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STATISTICAL TAYLOR SERIES EXPANSION: AN APPROACH FOR
EPISTEMIC UNCERTAINTY PROPAGATION IN MARKOV

RELIABILITY MODELS

Katia Bachi1,∗, Karim Abbas1 and Bernd Heidergott2

Abstract. In this paper we develop a new Taylor series expansion method for computing model
output metrics under epistemic uncertainty in the model input parameters. Specifically, we compute
the expected value and the variance of the stationary distribution associated with Markov reliability
models. In the multi-parameter case, our approach allows to analyze the impact of correlation between
the uncertainty on the individual parameters the model output metric. In addition, we also approximate
true risk by using the Chebyshev’ inequality. Numerical results are presented and compared to the
corresponding Monte Carlo simulations ones.
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1. Introduction

Markovian models are frequently used to represent real and human-made systems such as industrial systems,
power generation systems, and manufacturing systems, etc. Markov modeling techniques have been used by de-
signers as a powerful and fundamental technique to analyze reliability, availability, maintainability, and safety of
these systems [29,30]. The primary purpose of these models is to relate output metrics for a system to (some) input
parameters. So, most frequently, it is assumed that these stochastic models are solved for fixed input parameters
values. However, the input parameters are determined through statistical data (a finite number of observations),
leading to uncertainty in the assessment of their values. This parametric uncertainty induced by the incomplete
information concerning the parameter is called “epistemic uncertainty” [27]. Moreover, the input parameters are
either physically controllable/adjustable or uncontrollable. For example, in a repairable system where system com-
ponents are restored when they fail, the failure rate of a component is typically uncontrollable, whereas the repair
rates or the maintenance policies are controllable. Uncontrollable parameters are only obtained through statistics.
More formally, let θ be an uncontrollable parameter, and we assume the model input parameter θ is of the form

θ(ω) = θ̄ + σ ε(ω), (1.1)
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where θ̄ is the predictor for θ, σ is the standard deviation of the same parameter, and ε(ω) is a random variable
modeling the epistemic distribution. The parameters of the stochastic model which are not controllable may be
considered to be random variables. In order to propagate the epistemic uncertainty on model input parameters,
the model output needs to be related to the input parameters in a “functional form”; this functional relationship
between the input parameters and the model output Y can be expressed as

Y (ω) = g(θ(ω)), (1.2)

where g is the functional relationship.
The model in (1.1) together with (1.2) allows for different interpretations. Assuming that we have a test

statistic θ(ω) for θ, we may think of σ as the standard deviation of the statistic and ε(ω) as the noise of the
data, which is typically standard normal distributed. Specifically, ε(ω) is a zero mean normal random variable
and θ(ω) is the actual (unknown) value of the interest parameter. Increasing the sample size effects in this
model σ and our formulas allows tracing the impact of larger sample sizes on the reduction of the uncertainty
in output. Alternatively, θ̄ may be obtained from expert knowledge and ε(ω) expresses the epistemic insecurity
in the expert knowledge, where σ serves as scaling parameter. The epistemic distribution is typically obtained
by identifying the distribution that, given the expert knowledge available, maximizes the entropy.

The objective of this paper is to develop a new approach based on Taylor series expansion for propagating
uncertainty in input-output models. For that, we develop the model output Y into a Taylor series with respect
to the input parameters and then make use of the properties of expectation and variance for computing the
expectation and variance of reliability indices. We show that sensitivity analysis and statistical estimation can
be integrated into one framework. Specifically, by using this new approach, we establish an approximative
expression for the components of the stationary distribution of the Markov chain describing the state of the
considered model. These components are represented as polynomial functions of the input parameters, which
are given under the form (1.1). More specifically, we provide a recursive form of the higher derivatives of the
stationary distribution in terms of the fundamental matrix of the associated continuous-time Markov chain [20].
In addition, we establish an expression for the remainder term of the Taylor series, and we include the effect of the
correlation between the input parameters, which are considered as uncertain random variables. Furthermore, we
use the Chebyshev’s inequality for estimating the risk incurred by working with uncertain performance measures
rather than those evaluated at fixed parameters. We also use another uncertainty analysis approach based on
Monte Carlo simulation. Exploiting properties and transformations of expectation and variance, we numerically
compute the expected value and the variance of the stationary distribution associated with the studied Markov
reliability models.

Analytic methods for parametric epistemic uncertainty propagation in Markov models have been proposed
in literature before; for references, see e.g., [4, 6–9, 34, 36]. Most of these approaches are based on Taylor series
expansion, where their coefficients are given in terms of the group inverse of the underlying Markov chain [17].
Unfortunately, no efficiently computable form of the remainder the considered Taylor series are provided in the
aforementioned references. The approach developed in this paper overcomes this drawback and provides efficient
bounds on the remainder term corresponding to the Taylor series. Our new computational approach is based on
Taylor series expansion for continuous-time Markov chains, for which the Taylor series coefficients are obtained
in terms of the fundamental matrix Z of the underlying Markov chain, as well as we provide an efficient way with
the potential of computing the remainder term of the Taylor series. It is worth noting that several computational
techniques for finding Z have been proposed in the literature, see e.g., [2, 12–14, 22, 24, 33]. We also note that
our framework is different from the one proposed in [1, 10], where the higher-order sensitivity of the Markov
chain stationary distribution with respect to model parameters is expressed in terms of the deviation matrix,
see e.g., [5, 16,23], and these results have been obtained for fixed parameter values.

In this paper we propose a new framework involving the use of multivariate Taylor series expansions to
propagate epistemic uncertainty to reliability indices in Markov reliability models. The remainder of this paper
is organized as follows. In Section 2, we establish the higher-order sensitivity of the continuous-time Markov
chain stationary distribution with respect to a single-parameter. The generalization of these results to the case
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of the higher-order sensitivity with respect to a multiple-parameter is given in Section 4. Markov reliability
models are analyzed in Sections 3 and 5. Finally, Section 7 summarizes the investigation done and draws the
conclusions.

2. The single-parameter case

2.1. Higher-order derivative expressions

In this section, we establish a closed-form expression for the higher-order sensitivity of the stationary distri-
bution of a continuous-time Markov chain with respect to a single parameter.

Let X = {Xt : t ≥ 0} be a time-homogeneous, continuous-time ergodic Markov chain on a finite state space
S = {0, 1, 2, . . . , N − 1}. Throughout this paper we will denote the generator matrix of X by Q = (qij)i,j∈S ,
where for i 6= j, the components qij are non-negative and the components qii are chosen such that

∑
j∈S qij = 0,

for all i ∈ S. Let e = (1, 1, . . . , 1)T be the unit vector, where the superscript T denotes the transpose. We suppose
that X has a unique stationary distribution, denoted by π = (π(0), π(1), . . . , π(N − 1)), solving πQ = 0 and
πe = 1. Assume that Q depends on certain parameter θ; then Q may be considered a mapping of θ, in writing,
Qθ. In this section, we are mainly interested in the effect of a change in θ on the stationary distribution. More
formally, let πθ denote the stationary distribution associated with Qθ, then, we seek to derive a formula for the
nth-order derivative of the stationary distribution dnπθ/dθn. Our approach has an underlying assumption that
only the components of the generator matrix Qθ are differentiable functions with respect to the parameter θ.
Specifically, we will express this derivative in closed form as function of the fundamental matrix of the underlying
Markov chain X ; it is denoted by Zθ, and is defined as follows [21]:

Zθ , (Πθ −Qθ)−1, (2.1)

where Πθ = e πθ. The definition of this matrix for the continuous-time Markov chain with finite state space was
introduced by Kemeny and Snell in [21]. It is worth noting that the existence of Zθ is assured by the fact that
S is finite.

In the following theorem we will present a recursive formula for the higher-order derivatives of πθ, with
respect to θ in terms of the fundamental matrix Zθ. With these derivatives at hand, we develop a framework
which will be used afterward in our analysis.

Theorem 2.1. Assume that the generator matrix Qθ is element-wise n-times differentiable at θ ∈ Θ, where Θ
is a closed interval. Provided that

1
|∆|
|Q(m)

θ+∆(i, j)−Q(m)
θ (i, j)| ≤ Km

for 0 ≤ m < n, the nth-order derivative of the stationary distribution is given as follows

dnπθ
dθn

= π
(n)
θ =

n−1∑
m=0

(
n
m

)
π

(m)
θ Q

(n−m)
θ Zθ, (2.2)

where Q(k)
θ is the matrix of the element-wise kth-order derivative of the generator matrix Qθ with respect to θ.

Proof. We prove (2.2) by induction on n. Differentiability of πθ with respect to θ is established in [11]. For
n = 1 we check that

π′θ = πθ Q
′
θ Zθ.

For any continuous-time Markov chain with generator matrix Qθ, we haveπθ Qθ = 0,

πθ e = 1.
(2.3)
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Taking the derivative of both sides of the equation (2.3) with respect to θ, we get
π′θ Qθ + πθ Q

′
θ = 0,

π
′

θ e = 0.
(2.4)

Multiplying both sides of the second equation in (2.4) on the right by πθ, we obtain

π′θ Πθ = 0. (2.5)

Inserting (2.5) in the left-hand side of the first equation in (2.4), we have

π′θ Qθ − π′θ Πθ︸ ︷︷ ︸
=0

+πθ Q
′

θ = 0.

Then, it holds that
π′θ (Πθ −Qθ) = πθ Q

′
θ.

Since the Markov chain associated with Qθ is ergodic, the matrix (Πθ −Qθ) is invertible. It holds that

π′θ = πθ Q
′

θ (Πθ −Qθ)−1︸ ︷︷ ︸
=Zθ

.

Thus, it has been shown that the statement (2.2) is true for n = 1.
Assume that (2.2) is correct for some positive integer k. Then, we have

π
(k)
θ =

k−1∑
m=0

(
k
m

)
π

(m)
θ Q

(k−m)
θ Zθ. (2.6)

Multiplying both sides of the equation (2.6) on the right by (Πθ −Qθ), we get

π
(k)
θ (Πθ −Qθ) =

k−1∑
m=0

(
k
m

)
π

(m)
θ Q

(k−m)
θ . (2.7)

On other hand, repeating to take derivatives of both sides of the second equation in (2.4), we get for any k ≥ 1

π
(k)
θ e = 0,

which implies that
π

(k)
θ Πθ = 0.

This together with the equation (2.7) allows to obtain

−π(k)
θ Qθ =

k−1∑
m=0

(
k
m

)
π

(m)
θ Q

(k−m)
θ . (2.8)

Taking again derivatives of both sides of equation (2.8) with respect to θ, then we get

−π(k+1)
θ Qθ − π(k)

θ Q
′

θ =
k−1∑
m=0

(
k
m

)[
π

(m+1)
θ Q

(k−m)
θ + π

(m)
θ Q

(k−m+1)
θ

]
.

By computation, we arrive at

π
(k+1)
θ =

k∑
m=0

(
k + 1
m

)
π

(m)
θ Q(k−m+1) Zθ.

By induction, the statement (2.2) holds for all positive integer n. �
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Remark 2.2. Note that our approach is slightly different of the one introduced in [28] and that our expression
for the higher-order sensitivity of stationary distribution to single-parameter is comparable to the one given by
(1.2) therein. In fact, the expression (2.2) is the analogous formula for discrete-time Markov chains given in [28].
If Qθ is a generator matrix of some uniformizable Markov chain with rate γ (i.e., γ = supi |qii| <∞), then its
transition matrix is given by

Pγ = I +
1
γ
Q. (2.9)

Inserting (2.9) into (2) given in [28] yields the alternative formula (2.2).

Remark 2.3. Due to the fact that the components of the generator matrix Qθ are generally linear in θ, hence
for all m ≥ 2, q(m)

ij = 0. Revisiting the proposed formula (2.2), by taking into account this, one can obtain

π
(n)
θ = n!πθ

(
Q
′

θ Zθ

)n
. (2.10)

Note that formula (2.2) given in Theorem 2.1 is significantly more difficult than the above one (2.10) as in
the case of a non-linear form of components of πθ all their higher-order derivatives maybe different from zero.

Moreover, an equivalent formula of (2.10) for the first derivative of the stationary distribution of a continuous-
time Markov process with denumerable state has been obtained by Heidergott et al. [11] in terms of the deviation
matrix. However, the authors in [11] have followed a different line of the proof, where they have supposed that
the infinitesimal generator associated with the Markov process satisfies the Lipschitz condition.

Example 2.4. Using formula (2.10), one can easily obtain an explicit expression for the lower derivatives of
πθ as follows

π
′

θ = πθ Q
′

θ Zθ, π
(2)
θ = 2πθ

(
Q
′

θZθ

)2

, and π
(3)
θ = 6πθ

(
Q
′

θZθ

)3

.

2.2. Single-valued statistical Taylor series expansion

Using the higher-order sensitivity of stationary distribution with respect to the parameter θ(ω) introduced
in (2.2), one can propagate the epistemic uncertainty of model input parameters to the output measure π(ω).
Under the conditions put forward in Theorem 2.1 it holds that π(ω) can be developed into the following Taylor
series

π(ω) , πθ̄+σ ε(ω) = πθ̄︸︷︷︸
Value at fixed parameter

+
∞∑
n=1

(θ(ω)− θ̄)n

n!
π

(n)

θ̄︸ ︷︷ ︸
Value with uncertainty

, (2.11)

where π(n)

θ̄
denotes the nth order derivative of πθ with respect to parameter θ evaluated at θ̄. Note that the

derivative of order zero of πθ is πθ itself. In the following we refer to the Taylor series in (2.11) as statistical
Taylor series.

In the case where the entries of Qθ are linear mappings of θ, using the representation of the higher-order
derivatives of the stationary distribution given in (2.10), the series expansion given in (2.11) can be written in
the more compact form as

πθ̄+σ ε(ω) = πθ̄

∞∑
n=0

(
(θ(ω)− θ̄)Q

′

θ̄ Zθ̄

)n
. (2.12)

Using the approach outlined above, one can easily numerically compute the different moments of the consid-
ered output measure. In particular, assuming that the moments E[(ε(ω))n] are finite, the expected value and
the variance of the the stationary distribution π(ω) can be calculated as follows

E [π(ω)] =
∞∑
n=0

π
(n)

θ̄

n!
E
[
(θ(ω)− θ̄)n

]
=
∞∑
n=0

σn π
(n)

θ̄

n!
E [(ε(ω))n] , (2.13)
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and
Var [π(ω)] , E

[
(π(ω)− π̄(ω))2

]
= E

[
(π(ω))2

]
− E [π̄(ω)]2 .

Example 2.5. If we assume that in the uncertain input parameter θ(ω), see (1.1), the random variable modeling
the epistemic uncertainty distribution ε(ω) is described by a standard normal distribution denoted by N (0, 1).
Then, the nth moments exist and are finite for any non-negative integer n ≥ 1. We have

E [(ε(ω))n] =

0, if n is odd;

(n− 1)!!, if n is even,

where (n− 1)!! is the semifactorial of (n− 1) which is defined as

(n− 1)!! =
s∏
l=1

(2l − 1),

and s = dn/2e, with dxe is the smallest integer larger of equal to x.
Specifically, for an even positive integer n = 2p, p ≥ 0, the expected value of π(ω) given in (2.13), can be

obtained in more explicit form as follows

E [π(ω)] =
∞∑
n=0

σn π
(n)

θ̄

n!
E [(ε(ω))n]

= πθ̄

∞∑
p=0

(
σQ

′

θ̄ Zθ̄

)2p

(2p− 1)!!. (2.14)

In the same vein, the variance of πi(ω) can be derived as follows

Var [πi(ω)] =
∞∑
n=1

∞∑
m=1

αi,n αi,mCov(ε(ω)n, ε(ω)m)

=
∞∑
n=1

∞∑
m=1

αi,n αi,m
[
E(ε(ω)n+m)− E(ε(ω)n) E(ε(ω)m)

]
=
∞∑
p=1

∞∑
q=1

αi,2p αi,2q
[
E(ε(ω)2p+2q)− E(ε(ω))2p E(ε(ω))2q

]
+
∞∑
p=0

∞∑
q=0

αi,2p+1 αi,2q+1E(ε(ω)2p+2q+2)

=
∞∑
p=1

∞∑
q=1

αi,2pαi,2q [(2p+ 2q − 1)!!− (2p− 1)!!(2q − 1)!!]

+
∞∑
p=0

∞∑
q=0

αi,2p+1 αi,2q+1(2p+ 2q + 1)!!, (2.15)

where

αi,k =
σk

k!
π

(k)

θ̄
= πθ̄

(
σQ

′

θ̄ Zθ̄

)k
eTi ,

with eTi = (0 . . . , 1︸︷︷︸
at the i position

, . . . 0).
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Introduce the kth order Taylor approximation of π(ω) at θ̄ defined as follows

Tθ(k, ε(ω)) =
k∑

n=0

(θ(ω)− θ̄)n

n!
π

(n)

θ̄
. (2.16)

The remainder term is given by

Rθ(k, ε(ω)) = π(ω)− Tθ(k, ε(ω)). (2.17)

Example 2.6. For the normal distributed noise model presented in Example 2.5, the expected value and
variance of π(ω) at the truncated Taylor series are given respectively by

E [Tθ(k, ε(ω))] = πθ̄

dk/2e∑
p=0

(
σQ

′

θ̄ Zθ̄

)2p

(2p− 1)!! (2.18)

Var [Tθ(k, ε(ω))i] =
dk/2e∑
p=1

dk/2e∑
q=1

αi,2pαi,2q [(2p+ 2q − 1)!!− (2p− 1)!!(2q − 1)!!]

+
dk−1/2e∑
p=0

dk−1/2e∑
q=0

αi,2p+1 αi,2q+1(2p+ 2q + 1)!!.

Remark 2.7. In practice, both parameters θ̄ (the estimated mean value of the random variable θ) and σ
(the standard deviation of θ) are commonly determined either from a finite number of observations (data) or
are based on experts’ predictions. Hence, these parameters can be computed using any standard statistical
technique.

2.3. Bounds for the statistical remainder term

To use the Taylor series expansion introduced above in (2.11), it is mandatory to consider its truncated
version. Therefore, in practice, we limit to use just a finite number of first terms of the Taylor series. For practical
purposes, one needs to give a quantitative bound for the remainder term. For that, the error introduced by this
truncation or approximation (see (2.17)) can be expressed by the Peano form of the remainder as follows

Rθ(k, ε(ω)) = (θ(ω)− θ̄)k φk(θ(ω)),

where limθ(ω)→θ̄ φk(θ(ω)) = 0.
Under the assumption of analyticity of the stationary distribution πθ̄ (i.e., it is infinitely differentiable with

respect to θ), a typical form for the function φk can be chosen as follows

φk(θ(ω)) =
∞∑

n=k+1

(θ(ω)− θ̄)n−k

n!
π

(n)

θ̄
.

For computational purposes, one needs to estimate the following remainder term

Rθ(k, ε(ω)) = (θ(ω)− θ̄)k
∞∑

n=k+1

(θ(ω)− θ̄)n−k

n!
π

(n)

θ̄
.

This idea is already outlined in [1] for the estimate of the Lagrange form of the remainder, where it is
encountered the problem of the estimate of the higher derivative of the stationary distribution of π at θ;
however, in this paper, we use another form (Peano form) for the remainder term, that is slightly different from
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the Lagrange one, and for which the problem mentioned above is not posed. Note also that in [1] the sensitivity
of the stationary distribution is expressed in terms of the deviation matrix associated with the Markov chain,
but here it is expressed in function of the fundamental matrix of the corresponding Markov chain. Moreover, in
the present paper, we deal with the sensitivity of continuous-time Markov chain, so as indicated above that, in
this case, the components of the generator matrix Qθ are linear mappings of θ. In the following, we develop a
new approach allowing us to derive an explicit expression for the remainder term under Peano form.

Rθ(k, ε(ω)) = (θ(ω)− θ̄)k
∞∑

n=k+1

(θ(ω)− θ̄)n−k

n!
π

(n)

θ̄

= πθ̄ (θ(ω)− θ̄)k
∞∑

n=k+1

(θ(ω)− θ̄)n−k
(
Q
′

θ̄ Zθ̄

)n
= πθ̄

∞∑
n=k+1

(
(θ(ω)− θ̄)Q

′

θ̄ Zθ̄

)n
. (2.19)

In order to obtain a useful estimate for the remainder term, we will use the expected of the remainder term
established in (2.19). For that, we first estimate the expectation of Rθ(k, ε(ω)). This estimate is given in the
Lemma below.

Lemma 2.8. Under (1.1) with ε standard normal distributed, the expected value of the remainder term is given
as follows

E (Rθ(k, ε(ω))) ≤ πθ̄
∞∑

p=dk/2e+1

(
2σQ

′

θ̄ Zθ̄

)2p

. (2.20)

Proof. By definition, the expected value of the remainder term can be computed as follows

E (Rθ(k, ε(ω))) = πθ̄

∞∑
n=k+1

E
(
θ(ω)− θ̄

)n (
Q
′

θ̄ Zθ̄

)n
= πθ̄

∞∑
p=dk/2e+1

(2p)!
2pp!

(
σQ

′

θ̄ Zθ̄

)2p

.

Using the fact that for any positive integer p, we have

(2p)! ≤ 23pp!. (2.21)

Noting that the inequality (2.21) can be easily proven by induction on p. Hence, it follows that

E (Rθ(k, ε(ω))) ≤ πθ̄
∞∑

p=dk/2e+1

23pp!
2pp!

(
σQ

′

θ̄ Zθ̄

)2p

≤ πθ̄
∞∑

p=dk/2e+1

22p
(
σQ

′

θ̄ Zθ̄

)2p

≤ πθ̄
∞∑

p=dk/2e+1

(
2σQ

′

θ̄ Zθ̄

)2p

,

which proves the claim. �
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In order to estimate the remainder term, we will use the 1-norm of a vector v (defined as the absolute entry
sum), denoted by ||v||1, and the ∞-norm of a matrix M (defined as its maximum absolute row sum), denoted
by ||M ||∞.

Theorem 2.9. Assume (1.1) with ε standard normal distributed and let the conditions put forward in
Theorem 2.1 be satisfied. If the following condition holds:

(C) there exists a finite constant c such that∥∥∥∥(Q′θ̄ Zθ̄)2
∥∥∥∥ ≤ c < 1/4σ2,

then

‖E (Rθ(k, ε(ω)))‖ ≤
(
4σ2c

)dk/2e+1

1− 4σ2c
· (2.22)

Proof. Taking ||.||∞ norm on both sides of (2.20) yields

‖E (Rθ(k, ε(ω)))‖ ≤

∥∥∥∥∥∥πθ̄
∞∑

p=dk/2e+1

(
2σQ

′

θ̄ Zθ̄

)2p

∥∥∥∥∥∥
≤ ‖πθ̄‖

∞∑
p=dk/2e+1

(
4σ2

∥∥∥∥(Q′θ̄ Zθ̄)2
∥∥∥∥)p .

By (C) it holds that

‖E (Rθ(k, ε(ω)))‖ ≤
∞∑

p=dk/2e+1

(
4σ2c

)p
≤
(
4σ2c

)dk/2e+1

1− 4σ2c
·

�

Subsequently, a detailed discussion on the convergence of the series in (2.12) will be outlined in the next
subsection.

2.4. Convergence of the statistical Taylor series

Frequently, the radius of convergence r of the power series (2.12) is given by the Cauchy–Hadamard formula

1/r = lim sup
n→∞

∥∥∥∥π(n)

n!

∥∥∥∥1/n

. (2.23)

An upper bound for 1/r is provided in the following theorem.

Theorem 2.10. Assume (1.1) with ε standard normal distributed. Under the conditions of Theorem 2.1 and
provided that condition (C) holds, we have

1/r < 1/2σ, (2.24)

where σ is the standard deviation of the parameter θ(ω).
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Proof. From (2.23), it follows that

1/r ≤
∥∥∥πθ̄ (Q′θ̄ Zθ̄)∥∥∥

≤
∥∥∥Q′θ̄ Zθ̄∥∥∥ .

By condition (C), ∥∥∥Q′θ̄ Zθ̄∥∥∥2

< 1/4σ2,

and we arrive at
1/r2 < 1/4σ2.

Hence, we get
r > 2σ. (2.25)

On the other hand, the series (2.12) converges if

|θ(ω)− θ̄| < r,

which implies that
|θ(ω)− θ̄|2p < r2p. (2.26)

Taking the expectation on both sides of (2.26) yields

E
(
|θ(ω)− θ̄|2p

)
= σ2p (2p)!

2p p!
< r2p.

Using (2.21), we obtain
E
(
|θ(ω)− θ̄|2p

)
≤ (2σ)2p < r2p.

This allows us to get
2σ < r. (2.27)

From (2.25) and (2.27) we get the following upper bound

1/r < 1/2σ.

�

2.5. Chebyshev risk bounds

Let f ≥ 0 be a cost function. The risk in taking πθ̄f as cost measure rather than π(ω)f is given by

π(ω)f − πθ̄f,

where the decision maker wants to avoid large positive values of the above expression as this means that the
actual costs π(ω)f were significantly larger than the projected costs πθ̄f . In order to asses the risk incurred by
working with π(ω)f one wants to bound

P
(
π(ω)f − πθ̄f ≥ η

)
, (2.28)

where η is a problem dependent threshold expressing the deviation from the planned the decision maker is
willing to take. In this paper we consider models in which πθ̄f can be obtained by closed form solution.

We analyze the risk that the actual performance deviates more than, say, r percent from the numerical value
πθ̄f . For this we let

η =
r

100
πθ̄f,
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and

Rθf =
∞∑
n=1

E[ε(ω)n]
n!

σnπ
(n)

θ̄
f.

Then it follows from (2.11) that

E[π(ω)f ] = E[πθ̄+σε(ω)f ] = πθ̄f +Rθf,

which implies
|π(ω)f − E[π(ω)f ]| ≥ |π(ω)f − πθ̄f | − |Rθf |,

and

P (|π(ω)f − πθ̄f | ≥ η) = P (|π(ω)f − E[π(ω)f +Rθf ]| ≥ η)
≤ P (|π(ω)f − E[π(ω)f ]| ≥ η − |Rθf |) . (2.29)

We let δ = η −
∣∣∣Rθf ∣∣∣ > 0, and applying Chebyshev’s inequality to (2.29), we get

P (|π(ω)f − E[π(ω)f ]| ≥ δ) ≤ Var [π(ω)f ]
δ2

·

To summarize, we arrive at

P
(∣∣∣π(ω)f − πθ̄f

∣∣∣ ≥ η) ≤ Var [π(ω)f ](
r

100πθ̄f − |E[π(ω)f ]− πθ̄f |
)2 · (2.30)

3. Single-value: Extended numerical example

By the Taylor series expansion approach for Markov chains a wide class of reliability models can be sys-
tematically and thoroughly studied. This approach leads in many cases to numerically stable algorithms for
stationary Markov chain. In this section, we use this approach to numerically analyze the parametric epistemic
uncertainty propagation in certain Markov reliability models. Particularly, we discuss two kinds of systems: a
redundancy-standby system and a Jackson network with group breakdowns and repairs, where we consider the
perturbation of a single parameter.

3.1. Redundancy-standby system

Components or subsystems in a system may be more relevant for the system’s reliability than others. In order
to improve the reliability and availability of a system, one may either use components with high reliability or
redundancy-standby systems. In this section, we consider a simple standby model; see Figure 1. The system has
two components in standby configuration, one online and other as a backup. When a primary component fails
after some time that has an exponential distribution with parameter λ, standby component is started up. There
is a repair facility in which the repair time is exponentially distributed with parameter µ. The infinitesimal
generator associated with the Markov process, representing the number of operating components, is given by

Qλ =

−µ µ 0
λ −(λ+ µ) µ
0 λ −λ

 . (3.1)

Solving system, see (2.3), we obtain

πi =
(µ/λ)i

1 + (µ/λ) + (µ/λ)2
, for i = 0, 1, 2. (3.2)
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Figure 1. Two components standby system.

In the sequel, we assume that the failure rate λ is determined from a finite number of observations and has
uncertainty associated with it. Using the approach outlined in Section 2.2, we will numerically calculate the
expectation and the variance of the stationary distribution corresponding to the studied model. In this regard,
a new model is introduced now for the failure rate

λ = λ̄ + σ ε, (3.3)

with ε standard normal distributed, and moreover λ̄ is the estimated mean value provided by the statistic of the
failure rate λ, σ its standard deviation and ε is a random variable modeling the epistemic distribution, which
follows the standard normal distribution.

The fundamental matrix Zλ of the continuous-time Markov chain is given by

Zλ =




µ2(λ2 + 3λ) + µ(λ3 + λ2) + λ4 + µ3

(λ2 + λµ+ µ2)2
(λ+ 1)µ3 − (λ− λ2)µ2 − (λ2 − λ3)µ

(λ2 + λµ+ µ2)2
µ2(λ2 + λµ− 2λ− 2µ+ µ2)

(λ2 + λµ+ µ2)2

λ(λ+ 1)µ2 − λ(λ− λ2)µ− λ(λ2 − λ3)

(λ2 + λµ+ µ2)2
λ3µ+ λ3 + λ2µ2 + µ3(λ+ 1)

(λ2 + λµ+ µ2)2
µ(1 + µ)λ2 − µ(µ− µ2)λ− µ(µ2 − µ3)

(λ2 + λµ+ µ2)2

λ2(λ2 + λµ− 2λ+ µ2 − 2µ)

(λ2 + λµ+ µ2)2
(1 + µ)λ3 − (µ− µ2)λ2 − (µ2 − µ3)λ

(λ2 + λµ+ µ2)2
λ2(µ2 + 3µ) + λ(µ3 + µ2) + λ3 + µ4

(λ2 + λµ+ µ2)2




. (3.4)

In order to investigate the accuracy of the approximation developed in Section 2.2, we compare the obtained
numerical results with those obtained by Monte Carlo simulation and analytical results. Note that the analytical
expression used to calculate the expectation and variance of the continuous random variable π(λ(ω)) is given by

E [π(λ(ω))] =

+∞∫
−∞

π(λ)fλ(λ(ω)) dλ, Var (π(λ(ω))) =
∫ +∞

−∞

(
π(r)− E

[
π(λ(ω))]

)2
fλ(r) dr,

where fλ is the probability density function of λ(ω).
In our numerical experiments, all calculations are done with Matlab Software Package. For the numerical

experiments, we let ξ = 10−3, µ = 2, λ̄ = 3 and σ = 0.4. Then, applying (3.1)–(3.4), we obtain

πλ̄ = (0.4737, 0.3158, 0.2105), Qλ̄ =

−2 2 0
2 −5 2
0 3 −3

 , andZλ̄ =

0.6454 0.2548 0.0997
0.3823 0.4127 0.2050
0.2244 0.3075 0.4681

 .

In this case, the obtained value of the bound of the remainder term, by applying (2.22), is 0.0060 and the degree
of the Taylor polynomial required for achieving this precision is k = 4. Moreover, Condition (C) is satisfied. In
fact, we obtain c = 0.1163 < 1.5625, and the radius of convergence r obtained for the same values of parameters
is 1.9000. Note that condition (2.24) is satisfied, i.e., 0.5263 < 1.2500. The behavior of the upper bound for
the expected value of the remainder term with respect to changes of the order of Taylor series expansions
is shown in Figure 2. The expected value of the remainder term for the precision ξ = 10−3 is estimated at
‖E [Rθ(4, ε(ω))]‖ = 3.0206× 10−4.
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Figure 2. The upper bound for the expected value of the remainder term for the precision
ξ = 10−3.

Table 1. Expected value of πi, i = 0, 1, 2.

Expected value π0 π1 π2

Taylor series expansion 0.4703 0.3150 0.2147
Monte Carlo simulation 0.4711 0.3145 0.2144
Analytical expectation 0.4683 0.3120 0.2122

Table 2. Variance of πi, i = 0, 1, 2

Variance π0 π1 π2

Taylor series expansion 0.0022 0.0001 0.0014
Monte Carlo simulation 0.0024 0.0002 0.0015
Analytical variance 0.0021 0.0001 0.0013

We compare the expected value and the variance of each component of the stationary distribution π(ω)
by using the three approaches (i) Taylor series expansion, (ii) Monte Carlo simulation and (iii) the analytical
expression. The results are provided in Tables 1 and 2.

We conclude with a risk analysis. Following the framework developed in Section 2.5. We choose the cost
function f as an indicator function on i = 0, i.e.,

f(i) =
{

1, if i = 0;
0, otherwise.

With this choice and using (2.30), we will apply the bound in (2.30) for the risk that π0(λ(ω)) deviates more
than r percent from the numerical value π0(λ̄). The Chebyshev’s inequality bound put forward in (2.30) yields

P
(∣∣π0(λ(ω))− π0(λ̄)

∣∣ ≥ (0.01× r)× π0(λ̄)
)
≤ Var (π0(λ(ω)))(

r
100π0(λ̄)− |E[π0(λ(ω))]− π0(λ̄)|

)2 ·
Numerical results shown in Figure 3.
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Figure 3. Risk bounds versus true probability for: σ = 0.4, λ̄ = 3, µ = 2.

Figure 4. Queuing network example.

3.2. Network with group breakdowns and repairs

In this section we discuss an example taken from [32]. For details and background we refer to this reference.
Consider the Jackson network with J = 7 nodes (Fig. 4), where we assume throughout that servers are FCFS
single-server stations with infinite waiting capacity, and let J̃ = {1, . . . , 7}. We identify the labeling of the
service rate µi with the server labels so that µi refers to server i. There are two arrival streams with arrival
rate λ1 and λ2, respectively, and throughout the paper, it is assumed that arrival processes are of Poisson type.
Routing is Markovian, and arrows indicate possible routes. Apart from these classical features of a Jackson
network, we assume that there is a set of nodes V = {1, 5, 7} that have infinite supply. For j ∈ V , customers
in the infinite supply chain have low priority, where customers arriving either from the outside or from another
server have high priority with the preemptive-resume regime: Service of a low priority customer is interrupted
as soon as a high priority customer arrives. When a low priority customer is served and fed into the network,
she/he becomes a high priority customer. Routing decisions, service times, and inter-arrival times are assumed
to be mutually independent.

Suppose that λ1 < µ1, µ3 and µ1 > µ3. Then, without infinite supply at node 1, node 3 is stable in the
classical definition as the rate with which customers arrive at node 3 is smaller than the service rate. In case of
infinite supply at node 1, however, node 1 acts as Poisson source and the incoming traffic rate at node 3, which
is then µ1, is larger than the service rate, which causes node 3 to become unstable; for details see [32].
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We consider the following possible breakdown scenarios ∅, {3}, {5}, {3, 5}. We assume that the rate with
which a breakdown of server i = 3, 5 occurs is given by τi, and the corresponding repair rate by ρi. In the same
vein, let τ3 + τ5 be the rate with which the operating system enters breakdown state {3, 5}, and let 2 min(ρ3, ρ5)
be the rate with which the systems jumps from breakdown state {3, 5} to the state ∅ with all server operating.

It is shown in [32] that the stationary distribution π on the breakdown scenarios is given by

π(∅) = c−1, π({3}) = c−1 τ3
ρ3
, π({5}) = c−1 τ5

ρ5
, π({3, 5}) = c−1 τ3 + τ5

2 min(ρ3, ρ5)

with normalizing constant

c = 1 +
τ3
ρ3

+
τ5
ρ5

+
τ3 + τ5

2 min(ρ3, ρ5)
·

3.2.1. Analysis of the system performance

Initially, we assume that the exact value of the rate τ3 is not well known, hence this parameter is called the
uncertain parameter and it is supposed random variable with known mean and variance. This random variable
is then written using the following linear perturbation

τ3(ω) = τ̄3 + σε(ω), (3.5)

where τ̄3, σ, are respectively estimated mean and the standard deviation of the random variable τ3(ω), ε(ω) is
the random variable modeling the parametric uncertainty on the parameter τ3.

Taking into account the uncertainty in the parameter τ3, the stationary vector πτ3 , on the set of states
{∅, {3}, {5}, {3, 5}} is viewed as the output function of the Jackson network model. We let θ = τ3 and write π(n)

τ3

for the nth derivative of a function πθ with respect to θ evaluated at θ = τ̄3. Letting Qτ3 denote the generator
matrix of the breakdown process and Zτ3 the corresponding fundamental matrix, we have from Remark 2.3 that

1
n!
π

(n)
τ̄3 = πτ̄3(Q′τ̄3Zτ̄3)n,

for n ≥ 1. Under the assumption that ε(ω) is normal distributed, the approximation of the expectation and
variance in closed-form expression provided in (2.14) and (2.15) become

E [π(ω)] =
∞∑
p=0

σ2p πτ̄3(Q′τ̄3Zτ̄3)2p (2p− 1)!! (3.6)

and

Var [πi(ω)] =
∞∑
n=1

∞∑
m=1

αi,n αi,mCov(ε(ω)n, ε(ω)m)

=
∞∑
p=1

∞∑
q=1

αi,2pαi,2q [(2p+ 2q − 1)!!− (2p− 1)!!(2q − 1)!!]

+
∞∑
p=0

∞∑
q=0

αi,2p+1 αi,2q+1(2p+ 2q + 1)!! (3.7)

where

αi,k =
σk

k!
π

(k)
τ̄3 .

Tables 3 and 4 provide the numerical results for the expected value and variance of the stationary vector via
Taylor series expansion and the simulation. Here, the parameters of the Jackson model are fixed as follows:
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Table 3. Expected value of the stationary distribution π.

Expected value π∅ π{3} π{5} π{3,5}

Taylor series expansion 0.2829 0.2303 0.2122 0.2743
Monte Carlo simulation 0.2828 0.2305 0.2121 0.2743
Analytical expectation 0.2830 0.2303 0.2122 0.2743

Table 4. Variance of the stationary distribution π.

Variance π∅ π{3} π{5} π{3,5}

Taylor series expansion 10−2 0.2194 0.5216 0.1234 0.0095
Monte Carlo simulation 10−2 0.2270 0.5396 0.1277 0.0098
Analytical variance 10−2 0.2274 0.5406 0.1279 0.0098

τ5 = 0.9, ρ5 = 1.2, ρ3 = 0.8, whereas, the uncertain rate with which a breakdown of server i = 3 occurs is
normally distributed with mean τ̄3 = 0.7 and standard deviation σ = 0.3.

Let f the cost function defined as

f(i) =
{

1, if i = ∅;
0, otherwise.

The risk in taking π∅(τ̄3) as output measure rather than π∅(ω) is given by

π∅(ω)− π∅(τ̄3).

To assess the risk incurred by working with π∅(ω) one wants to bound

P (|π∅(ω)− π∅(τ̄3)| ≥ (0.01× r)× π∅(τ̄3)) .

So, using the Chebyshev’s inequality (2.30), this risk can be bounded by the following inequality

P (|π∅(ω)− π∅(τ̄3)| ≥ (0.01× r)× π∅(τ̄3)) ≤ Var (π∅(ω))(
r

100π∅(τ̄3)− |E[π∅(ω)]− π∅(τ̄3)|
)2 ·

The numerical results of the computation of the bound is summarized in Figure 5 for the first component of
the stationary distribution.

4. The multiple-parameter case

4.1. Higher-order sensitivities

A formula appropriate for the higher-order sensitivity of the continuous-time Markov chain stationary distri-
bution with respect to multiple-parameter follows from a development similar to that of the previous section. To
this end, we let θ = (θ1, θ2, . . . , θm). Let us now assume that the continuous-time Markov chain generator matrix
Q depends on m parameters, θ1, θ2, . . . , θm, in writing Qθ = Q(θ1, θ2, . . . , θm). We will denote its stationary
distribution by πθ = π(θ1, θ2, . . . , θm). In the sequel, we are typically interested in establishing a closed-form
expression for the higher-order sensitivity of stationary distribution to multiple-parameter, which is a multivari-
ate analogue to that in Theorem 2.1. In this regard, we assume that all components of the generator matrix Qθ
are differentiable functions with respect to each parameter θi, 1 ≤ i ≤ m. In order to provide a compact way
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Figure 5. Risk bounds versus true probability for the component π{∅}.

to establish the Taylor expansion of the stationary distribution πθ, we introduce the following notation of the
multi-index ı = (ı1, ı2, . . . , ım), which is an m-tuple of nonnegative integers

|ı| = ı1 + ı2 + . . .+ ım, ı! = ı1!× ı2!× . . .× ım!, θı = θı11 × θ
ı2
2 × . . .× θımm

for ı ∈ Nm and θ ∈ Rm. If κ = (κ1, κ2, . . . , κm) is another multi-index, then the sum and difference of ı and κ
is defined component-wise as

ı± κ = (ı1 ± κ1, ı2 ± κ2, . . . , ım ± κm).

For multi-indices ı, κ, with κ ≤ ı (i.e., κp ≤ ıp for all p = 1, . . . ,m), we define(
ı
κ

)
=
(
ı1
κ1

)(
ı2
κ2

)
· · ·
(
ım
κm

)
.

Similarly, if the |ı|th order partial derivative of πθ exist in some neighborhood of θ, then these ones are denoted
by

Dıπθ =
∂|ı|πθ

∂θı11 ∂θ
ı2
2 . . . ∂θımm

·

In the following, we state the main result concerning the higher-order derivatives of the stationary distribution
with respect to multiple-parameter for finite continuous-time Markov chains. We assume that Qθ is infinitely
often element-wise differentiable and denote the matrix of element-wise nth partial derivatives with respect to
θi by

∂Qθ
∂θi
·

The precise statement concerning the multivariate version of the higher-order derivatives of the stationary
distribution πθ with respect to θ = (θ1, θ2, . . . , θm) are given, in terms of the fundamental matrix Zθ, in the
Theorem below.

Theorem 4.1. Let θ ∈ Θ ⊂ Rm. Suppose that Qθ is element-wise partially differentiable with respect to θi,
1 ≤ i ≤ m. Moreover, assume that all the |ı|th order partial derivatives are continuous with respect to θ, then
πθ is |ı|-times differentiable at the point θ, and the |ı|th order partial derivatives of the stationary distribution
πθ are given by

Dıπθ =
∑
|κ|<|ı|

(
ı
κ

)
DκπθD

ı−κQθ Zθ, (4.1)

where κ and ı are two multi-indices.
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Proof. We prove the theorem by induction and in order to simplify the proof we consider m = 2, i.e., θ = (θ1, θ2).
For that, introduce the following statement

(Sn) :
∂|ı|πθ
∂θı11 ∂θ

ı2
2

=
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|Qθ

∂θ
ı1−κ1
1 ∂θ

ı2−κ2
2

)
Zθ.

The initial step of the proof consists to prove that the statement (Sn) is true for |ı| = 2. For θ1 6= θ2, we will
show that

∂2πθ
∂θ1∂θ2

=
∂πθ
∂θ1

∂Qθ
∂θ2

Zθ +
∂πθ
∂θ2

∂Qθ
∂θ1

Zθ + πθ
∂2Qθ
∂θ1∂θ2

Zθ. (4.2)

We have π(θ1,θ2)Q(θ1,θ2) = 0,

π(θ1,θ2) e = 1.
(4.3)

Taking the derivative of both sides of the equations (4.3) with respect to θ1, we obtain
∂πθ
∂θ1

Qθ + πθ
∂Qθ
∂θ1

= 0,

∂πθ
∂θ1

e = 0.
(4.4)

Again taking the derivative of both sides of the equations (4.4) with respect to θ2 yields that
∂2πθ
∂θ1∂θ2

Qθ + ∂πθ
∂θ1

∂Qθ
∂θ2

+ ∂πθ
∂θ2

∂Qθ
∂θ1

+ πθ
∂2Qθ
∂θ1∂θ2

= 0,

∂2πθ
∂θ1∂θ2

e = 0.

Following the same line of argument in (2.5), one obtains

∂2πθ
∂θ1∂θ2

Πθ = 0. (4.5)

Subtracting the equation (4.5) from the first equation of (4.4), we arrive at

∂2πθ
∂θ1∂θ2

Qθ −
∂2πθ
∂θ1∂θ2

Πθ︸ ︷︷ ︸
=0

+
∂πθ
∂θ1

∂Qθ
∂θ2

+
∂πθ
∂θ2

∂Qθ
∂θ1

+ πθ
∂2Qθ
∂θ1∂θ2

= 0.

It follows from simple algebra that (Πθ −Qθ) is invertible. Hence, (4.2) holds.
Using the fact that all the ıth order partial derivatives of πθ are continuous with respect to θ, then one can

change the order of mixed derivatives at θ, so that we obtain

∂2πθ
∂θ1∂θ2

=
∂2πθ
∂θ2∂θ1

·

For θ1 = θ2, we will obtain the same result stated in Theorem 2.1.
Secondly, we prove that if the statement (Sn) is true for |ı| = k, then it must also be true for |ı| = k+ 1. So,

we have
∂|ı|πθ
∂θı11 ∂θ

ı2
2

=
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|Qθ

∂θ
ı1−κ1
1 ∂θ

ı2−κ2
2

)
Zθ· (4.6)
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Multiplying both sides of the equation (4.6) on the right by (Πθ −Qθ), we obtain

∂|ı|πθ
∂θı11 ∂θ

ı2
2

(Πθ −Qθ) =
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|Qθ

∂θ
ı1−κ1
1 ∂θ

ı2−κ2
2

)
.

Taking into account that
∂|ı|πθ
∂θı11 ∂θ

ı2
2

Πθ = 0.

This yields

− ∂|ı|πθ
∂θı11 ∂θ

ı2
2

Qθ =
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|Qθ

∂θ
ı1−κ1
1 ∂θ

ı2−κ2
2

)
· (4.7)

Taking derivatives of both sides of equation (4.7) with respect to θ1, then we obtain

− ∂|ı|+1πθ

∂θı1+1
1 ∂θı22

Qθ −
∂|ı|πθ
∂θı11 ∂θ

ı2
2

∂Qθ
∂θ1

= S1 + S2,

where

S1 =
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|+1πθ

∂θκ1+1
1 ∂θκ2

2

(
∂|ı−κ|Qθ

∂θ
ı1−κ1
1 ∂θ

ı2−κ2
2

)
,

and

S2 =
∑
|κ|<|ı|

(
ı1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|+1Qθ

∂θ
ı1+1−κ1
1 ∂θ

ı2−κ2
2

)
·

After some algebra and using the fact that(
ı1
κ1

)
+
(

ı1
κ1 − 1

)
=
(
ı1 + 1
κ1

)
,

we arrive at

− ∂|ı|+1πθ

∂θı1+1
1 ∂θı22

Qθ =
∑

|κ|<|ı|+1

(
ı1 + 1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|+1Qθ

∂θ
ı1+1−κ1
1 ∂θ

ı2−κ2
2

)
· (4.8)

Inserting ∂|ı|+1πθ
∂θ
ı1+1
1 ∂θ

ı2
2

Πθ, which equal to zero, on the left-hand side of equation (4.8). By simple algebra, we obtain

∂|ı|+1πθ

∂θı1+1
1 ∂θı22

=
∑

|κ|<|ı|+1

(
ı1 + 1
κ1

)(
ı2
κ2

)
∂|κ|πθ

∂θκ1
1 ∂θκ2

2

(
∂|ı−κ|+1Qθ

∂θ
ı1+1−κ1
1 ∂θ

ı2−κ2
2

)
Zθ,

which concludes the proof of the statement. �

Remark 4.2. As has already been mentioned in the previous case, in case that the components of the generator
matrix Qθ are affine linear with respect to each θi, i = 1, . . . ,m, we obtain for all k ≥ 2

∂kQθ
∂θki

= 0.

Introduce the following finite multiset I of ordered indices

I = {1, . . . , 1︸ ︷︷ ︸
ı1

, 2, . . . , 2︸ ︷︷ ︸
ı2

, . . . ,m, . . . ,m︸ ︷︷ ︸
ım

},
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where each element p appears exactly as often as is its multiplicity ıp in I. Let Ap ⊆ I be a distinguish-
able permutation of elements of I, each multiset Ap has exactly |ı| ordered indices, then the total number of
distinguishable permutations in I is

$ =
(

|ı|
ı1, . . . , ım

)
=

|ı|!
ı1! . . . ım!

,

which yields A1, . . . , A$ multiset permutations.
Thereby, we get the equivalent version of (4.1) for the case of linear perturbation, which is given by

∂|ı|πθ̄
∂θı11 . . . ∂θımm

= ı!πθ
$∑
p=1

∏
j∈Ap

(
∂Qθ
∂θj

Zθ

)
. (4.9)

Furthermore, to the best of our knowledge, the new formula (4.9) has not been introduced previously in the
literature. This constitutes a generalization of the earlier works [6,8,9,11], as it addresses the question whether
establishing a closed-form expression for higher-order sensitivity of the continuous-time Markov chain stationary
distribution to multiple-parameter, which is derived in terms of the fundamental matrix.

Example 4.3. For cost function f , πθf is totally differentiable. Its derivative is given by the gradient, which
has elements

∂

∂θi
πθf = πθ

(
∂Qθ
∂θi

Zθ

)
,

and the elements of the Hessian of πθf are given by

∂2

∂θi∂θj
πθf = πθ

(
∂Qθ
∂θi

Zθ

)(
∂Qθ
∂θj

Zθ

)
+ πθ

(
∂Qθ
∂θj

Zθ

)(
∂Qθ
∂θi

Zθ

)
,

where I = {i, j}, $ = 2, so two permutations in I are possible: A1 = {i, j}, and A2 = {j, i} for i 6= j, and for
i = j, we get

∂2

∂θ2
i

πθf = 2!πθ

(
∂Qθ
∂θi

Zθ

)2

.

4.2. Statistical Taylor series expansions: Multiple-parameters

In this section, we discuss the multivariate Taylor series expansion for propagating the uncertainty in
continuous-time Markov chain stationary distribution, due to epistemic uncertainties in the model input param-
eters. More precisely, using the higher-order sensitivity of the stationary distribution with respect to multiple
parameters, which is introduced in (4.9), we propose an approximate method based on Taylor series expansion
for computing the expected value and the variance of the stationary distribution π(ω), which is function of ran-
dom variables: θ1(ω), . . . , θm(ω). In this sense, under the conditions of Theorem 4.1, the Taylor series expansion
of the stationary distribution π(ω) of multiple-parameter θ(ω) = (θ1(ω), . . . , θm(ω)), can be written compactly
as

π(ω) , πθ̄+σ ε(ω) =
∑
|ı|≥0

(θ(ω)− θ̄)ı

ı!
Dıπθ. (4.10)
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More explicitly

πθ̄+σ ε(ω) =
∞∑
i1=0

. . .

∞∑
im=0

(θ1(ω)− θ̄1)i1 . . . (θm(ω)− θ̄m)im

i1! . . . im!

(
∂i1+...+imπ

∂θi11 . . . ∂θimm

)
(θ1, . . . , θm)

= π(θ̄1, . . . , θ̄m) +
m∑
j=1

∂π(θ1, . . . , θm)
∂θj

(θj(ω)− θ̄j)

+
1
2!

m∑
j=1

m∑
k=1

∂2π(θ1, . . . , θm)
∂θj∂θk

(θj(ω)− θ̄j)(θk(ω)− θ̄k)

+
1
3!

m∑
j=1

m∑
k=1

m∑
l=1

∂3π(θ1, . . . , θm)
∂θj∂θk∂θl

(θj(ω)− θ̄j)(θk(ω)− θ̄k)(θl(ω)− θ̄l) + . . . (4.11)

Note that for each parameter θi, 1 ≤ i ≤ m, we associate a model under the form (1.1), i.e., for all i, such
that 1 ≤ i ≤ m, we let

θi(ω) = θ̄i + σi εi(ω), (4.12)

where θ̄i and σi represent the estimated mean value and the standard deviation associated with the random
variable θi(ω), respectively, and εi(ω) is a zero mean normal random variable, modeling the epistemic uncertainty
distribution.

Example 4.4. The Taylor series to third order around the point (θ̄1, θ̄2) is given as follows

π(θ̄1 + σ1ε1, θ̄2 + σ2ε2) = π(θ̄1, θ̄2) +
∂π

∂θ1
σ1ε1 +

∂π

∂θ2
σ2ε2

+
1
2

[
∂2π

∂θ2
1

σ2
1ε

2
1 + 2

∂2π

∂θ1∂θ2
σ1ε1σ2ε2 +

∂2π

∂θ2
2

σ2
2ε

2
2

]
+

1
6

[
∂3π

∂θ3
1

σ3
1ε

3
1 + 3

∂3π

∂θ2
1∂θ2

σ2
1ε

2
1σ2ε2 + 3

∂3π

∂θ1∂θ2
2

σ1ε1σ
2
2ε

2
2 +

∂3π

∂θ3
2

σ3
2ε

3
2

]
+R(3, ε1(ω), ε2(ω)),

where R(3, ε1(ω), ε2(ω)) is the Taylor series remainder.

Taking into account the linear form of the higher-order derivatives of the stationary distribution πθ with
respect to θ = (θ1, θ2, . . . , θm), that are given in (4.9), the expression of the Taylor series expansion introduced
above in (4.11) can be rewritten as

πθ̄+σ ε(ω) =
∑
|ı|≥0

(θ(ω)− θ̄)ı

ı!
∂|ı|πθ̄

∂θı11 . . . ∂θımm

= πθ̄
∑
|ı|≥0

$∑
p=1

∏
j∈Ap

(
(θj(ω)− θ̄j)

∂Qθ̄
∂θj

Zθ̄

)
, (4.13)

where θ̄ = (θ̄1, . . . , θ̄m).
Thereby, based on the Taylor expansion approach introduced here and assuming that the (mixed) moments

E [(ε(ω))ı] are finite, the expected value and the variance of the stationary distribution π(ω) can be easily
numerically computed through the following formulae

E [π(ω)] =
∑
|ı|≥0

Dıπθ
ı!

E
[
(θ(ω)− θ̄)ı

]
=
∑
|ı|≥0

σı
Dıπθ
ı!

E [(ε(ω))ı] , (4.14)
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where σı =
∏m
p=1 σ

ıp
p = σı11 . . . σımm and (ε(ω))ı =

∏m
p=1(εp(ω))ıp = (ε1(ω))ı1 . . . (εm(ω))ım .

It is obvious from the above equations that it is required that the (mixed) moments E [(ε(ω))ı] are finite. In
the following we discuss the impact of possible dependence of (εi(ω), 1 ≤ i ≤ m).

4.2.1. Independent input parameters

We assume that the random variables εıpp (ω) are independent for all p, 1 ≤ p ≤ m. Therefore, the expected
value of π(ω) in (4.14) can be explicitly computed as follows

E [π(ω)] =
∑
|ı|≥0

Dıπθ
ı!

E
[
(θ(ω)− θ̄)ı

]
=
∑
|ı|≥0

σı
Dıπθ
ı!

E

[
m∏
p=1

(εp(ω))ıp
]

=
∑
|ı|≥0

σı
Dıπθ
ı!

m∏
p=1

E [(εp(ω))ıp ]

=
∑
||≥0

σ2 D
(2)πθ
(2)!

m∏
p=1

(2p − 1)!!.

For a truncated Taylor series, the expected value is given as follows

E [π(ω)] = πθ̄

dk/2e∑
||≥0

(2− 1)!!
$∑
h=1

∏
l∈Bh

(
∂Qθ̄
∂θl

Zθ̄σl

)
, (4.15)

where

$ =
|2|!

(21)! . . . (2m)!
,

and Bh is a multiset permutation of elements of

I = {1, . . . , 1︸ ︷︷ ︸
21

, 2, . . . , 2︸ ︷︷ ︸
22

, . . . ,m, . . . ,m︸ ︷︷ ︸
2m

}.

Example 4.5. The approximate expected value of the stationary distribution π(θ1, θ2) is given by the following
formula

E [π(θ1, θ2)] ≈ πθ̄
1∑

1=0

1∑
2=0

(21 − 1)!!(22 − 1)!!
$∑
h=1

∏
l∈Bh

(
∂Qθ̄
∂θl

Zθ̄σl

)

= πθ̄ + (2− 1)!!πθ̄
∏

l∈{1,1}

(
∂Qθ̄
∂θl

Zθ̄σl

)
+ (2− 1)!!πθ̄

∏
l∈{2,2}

(
∂Qθ̄
∂θl

Zθ̄σl

)

= πθ̄ + πθ̄

(
∂Qθ̄
∂θ1

Zθ̄σ1

)2

+ πθ̄

(
∂Qθ̄
∂θ2

Zθ̄σ2

)2

.
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Similarly, one can obtain an explicit expression of the variance of the stationary distribution πi(ω). This is
given by

Var (πi(ω)) =
∑
|ı|≥0

(βi,ı)
2 Var

(
m∏
p=1

(εp(ω)ıp)

)

=
∑
|ı|≥0

(βi,ı)
2

E

[
m∏
p=1

εp(ω)2ıp

]
−

[
E

m∏
p=1

(εp(ω)ıp)

]2


=
∑
|ı|≥0

(βi,ı)
2

[
m∏
p=1

E(εp(ω)2ıp)−
m∏
p=1

[E(εp(ω)ıp)]2
]

=
∑
|ı|≥0

(βi,ı)
2
m∏
p=1

E(εp(ω)2ıp)−
∑
|`|≥0

(βi,2`)
2
m∏
p=1

[
E(εp(ω)2`p)

]2
=
∑
|ı|≥0

(βi,ı)
2
m∏
p=1

(2ıp − 1)!!−
∑
|`|≥0

(βi,2`)
2
m∏
p=1

[(2`p − 1)!!]2 , (4.16)

where

βi,ı = σı
Dıπθ
ı!

eTi ,

and

eTi = (0 . . . , 1︸︷︷︸
at the i position

, . . . 0).

4.2.2. Dependent input parameters

Assume that for all nonnegative integers p, such that 1 ≤ p ≤ m, the random variables εp(ω) are dependent
with correlation matrix

Σ = (Cov(εj , εk))1≤j≤m;1≤k≤m,

commonly called “the covariance matrix”. In this regard, we discuss a general way of computing the expected
value and the variance of π(ω), where the mixed moments E[

∏m
p=1(εp(ω))ıp ] are expressed in terms of covariance

matrix Σ. That allows us to study the effect correlation between the random variables εp(ω), 1 ≤ p ≤ m, has.
If, for example, we suppose that εp(ω) follows the standard normal distribution, and Σ is m × m positive
semidefinite matrix. Then the expected value of the stationary distribution π(ω) is given by

E [π(ω)] =
∑
|ı|≥0

σı
Dıπθ
ı!

E

[
m∏
p=1

(εp(ω))ıp
]
. (4.17)

Explicit expressions of the expectation E[
∏m
p=1(εp(ω))ıp ] have long been available in the statistics literature

[3, 15,18,19,25,26,31,35]. We will use the following elegant formula obtained in [19]:

E

[
m∏
p=1

(εp(ω))ıp
]

=

{
1

(|ı|/2)!

∑ı
ν=0(−1)|ν|

(
ı
ν

) (
hTΣh

2

)ı/2
, if |ı| is even;

0, if |ı| is odd,
(4.18)

where h = (ı1/2− ν1, . . . , ım/2− νm)T , ν = (ν1, . . . , νm), and |ν| = ν1 + . . .+ νm.
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Inserting (4.18) into the truncated Taylor series, one can easily provide a compact closed form expression for
the expectation of πθ as follows

E [π(ω)] =
dk/2e∑
||≥0

σ2 D
(2)πθ
(2)!

1
||!

2∑
ν=0

(−1)|ν|
(

2
ν

)(
hT1 Σh1

2

)

+
dk/2e−1∑
|`|≥0

σ2`+1 D
(2`+1)πθ

(2`+ 1)!
1

(|2`+ 1|/2)!

2`+1∑
ν=0

(−1)|ν|
(

2` + 1
ν

)(hT2 Σh2

2

)(|2`+1|/2)

, (4.19)

where h1 = (1/2− ν1, . . . , m/2− νm)T , and h2 = ((2`1 + 1)/2− ν1, . . . , (2`m + 1)/2− νm)T .
Analogously, one can compute the variance of πi(ω) by using the following compressed formula

Var (πi(ω)) =
∑
|ı|≥0

∑
||≥0

βi,ıβi, Cov(ε(ω)ı, ε(ω))

=
∑
|ı|≥0

∑
||≥0

βi,ıβi,
[
E
[
(ε(ω))ı+

]
− E [(ε(ω))ı] E [(ε(ω))]

]
, (4.20)

where
βi,ı = σı

Dıπθ
ı!

eTi

and

Cov(ε(ω)ı, ε(ω)) = Cov

(
m∏
p=1

εıpp (ω),
m∏
p=1

εpp (ω)

)
.

At this point, we may turn to problem of bounding the remainder term. Therefore, the Taylor series expansion
introduced in (4.10) can be rewritten as follows

π(ω) , πθ̄+σ ε(ω) =
∑
|ı|≤k

Dıπθ
ı!

(θ(ω)− θ̄)ı

︸ ︷︷ ︸
=Tθ(k,ε(ω))

+
∑
|ı|≥k+1

φı(θ(ω))(θ(ω)− θ̄)ı

︸ ︷︷ ︸
=Rθ(k,ε(ω))

, (4.21)

where
lim

θ(ω)→θ̄
φı(θ(ω)) = 0.

4.3. Bounds on the statistical remainder term

In this section, bounds for the remainder term are provided for the case of independent input parameters in
Section 4.3.1, and for dependent parameters in Section 4.3.2.

4.3.1. Independent input parameters case

To bound the remainder term of the Taylor series expansion introduced in (4.21), we will follow the same
line of arguments in [1]. Then, it follows that

E [Rθ(k, ε(ω))] =
∑
|ı|≥k+1

Dıπθ
ı!

E
[
(θ(ω)− θ̄)ı

]
=

∑
||≥dk/2e+1

σ2 D
(2)πθ
(2)!

m∏
p=1

(2p − 1)!!.
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For computational purposes, we propose to truncate the above sum to some order κ. Therefore, we obtain the
following estimation

E [Rθ(k, ε(ω))] ≈
u∑

||=dk/2e+1

σ2 D
(2)πθ
(2)!

m∏
p=1

(2p − 1)!!.

Consider the following statement:

(C) There exists a finite constant δ such that
‖D(2)πθ‖ ≤ δ.

Then, we can obtain

‖E [Rθ(k, ε(ω))] ‖ ≤
u∑

||=dk/2e+1

σ2 δ

(2)!

m∏
p=1

(2p − 1)!!

≤
u∑

||=dk/2e+1

σ2 δ

(2)!

m∏
p=1

(2p)!
2pp!

≤ δ
u∑

||=dk/2e+1

σ2

2 !
.

4.3.2. Dependent input parameters case

Subsequently, we will establish an alternative estimation for the expectation of the remainder term in the
case of the dependent input parameters. So, we have

E [Rθ(k, ε(ω))] ≈
u∑

|ı|=k+1

Dıπθ
ı!

E
[
(θ(ω)− θ̄)ı

]
=

u∑
||=dk/2e+1

σ2 D
(2)πθ
(2)!

1
||!

2∑
ν=0

(−1)|ν|
(

2
ν

)(hT1 Σh1

2

)
·

Under the assumption (C), one can obtain

‖E [Rθ(k, ε(ω))] ‖ ≤ δ
u∑

||=dk/2e+1

σ2

(2)!
1
||!

2∑
ν=0

(−1)|ν|
(

2
ν

)(hT1 Σh1

2

)
·

5. Markovian reliability system with parallel components

A parallel system is a configuration such that, as long as not all of the system components fail, the entire
system works. In this section, we consider a simple system built with two independent components; see Figure 6.
This system is operating correctly if at least one of the components is functioning. Assume that each component
has two possible states, functioning, denoted by 1, and out of order, denoted by 0. Therefore, the system as a
whole has four states: 0:=(0, 0), 1:=(0, 1), 2:=(1, 0), and 3:=(1, 1). For example, (1, 0) means that the first
component is functioning whereas the second one failed. Let λi and µi denote the failure rate and repair rate
of component i for i = 1, 2, respectively. The generator of the Markov chain can be written as

Q(λ1,λ2) =

−(µ1 + µ2) µ2 µ1 0
λ2 −(µ1 + λ2) 0 µ1

λ1 0 −(λ1 + µ2) µ2

0 λ1 λ2 −(λ1 + λ2)

 .
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Figure 6. Parallel structure of two components.

Solving system in (2.3), we obtain

π0 =
λ1λ2

(λ1 + µ1)(λ2 + µ2)
, π1 =

λ1µ2

(λ1 + µ1)(λ2 + µ2)
,

π2 =
λ2µ1

(λ1 + µ1)(λ2 + µ2)
, π3 =

µ1µ2

(λ1 + µ1)(λ2 + µ2)
,

For our numerical purposes, we will compute the fundamental matrix Z(λ1,λ2) by matrix inversion using the
fact that Z(λ1,λ2) = (Π(λ1,λ2) −Q(λ1,λ2))−1.

To illustrate the applicability of the proposed approach outlined above in Section 6, we introduce two models
for the following failure parameters

λ1(ω) = λ̄1 + σ1 ε1(ω), ε1  N (0, 1), (5.1)
λ2(ω) = λ̄2 + σ2 ε2(ω), ε2  N (0, 1), (5.2)

where λ̄1 is the mean of the failure rate of the first component λ1 and σ1 is its standard deviation, λ̄2 is the mean
of the failure rate of the second component λ2 and σ2 is its standard deviation, ε1 the random variable modeling
the epistemic uncertainty associated with λ1 and ε2 the random variable modeling the epistemic uncertainty
inflicted on λ2. Both random variables follow the standard normal distribution.

5.1. Independent input parameters case

Based on the results obtained in Section 4.2.1, we present some numerical examples. Without loss of generality,
we assume that the failure rate of the first component λ1 and the failure rate of the second component λ2 are
independent random variables. Throughout these numerical computations, we fix the following values of input
parameters: µ1 = 3, µ2 = 2, λ̄1 = 2.5, σ1 = 0.3, λ̄2 = 4 and σ2 = 0.5.

For these fixed values of the input parameters, we obtain

π(λ̄1,λ̄2) = (0.3030, 0.1515, 0.3636, 0.1818),

Q(λ̄1,λ̄2) =

−5.0000 2.0000 3.0000 0
4.0000 −7.0000 0 3.0000
2.5000 0 −4.5000 2.0000

0 2.5000 4.0000 −6.5000

 ,

Z(λ̄1,λ̄2) =

 0.4102 0.1435 0.3120 0.1343
0.2870 0.2667 0.2685 0.1777
0.2600 0.1119 0.4622 0.1659
0.2238 0.1481 0.3318 0.2963

 .

Let the precision be ξ = 10−5. Then, we will obtain the degree of Taylor polynomial k = 4. Tables 5 and 6
summarize respectively the expected and the variance values of each component of the stationary distribution
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Table 5. Expected value of πi, i = 0, 1, 2, 3.

Expected value π0 π1 π2 π3

Taylor series expansion 0.3009 0.1520 0.3634 0.1837
Monte Carlo simulation 0.3014 0.1527 0.3623 0.1835
Analytical expectation 0.3001 0.1517 0.3625 0.1832

Table 6. Variance of πi, i = 0, 1, 2, 3.

Variance π0 ∗ 10−3 π1 ∗ 10−3 π2 ∗ 10−3 π3 ∗ 10−3

Taylor series expansion 0.5583 0.2614 0.6294 0.3326
Monte Carlo simulation 0.5170 0.2694 0.6150 0.3299
Analytical variance 0.5607 0.2663 0.6365 0.3420

πi, i = 0, 1, 2, 3, computed by the three approaches: Taylor series expansion, Monte Carlo simulation and the
analytical one.

It may be observed from Tables 5 and 6 that the numerical values of the expected and the variance of each
component of the stationary distribution π evaluated through Taylor series expansion approach match precisely
with the ones evaluated through the Monte Carlo simulation and the analytical approach.

5.2. Dependent input parameters case

In this subsection, we address the problem of the evaluation of the stationary distribution π(λ1,λ2), under
the assumption that the uncertain input parameters λ1 and λ2 are dependent random variables. Using the
Taylor series expansion introduced in Subsection 4.3.2, we consider the relationship between these two random
variables. The dependence between λ1 and λ2 is expressed by the correlation ρ. The analytical expression used
to calculate the expectation and variance are given by

E
[
π(λ1, λ2)

]
=

+∞∫
−∞

+∞∫
−∞

π(λ1, λ2)fλ1,λ2 (λ(ω)) dλ1 dλ2 (5.3)

Var
(
π(λ1, λ2)

)
=

+∞∫
−∞

+∞∫
−∞

[π(λ1, λ2)− E [π(λ1, λ2))]2 fλ1,λ2 (λ(ω)) dλ1 dλ2, (5.4)

where the probability density function of λ(ω) is defined as follows

fλ1,λ2 (λ(ω)) =
1

2πσ1σ2

√
(1− ρ2)

exp
[
− 1

2(1− ρ2)

(
(∆λ1)2

σ2
1

)− 2ρ(∆λ1)(∆λ2)
σ1σ2

+
(∆λ2)2

σ2
2

)]
,

where (λi−λi) = ∆λi . Note that the same computational scheme is considered above for the case where λ1 and
λ2 are independent, with the following joint density function

fλ1,λ2 (λ(ω)) =
1

2πσ1σ2
exp

[
−1

2

(
(λ1 − λ1)2

σ2
1

+
(λ2 − λ2)2

σ2
2

)]
.

To perform the numerical analysis, we consider the same values of model parameters: µ1 = 3, µ2 = 2, λ̄1 =
2.5, σ1 = 0.3, λ̄2 = 4 andσ2 = 0.5. Note that Condition (C) is satisfied for δ = 0.06. In the same vein, let
ξ = 10−4, then we obtain the degree of Taylor polynomial k = 2.
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Figure 7. Expectation of the stationary distribution π(ω).

Certainly, the epistemic uncertainty inflicted in the failure rate parameters λ1 and λ2 may influence the
stationary distribution π(λ1,λ2). So, we give a variety of numerical examples to explain such influence and the
validity of obtained results. The graphs displayed in Figures 7 and 8 present the expectation and variance of each
component of the stationary distribution πi, i = 0, 1, 2, 3, computed numerically, by using the both approaches
(Taylor series expansion and the analytical one), with variation of the correlation coefficient ρ ∈ [−1, 1].

It is to be noted that varying in the values of the correlation coefficient ρ, causes varying values of the
expectation and variance of each component of the stationary distribution πi, i = 0, 1, 2, 3, especially those
corresponding to the variance of each component. The main insight provided by this example is that correlation
ρ effects the stationary state distributions for some states in a monotone increasing way whereas for others
positive correlation leads to smaller stationary state distribution. These qualitative relations allow to judge the
impact suspected correlation has on the performance metrics. For example, if we are interested in the stationary
probability the system is fully functional, i.e., π1, then we see that possible positive correlation will increase this
probability but as the variance increases as well it is more risky to deduce the behavior of the fully functional
state from π(λ̄1, λ̄2). It is worth noting that this qualitative behavior is reversed for the stationary probabilities
of states 1 and 2.

6. Markovian reliability system of an n-unit standby repairable system

In this section, we consider a system that consists of n identical units and k repair facilities. At the beginning
(t = 0), all units are good, and one unit is working and others are under cold standby. The operating unit
fails after some time that has an exponential distribution with parameter λ. The repair facility will repair
the working one as soon as it fails. At the same time, the standby one begins to work. The repair time is
exponentially distributed with parameter µ. Assume that each unit after repair is ’as good as new’ and it either
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Figure 8. Variance of of the stationary distribution π(ω).

begins to work again or becomes under cold standby. If the rest units fail while k units are still under repair,
they must wait for repair. The switch is perfect, instantaneous. The random variables are supposed mutually
independent. Let x(t) denote the number of failed units (including the units that are under repair) at time t.
The stochastic process {x(t), t ≥ 0} is Markov process with state space E = {0, 1, . . . , n}. The infinitesimal
generator associated with the Markov process {x(t), t ≥ 0} is given by:

Q =



−λ λ
µ −(λ+ µ) λ

2µ −(λ+ 2µ) λ
. . . . . . . . .

(k − 1)µ −(λ+ (k − 1)µ) λ
kµ −(λ+ kµ) λ

. . . . . . . . . . . . . . . . . . . . .
kµ −(λ+ kµ) λ

kµ −kµ


(n+1)×(n+1)

. (6.1)

In the sequel, we assume that the failure rate λ and repair rate µ are determined from a finite number
of observations and has uncertainty associated with them. Using the approach outlined in Section , we will
numerically calculate the expectation and the variance of some reliability indices deduced from the stationary
distribution corresponding to the studied model. Particularly, the availability of the system, A(λ, µ), and failure
frequency of the system, f(λ, µ). We assume that the uncertain input parameters λ and µ are dependent random
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Figure 9. Statistical moments of the availability and failure frequency of the system using
Taylor series expansions.

variables. To perform the numerical analysis, we introduce two models for the following parameters :

λ(ω) = λ̄ + σ1 ε1(ω), ε1  N (0, 1), (6.2)
µ(ω) = µ̄ + σ2 ε2(ω), ε2  N (0, 1), (6.3)

where the input parameters are fixed as follows : λ̄ = 4, σ1 = 0.5 µ̄ = 1 and σ2 = 0.1.
Let the precision be ξ = 10−4. Then, we will obtain the degree of Taylor polynomial k = 4, and the estimation

of the remainder term E [Rλ,µ(k, ε1(ω), ε2(ω))] ≈ 9.2787 × 10−6. The Figure 9 presents the expectation and
variance of two indices, availability and failure frequency of a 10 unit standby repairable system with 5 repair
facilities, computed numerically, by using the Taylor series expansion approach.

7. Conclusion

We have proposed a new method based on the statistical Taylor series expansion for finite continuous-time
Markov chains with discrete state space. We have obtained a closed form expression of the higher derivatives of
the stationary distribution in terms of the fundamental matrix associated with the Markov chain. These results
were applied to compute the model output metrics of Markov reliability models, under propagation of epistemic
uncertainty in the model input parameters. Specifically, an approximative expression for the expectation and
variance of the components of stationary distribution of the Markov chain is established. We have also provided
an expression for the remainder term of the Taylor series, and have included the effect of the correlation
between the uncertain input parameters. In addition, we have estimated the risk incurred by working with
uncertain performance measures rather than those evaluated at fixed parameter. Finally, we have performed
some numerical examples to illustrate the potential of the proposed approach. The techniques adopted in this
paper can be applied to analyze more complex models such as unreliable queueing models, which is left for
future investigations.
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