We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space on a regular domain of The result is: if then the Kolmogorov metric entropy satisfies . This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound, we provide a new universal coding based on a thresholding-quantizing procedure using replication.
Keywords: entropy, coding, Besov spaces, wavelet bases, replication
@article{PS_2003__7__239_0,
author = {Kerkyacharian, G\'erard and Picard, Dominique},
title = {Replicant compression coding in {Besov} spaces},
journal = {ESAIM: Probability and Statistics},
pages = {239--250},
publisher = {EDP Sciences},
volume = {7},
year = {2003},
doi = {10.1051/ps:2003011},
mrnumber = {1987788},
zbl = {1031.41014},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps:2003011/}
}
TY - JOUR AU - Kerkyacharian, Gérard AU - Picard, Dominique TI - Replicant compression coding in Besov spaces JO - ESAIM: Probability and Statistics PY - 2003 SP - 239 EP - 250 VL - 7 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps:2003011/ DO - 10.1051/ps:2003011 LA - en ID - PS_2003__7__239_0 ER -
Kerkyacharian, Gérard; Picard, Dominique. Replicant compression coding in Besov spaces. ESAIM: Probability and Statistics, Volume 7 (2003), pp. 239-250. doi: 10.1051/ps:2003011
[1] , Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 1021-1024. | Zbl
[2] , Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. 3 (1984) 259-282. | Zbl | MR
[3] and, An adaptative compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. | Zbl | MR
[4] and, Piecewise-polynomial approximation of functions of the classes . Mat. Sbornik 73 (1967) 295-317. | Zbl | MR
[5] , and, Multiscale methods on bounded domains. Trans. AMS 352 (2000) 3651-3685. | Zbl | MR
[6] ,, and, Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11 (2001) 192-226. | Zbl | MR
[7] and, Element of Information Theory. Wiley Interscience (1991). | Zbl | MR
[8] and, On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996) 215-228. | Zbl | MR
[9] , and, Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory 93 (1998) 273-292. | Zbl | MR
[10] , Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150. | Zbl | MR
[11] and, Constructive Approximation. Springer-Verlag, New York (1993). | Zbl | MR
[12] , Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3 (1996) 388-392. | Zbl | MR
[13] , Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. | Zbl | MR
[14] ,, and, Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998). | Zbl | MR
[15] and, Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9 (2000) 283-345. | Zbl | MR
[16] and, Minimax or maxisets? Bernoulli 8 (2002) 219-253. | Zbl | MR
[17] and, Entropy, Universal coding, Approximation and bases properties. Technical Report (2001). | Zbl
[18] and, Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett. 18 (1993) 327-336. | Zbl
[19] and, -entropy and -capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17, 277-364.) | Zbl | MR
[20] , Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53. | Zbl | MR
[21] , Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311. | Zbl
[22] , Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937. | Zbl | MR
[23] , Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975). | Zbl | MR
[24] , Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995). | Zbl | MR
[25] , Empirical processes in M-estimation. Cambridge University Press (2000).
Cited by Sources:






