The stability of a communication network has a great importance in network design. There are several vulnerability measures used to determine the resistance of network to the disruption in this sense. Domination theory provides a model to measure the vulnerability of a graph network. A new vulnerability measure of domination integrity was introduced by Sundareswaran in his Ph.D. thesis (Parameters of vulnerability in graphs (2010)) and defined as where denotes the order of a largest component of graph and is a dominating set of . The domination integrity of an undirected connected graph is such a measure that works on the whole graph and also the remaining components of graph after any break down. Here we determine the domination integrity of wheel graph , Ladder graph , , Friendship graph , Thorn graph of and which are commonly used graph models in network design.
Keywords: Integrity, domination, domination integrity
Besirik, Ayse 1 ; Kilic, Elgin 1
@article{RO_2019__53_5_1721_0,
author = {Besirik, Ayse and Kilic, Elgin},
title = {Domination integrity of some graph classes},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {1721--1728},
year = {2019},
publisher = {EDP Sciences},
volume = {53},
number = {5},
doi = {10.1051/ro/2018074},
zbl = {1430.05025},
mrnumber = {4016524},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2018074/}
}
TY - JOUR AU - Besirik, Ayse AU - Kilic, Elgin TI - Domination integrity of some graph classes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2019 SP - 1721 EP - 1728 VL - 53 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ro/2018074/ DO - 10.1051/ro/2018074 LA - en ID - RO_2019__53_5_1721_0 ER -
%0 Journal Article %A Besirik, Ayse %A Kilic, Elgin %T Domination integrity of some graph classes %J RAIRO - Operations Research - Recherche Opérationnelle %D 2019 %P 1721-1728 %V 53 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ro/2018074/ %R 10.1051/ro/2018074 %G en %F RO_2019__53_5_1721_0
Besirik, Ayse; Kilic, Elgin. Domination integrity of some graph classes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 53 (2019) no. 5, pp. 1721-1728. doi: 10.1051/ro/2018074
, , , , , A survey of integrity. Discrete Appl. Math. 37/38 (1992) 13–28. | Zbl | MR | DOI
, , , Vulnerability in graphs-a comparative survey. J. Combin. Math. Combin. Comput. 1 (1987) 13–22. | Zbl | MR
and , Distance in Graphs. Addison-Wesley Publishing Company, Boston, MA (1990). | Zbl | MR
and , Integrity of total graphs via certain parameters. Math. Notes 75 (2004) 665–672. | Zbl
and , Integrity in graphs: bounds and basics. J. Combin. Math. Combin. Comput. 7 (1990) 139–151. | Zbl | MR
, Distance in thorny graph. Publ. Inst. Math. (Beograd) 63 (1998) 31–36. | Zbl | MR
, Graph Theory. Addison Wesley, Boston, MA (1972). | Zbl
, and , Fundamentals of Domination in Graphs. Marcel Dekker Inc, New York, NY (1998). | Zbl | MR
and , On the matching properties of three fence graphs. J. Math. Chem. 12 (1993) 211–218. | MR | DOI
and , A note on the integrity of middle graphs. Lecture Notes in Computer Science. Springer, Berlin 4381 (2007) 130–134. | Zbl | MR | DOI
and , Labeling techniques in friendship graph. Int. J. Eng. Res. Gen. Sci. 3 (2015) 277–284.
and , Domination integrity in graphs. In: Proceedings of International Conference on Mathematical and Experimental Physics, Prague (2010) 46–57.
, Parameters of vulnerability in graphs. Ph.D. thesis, Rajalakshmi Engineering College, Thandalam, Chennai (2010).
, , Domination integrity of middle graphs, edited by , and . In: Algebra, Graph Theory and Their Applications, Narosa Publishing House, New Delhi (2010) 88–92. | Zbl
and , Domination integrity in trees. Bull. Int. Math. Virtual Inst. 2 (2012) 153–161. | MR | Zbl
and , Computational complexity of domination integrity in graphs. TWMS J. App. Eng. Math. 5 (2015) 214–218. | MR | Zbl
and , Some new results on domination integrity of graphs. Open J. Discrete Math. 2 (2012) 96–98.
and , Domination integrity of splitting graph of path and cycle. ISRN Comb. 2013 (2013) 795427. | Zbl
and , Domination integrity of total graphs. TWMS J. App. Eng. Math. 4 (2014) 117–126. | MR | Zbl
and , Domination integrity of some path related graphs. App. Appl. Math. 9 (2014) 780–794. | MR | Zbl
, Introduction to Graph Theory Second Edition. Prentice Hall, Upper Saddle, NJ (2001). | Zbl | MR
Cité par Sources :





