Statistical Taylor series expansion: An approach for epistemic uncertainty propagation in Markov reliability models
RAIRO. Operations Research, Tome 55 (2021), pp. S593-S624

In this paper we develop a new Taylor series expansion method for computing model output metrics under epistemic uncertainty in the model input parameters. Specifically, we compute the expected value and the variance of the stationary distribution associated with Markov reliability models. In the multi-parameter case, our approach allows to analyze the impact of correlation between the uncertainty on the individual parameters the model output metric. In addition, we also approximate true risk by using the Chebyshev’ inequality. Numerical results are presented and compared to the corresponding Monte Carlo simulations ones.

DOI : 10.1051/ro/2019091
Classification : 60J22, 41A58, 60K10
Keywords: Markov reliability model, epistemic uncertainty, correlation, risk analysis, fundamental matrix, Taylor series expansion, Monte Carlo simulation
@article{RO_2021__55_S1_S593_0,
     author = {Bachi, Katia and Abbas, Karim and Heidergott, Bernd},
     title = {Statistical {Taylor} series expansion: {An} approach for epistemic uncertainty propagation in {Markov} reliability models},
     journal = {RAIRO. Operations Research},
     pages = {S593--S624},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     doi = {10.1051/ro/2019091},
     mrnumber = {4223091},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2019091/}
}
TY  - JOUR
AU  - Bachi, Katia
AU  - Abbas, Karim
AU  - Heidergott, Bernd
TI  - Statistical Taylor series expansion: An approach for epistemic uncertainty propagation in Markov reliability models
JO  - RAIRO. Operations Research
PY  - 2021
SP  - S593
EP  - S624
VL  - 55
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2019091/
DO  - 10.1051/ro/2019091
LA  - en
ID  - RO_2021__55_S1_S593_0
ER  - 
%0 Journal Article
%A Bachi, Katia
%A Abbas, Karim
%A Heidergott, Bernd
%T Statistical Taylor series expansion: An approach for epistemic uncertainty propagation in Markov reliability models
%J RAIRO. Operations Research
%D 2021
%P S593-S624
%V 55
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2019091/
%R 10.1051/ro/2019091
%G en
%F RO_2021__55_S1_S593_0
Bachi, Katia; Abbas, Karim; Heidergott, Bernd. Statistical Taylor series expansion: An approach for epistemic uncertainty propagation in Markov reliability models. RAIRO. Operations Research, Tome 55 (2021), pp. S593-S624. doi: 10.1051/ro/2019091

K. Abbas, B. Heidergott and D. Aïssani, A functional approximation for the M / G / 1 / N queue. Discrete Event Dyn. Syst. 23 (2013) 93–104. | MR | Zbl | DOI

J. L. Barlow, Stable computation with the fundamental matrix of a markov chain. SIAM J. Matrix Anal. App. 22 (2000) 230–241. | MR | Zbl | DOI

R. Blacher, Multivariate quadratic forms of random vectors. J. Multivariate Anal. 87 (2003) 2–23. | MR | Zbl | DOI

J. T. Blake, A. L. Reibman and K. S. Trivedi, Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: Vol. 16 of ACM SIGMETRICS Performance Evaluation Review. ACM (1988) 177–186. | DOI

P. Coolen-Schrijner and E. A. Van Doorn, The deviation matrix of a continuous-time markov chain. Probab. Eng. Inf. Sci. 16 (2002) 351–366. | MR | Zbl | DOI

S. V. Dhople and A. D. Dominguez-Garcia, A parametric uncertainty analysis method for markov reliability and reward models. IEEE Trans. Reliab. 61 (2012) 634–648. | DOI

A. Gandini, Importance and sensitivity analysis in assessing system reliability. IEEE Trans. Reliab. 39 (1990) 61–70. | Zbl | DOI

B. R. Haverkort and A. M. Meeuwissen, Sensitivity and uncertainty analysis in performability modelling. In: Proceedings 11th Symposium on Reliable Distributed Systems, 1992. IEEE (1992) 93–102.

B. R. Haverkort and A. M. H. Meeuwissen, Sensitivity and uncertainty analysis of markov-reward models. IEEE Trans. Reliab. 44 (1995) 147–154. | DOI

B. Heidergott and A. Hordijk, Taylor series expansions for stationary markov chains. Adv. Appl. Probab. 35 (2003) 1046–1070. | MR | Zbl | DOI

B. Heidergott, A. Hordijk and N. Leder, Series expansions for continuous-time markov processes. Oper. Res. 58 (2010) 756–767. | MR | Zbl | DOI

D. P. Heyman, Accurate computation of the fundamental matrix of a markov chain. SIAM J. Matrix Anal. App. 16 (1995) 954–963. | MR | Zbl | DOI

D. P. Heyman and D. P. Oleary, What is fundamental for markov chains: first passage times, fundamental matrices, and group generalized inverses. In: Computations with Markov Chains. Springer (1995) 151–161. | Zbl

D. P. Heyman and A. Reeves, Numerical solution of linear equations arising in markov chain models. ORSA J. Comput. 1 (1989) 52–60. | Zbl | DOI

B. Holmquist, Moments and cumulants of the multivariate normal distribution. Stochastic Anal. App. 6 (1988) 273–278. | MR | Zbl | DOI

A. Hordijk and F. Spieksma, A new formula for the deviation matrix, chapter 36 of Probability Statistics and Optimization. Wiley (1994). | MR | Zbl

J. J. Hunter, Generalized inverses and their application to applied probability problems. Linear Algebra App. 45 (1982) 157–198. | MR | Zbl | DOI

L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12 (1918) 134–139. | DOI

R. Kan, From moments of sum to moments of product. J. Multivariate Anal. 99 (2008) 542–554. | MR | Zbl | DOI

J. G. Kemeny and J. L. Snell, Finite Markov Chains. D van Nostad Co. Inc., Princeton, NJ (1960). | MR | Zbl

J. G. Kemeny and J. L. Snell, Finite continuous time markov chains. Theory Probab. App. 6 (1961) 101–105. | Zbl | MR | DOI

S. J. Kirkland, M. Neumann and J. Xu, A divide and conquer approach to computing the mean first passage matrix for markov chains via perron complement reductions. Numer. Linear Algebra App. 8 (2001) 287–295. | MR | Zbl | DOI

G. M. Koole and F. M. Spieksma, On deviation matrices for birth–death processes. Prob. Eng. Inf. Sci. 15 (2001) 239–258. | MR | Zbl | DOI

I. Marek, Iterative aggregation/disaggregation methods for computing some characteristics of markov chains. II. Fast convergence. Appl. Numer. Math. 45 (2003) 11–28. | MR | Zbl | DOI

J. Michalowicz, J. Nichols, F. Bucholtz and C. Olson, An isserlis theorem for mixed gaussian variables: application to the auto-bispectral density. J. Stat. Phys. 136 (2009) 89–102. | MR | Zbl | DOI

J. Michalowicz, J. Nichols, F. Bucholtz and C. Olson, A general isserlis theorem for mixed-gaussian random variables. Stat. Probab. Lett. 81 (2011) 1233–1240. | MR | Zbl | DOI

K. Mishra and K. Trivedi, A non-obtrusive method for uncertainty propagation in analytic dependability models. In: Proceedings of 4th Asia–Pacific Symposium on Advanced Reliability and Maintenance Modeling (2010).

S. Ouazine and K. Abbas, Development of computational algorithm for multiserver queue with renewal input and synchronous vacation. Appl. Math. Modell. 40 (2016) 1137–1156. | MR | DOI

P. Pukite and J. Pukite, Modeling for Reliability Analysis: Markov Modeling for Reliability, Maintainability, Safety, and Supportability. Wiley (1998).

R. A. Sahner, K. S. Trivedi and A. Puliafito, Performance and Reliability Analysis of Computer Systems: An Example-based Approach Using the SHARPE Software Package. Springer Science & Business Media (1996). | Zbl

J. R. Schott, Kronecker product permutation matrices and their application to moment matrices of the normal distribution. J. Multivariate Anal. 87 (2003) 177–190. | MR | Zbl | DOI

J. Sommer, J. Berkhout, H. Daduna and B. Heidergott, Analysis of jackson networks with infinite supply and unreliable nodes. Queue. Syst. 87 (2017) 181–207. | MR | DOI

I. Sonin and J. Thornton, Recursive algorithm for the fundamental/group inverse matrix of a markov chain from an explicit formula. SIAM J. Matrix Anal. App. 23 (2001) 209–224. | MR | Zbl | DOI

K. Takaragi, R. Sasaki and S. Shingai, A probability bound estimation method in markov reliability analysis. IEEE Trans. Reliab. 34 (1985) 257–261. | Zbl | DOI

C. Vignat, A generalized isserlis theorem for location mixtures of gaussian random vectors. Stat. Probab. Lett. 82 (2012) 67–71. | MR | Zbl | DOI

L. Yin, M. A. Smith and K. S. Trivedi, Uncertainty analysis in reliability modeling. In: Proceedings Annual Reliability and Maintainability Symposium, 2001. IEEE (2001) 229–234.

Cité par Sources :