Section 2 an integer linear programming (ILP) formulation of Bienstock et al. [7] is
described. In Sections 3 and 4, the proposed approaches are presented. In Section 5, some numerical results are
exhibited to evaluate our proposals. Lastly, in Section 6, some conclusions and subsequent investigations are
drawn.

2. Mathematical formulation

In this section we present the mathematical formulation of Bienstock et al. [7]. Let G = (V,E) be a complete
and undirected graph, in which V and E are the sets of vertices and edges, respectively. Associated with each
edge e = (i, j) ∈ E there is a cost ce satisfying the triangle inequality, and for each vertex i ∈ V there is a
non-negative penalty wi and a prize pi.

The formulation requires the binaries variables xij = 1 if edge (i, j) ∈ E is part of the tour; or xij = 0,
otherwise; and yi = 1, if vertex i ∈ V is visited, and yi = 0 otherwise. We also define δ(S) = {(i, j) ∈ E | i ∈
S, j ∈ V \ S}, δ(i) as a set of all incidents edges to the vertex i, and a root vertex u. Hence, the PCTSP can be
formulated as follows:

(P1) Min
∑
e∈E

cexe +
∑
i∈V

wi(1− yi) (2.1)

subject to:
∑
e∈δ(i)

xe = 2yi, ∀i ∈ V (2.2)
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i∈V

piyi ≥ pmin (2.3)∑
e∈δ(S)

xe ≥ 2yi, ∀(S ⊂ V \ {u}, i ∈ S) (2.4)

yi ∈ {0, 1}, ∀i ∈ V (2.5)
xe ∈ {0, 1}, ∀e ∈ E. (2.6)

The objective function (2.1) aims to minimize the sum of travel costs and penalties. The degree constraints
(2.2) ensure that a feasible solution goes exactly once through each visited vertex. Constraint (2.3) imposes a
minimum bound on the collected prize. The cut-set constraints (2.4) ensure the connectivity of the route, and
along with constraints (2.2), are responsible for eliminating sub-cycles in the route. Finally, constraints (2.5)
and (2.6) impose that all variables need to be 0-1.

3. Branch-and-cut algorithm

The model proposed by Bienstock et al. [7] contains an exponential number of cut-set constraints (2.4).
However, the violation of such constraints can be checked in polynomial time, which allows us to apply a
branch-and-cut algorithm. In this section, we present an exact B&C for the PCTSP, based on formulation
(2.1)–(2.6).

As usual, the family of exponential size constraints (2.4), are initially relaxed. Then, after each LP iteration,
they are separated to detect whether constraints of this family are violated by the current LP solution. If so,
the detected violated constraints are integrated to the current relaxation, and the strengthened relaxation is
solved.

We used the Mixed Integer Programming (MIP) solver Gurobi to solve the LP relaxations and to implement
the search tree. Thus, the strategy described above has been incorporated into an enumeration scheme, in which
it is applied not only to the root node of the enumeration tree, but also to all generated nodes. We now describe
the separation procedure.

3.1. Separation procedure

The algorithm starts with all integrality conditions relaxed and only a subset of constraints. In the initial
relaxation, we include all constraints of P1, except for the cut-set (2.4). For the separation procedure, let
G∗ = (V ∗, E∗) be the support graph associated with an optimal solution S = (x∗, y∗) to the current relaxation,
in which V ∗ = {i ∈ V : y∗i > 0} and E∗ = {e ∈ E : x∗e > 0}.

Consider x∗e as the capacity value of edge e ∈ E∗. The cut-set constraints are separated when the LP solution
S is integer or fractional, and for each case, we proceeded as follows. For any i ∈ V \{u}, a minimum (u, i)-cut is
found in G∗ through a maximum-flow/min-cut algorithm; if the output is less than 2yi, then we have a violated
constraint. In this case, the next step is to add this constraint to the model and resolve it.

For the min-cut procedure, we used the Goldberg’s pre-flow push algorithm [9] which runs in O(|V |2
√
|E|)

for each vertex. Therefore, we obtain an overall complexity of O(|V |3
√
|E|) to find a violated cut-set.

4. MIP heuristics

Mixed Integer Programming (MIP) is a powerful tool to model and solve hard combinatorial optimization
problems, and since MIP-solving is NP-hard [24], heuristic methods for it are of high interest. Heuristic methods
are often used, since in several cases, they provide feasible solutions quickly, in practice generally meeting cus-
tomer demand, and avoiding unnecessary explorations of nodes in the branch-and-bound tree. In the following,
we present the proposed MIP-based heuristics for the PCTSP.



S722 G. CLÍMACO ET AL.

4.1. Relax-and-fix

The relax-and-fix (RF) is a heuristic that generates a solution by solving several small MIPs. It is performed
by fixing or relaxing most of the binary variables, enforcing only a few to be integer and then optimizing them
[22]. In a preliminary experiment, we obtained good dual bounds by solving a particular relaxation of the model
P1, in which each variable xe was relaxed and the domain of all variables yi was maintained. We called this new
model P2, and it can be stated as follows:

(P2) Min
∑
e∈E

cexe +
∑
i∈V

wi(1− yi)

subject to ((2.2)− (2.5)) plus:
xe ∈ R+, ∀e ∈ E. (4.1)

The RF proposed in this paper, aims to find a feasible solution by successive applications of a B&B algorithm
followed by fixations of variables xe, in increasingly restrictive versions of the model P2. Initially, a B&B is
applied on P2 and then, when it is finished, a relaxed variable x∗e is fixed according to a fractionality criterion.
Then, we have an updated version of P2, with xe = 1 or xe = 0. Once updated, the model P2 is solved again
and a new variable is fixed. This process is repeated until there are no more variables xe with fractional values.
The RF always provided a feasible solution in our experiments, therefore, no recovery strategy was needed in
case the current fixing of the variables turns out to be infeasible. It is noteworthy that although MIP solver
applies a B&B to P2, the branching is only performed on the y variables.

The pseudo-code of Algorithm 1 presents the relax-and-fix heuristic devised. In line 1, a solution S(x, y) is
obtained by applying a B&B on P2. In line 2, the set Ī is initialized containing all the indexes of variables with
fractional values in x. From lines 3 to 9, while Ī is not empty i.e., there are variables of x with fractional values,
the following steps are performed: (i) the variable with the lowest fractionality (the closest variable to a binary
value) is chosen and then fixed in the model with the nearest binary value; and in case of ties, the variable with
the lowest edge cost ce is chosen; (ii) the model P2 is updated, since variable xe has now been fixed; (iii) the
model P2 that has just been updated, is solved; and (iv) the set Ī is updated. In line 10, the final solution is
returned.

Algorithm 1. RF (P2).
1: S(x, y)← solve(P2)
2: Ī ← index set of all fractional variables of x
3: while Ī 6= ∅ do
4: select e from Ī such that xe has the lowest fractionality
5: fix xe to the nearest binary
6: update(P2)
7: S(x, y)← solve(P2)
8: update(Ī)
9: end while

10: return S

4.2. Diving heuristic

The state-of-the-art MIP solvers make use of LP-based branch-and-bound techniques, in which the branching
process focuses on two different aims: on the one hand, fractional variables should be driven towards integrality
to find feasible solutions. On the other hand, the dual bound should be raised to prove the optimality [1].
To achieve feasible solutions quickly, it is desirable to focus on bounding variables such that the number of
fractional variables decreases [5].

Following this idea, the diving heuristics try to bound/fix LP-solution variables to promising values. The
name of these heuristics came from the fact that they “quickly go down” the branch-and-bound tree. In this
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paper, we propose a MIP heuristic based on the guided diving heuristic (GD) [6], that makes use of a guide
solution to fix variables. In the following, we describe how the diving idea was implemented in our approach.

The GD heuristic consists of performing a B&B algorithm to the model P1 once, and while the B&B runs, the
diving procedure is applied whenever the current node LP-solution S∗(x∗, y∗) is found and there is a guide x̃,
the incumbent (integer) solution obtained during the B&B itself. Implementation details of the diving procedure
are presented on the Algorithm 2.

Algorithm 2. Diving (x̂∗, x̃).
1: j ← 0, frac←∞;
2: while (j < |E|) do
3: if (0 < x∗j < 1) then

4: if (|x∗j − x̃j | < frac) then

5: frac← |x∗j − x̃j |
6: ind← j.
7: end if
8: j ← j + 1;
9: end if

10: end while
11: Fix x∗ind to the value of x̃ind

12: Update(P1)

The Algorithm 2 receives as parameters, the LP-solution of the current tree node and the guide solution.
From lines 2 to 10, we obtain the variable x∗j with the lowest fractionality |x∗j − x̃j | (x∗j with integer values are
not considered); and in line 11, x∗j is fixed in the model P1 as its respective value in x̃j (either 0 or 1). Finally,
the model P1 is updated and the B&B continues, hopefully faster from now on. As for the RF, the application
of a recovery strategy was unnecessary either.

5. Computational results

To validate the presented proposals, experiments were conducted with instances proposed by Chaves et al.
[8]. These instances consist of problems with |V | ∈ {11, 21, 31, 51, 101, 251, 501}, randomly generated at the
following intervals. Travel cost between vertices: cij ∈ [50, 1000]; penalty associated to each vertex: wi ∈ [1, 750];
prize associated to each vertex: pi ∈ [1, 100]. The minimum prize to be collected, PRIZE, represents 75% of
the sum of the prizes of all vertices. These test problems are available at http://www.lac.inpe.br/~lorena/
instancias.html.

All approaches introduced in this paper were implemented in the C++ language and compiled with g++
5.4.0. The tests were run on an Intel Core i7-6900 K @ 3.20 GHz machine with 16 GB of RAM under the
operating system Linux Ubuntu 16.04 LTS with parallel processing features disabled. For the implementation
and execution of the mathematical formulations, the Gurobi solver (Version 6.5.2) was used, with its heuristics,
cuts and preprocessing disabled. Also, a one-hour processing timeout was determined.

5.1. Mathematical formulations

The flow-based formulations of Chaves et al. [8] and Torres et al. [23] were implemented in this work, and
then compared to the proposed B&C. Results of this comparison are reported in Table 1, in which the first
column indicates the name of the instances and for each model, the solution value and spent time (in seconds)
are presented. The best results are highlighted in bold, and the “–” symbol indicates that no solution was found
within one-hour CPU time.

We remark that, in the literature, the formulation of Chaves et al. [8] does not present better results than
those shown in this paper, even with a time-limit greater than 42 h, and the Torres’ model has never been tested
with these instances before.

http://www.lac.inpe.br/~lorena/instancias.html
http://www.lac.inpe.br/~lorena/instancias.html
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Table 1. Results for the mathematical formulations.

B&C Torres Chaves
Instance Sol. T (s) Sol. T (s) Sol. T (s)

v10 1765 0.00 1765 0.03 1765 0.03
v20 2302 0.01 2302 0.70 2302 1.22
v30a 3582 0.00 3582 2.66 3582 4.43
v30b 2515 0.00 2515 3.67 2515 6.41
v30c 3236 0.03 3236 12.63 3236 15.47
v50a 4328 0.10 4328 314.74 4328 422.65
v50b 3872 0.12 3872 375.30 3872 688.77
v100a 6762 0.27 7633 3600.00 7454 3600.00
v100b 6760 0.17 7290 3600.00 7668 3600.00
v250a 14 083 12.67 – 3600.00 – 3600.00
v250b 13 632 8.35 14 935 3600.00 14 715 3600.00
v500a 25 848 102.06 – 3600.00 – 3600.00
v500b 26 389 130.17 – 3600.00 – 3600.00

From Table 1, one realizes that the B&C approach outperforms the other exact approaches in the literature,
both in solution quality and processing time. The formulation of Bienstock et al. [7] along with the proposed
separation procedure, was able to solve all the 13 test problems proposed by Chaves et al. [8], proving optimality
in six cases, in which the optimal solution was unknown until now. On the other hand, the formulations of the
literature were able to solve only instances with up to 50 vertices, considering the time limit of one hour.
Regarding the literature models, the Chaves’ formulation required a higher CPU time than Torres’, but in
general, these two models presented similar performance.

5.2. Heuristics

After testing the formulations, experiments were conducted with the proposed heuristics. Despite the tabu
search (TS) [19] reached better-quality solutions than CS* for a few instances, herein we consider CS* as the
baseline heuristic for comparisons, since Pedro et al. [19] do not present the CPU time spent by their heuristic.

As the original source-code of CS* was unavailable and the experiments reported in Chaves et al. [8] have
been made on a different processor, we followed the idea of Pinto et al. [20] by considering an approximate scale
ratio to compare the speed of both processors. Concerning the single-rating performance, once the algorithms
were tested on single-thread environments, the respective ratio for the two CPU models is 463/2184 ≈ 0.21,
according to the PassMark benchmark [18].

A comparison between the proposed heuristics and CS* are presented in Table 2. The symbol “?” represents
the lack of value reported in the literature for the respective instance, the best results are bold-faced, and the
running times for CS* are those reported by Chaves et al. [8], multiplied by the scale factor 0.21.

From Table 2, one can observe that in terms of the best solution obtained, both RF and GD heuristics
outperformed the CS* in all cases, and GD achieved an optimal solution for all of them, except for the instance
v30c. In general, we can realize that the proposed heuristics were able to improve the solutions obtained by
CS*, mainly for larger instances, in a shorter CPU time.

6. Conclusions

In this paper, we addressed the PCTSP which represents an extension of well-known TSP and very applicable
in the real world. To handle such a problem, we have proposed some simple and easy-to-implement solution
methods that additionally provide to be computationally feasible. As an exact approach, three formulations of
the literature were implemented and tested. The formulation of Bienstock et al. [7] has an exponential number of
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Table 2. Results for the heuristics (original running times of CS* multiplied by 0.21).

CS* RF GD
Inst. OPT Best Sol. Avg. Sol. Avg. T (s) Sol. T (s) Sol. T (s)

v10 1765 1765 1765.0 0.01 1765 0.01 1765 0.01
v20 2302 2302 2302.0 0.20 2302 0.01 2302 0.02
v30a 3582 3582 3591.0 0.22 3582 0.01 3582 0.02
v30b 2515 2515 2515.0 0.24 2515 0.02 2515 0.02
v30c 3236 3236 3241.0 0.25 3236 0.04 3245 0.04
v50a 4328 4328 4346.0 8.10 4328 0.14 4328 0.10
v50b 3872 3872 3881.0 7.87 3872 0.06 3872 0.11
v100a 6762 6832 6906.0 151.77 6764 0.18 6762 0.41
v100b 6760 6782 6844.0 ? 6771 0.51 6760 0.21
v250a 14 083 15 162 15 284.0 245.21 14 083 6.04 14 083 7.79
v250b 13 632 14 078 14 176.0 ? 13643 55.54 13 632 3.67
v500a 25 848 28 213 28 462.0 434.32 25 848 60.50 25 848 79.99
v500b 26 389 28 133 28 334.0 ? 26 389 9.12 26 389 110.92

cut-set constraints, so a branch-and-cut algorithm along with a polynomial separation procedure was proposed.
In terms of non-exact approaches, we devised two MIP-based heuristics, which make use of the linear relaxation
of the problem along with bound and diving procedures.

The results of experiments with the instances of Chaves et al. [8] showed that the B&C algorithm solved
all instances in a much shorter time than the others approaches from literature, and yet proved unprecedented
optimality for some instances. Moreover, the literature formulations were unable to solve instances with more
than 50 vertices.

Concerning the non-exact approaches, the results of our MIP heuristics outperformed the state-of-the-art
heuristic, achieving the optimal solution for almost all cases. We highlight the guided diving heuristic, in which
solved many instances faster than the B&C itself.

The B&C was able to satisfactorily solve all test-problems within a reasonable time (at most 130.17 s).
However, we hypothesize that for larger instances, B&C might be incapable of finding optimal solutions due to
machine memory issues. In this case, it would be interesting to apply the GD heuristic, which also handled the
instances very well, but in a shorter CPU time.

We also believe our B&C has great potential to be hybridized with other heuristics to tackle more difficult
problems. Hence, as future work, we intend to follow the hybridization idea of Cĺımaco et al. [10] and combine
the B&C algorithm with some heuristic based on metaheuristic, such as genetic algorithms [15], GRASP [21]
or tabu search [16].
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