Ergodic Behaviour of a Multi-Type Growth-Fragmentation Process Modelling the Mycelial Network of a Filamentous Fungus
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 397-435

In this work, we introduce a stochastic growth-fragmentation model for the expansion of the network of filaments, or mycelium, of a filamentous fungus. In this model, each individual is described by a discrete type 𝔢 ∈ {0,1} indicating whether the individual corresponds to an internal or terminal segment of filament, and a continuous trait x ≥ 0 corresponding to the length of this segment. The length of internal segments cannot grow, while the length of terminal segments increases at a deterministic speed v. Both types of individuals/segments branch according to a type-dependent mechanism. After constructing the stochastic bi-type growth-fragmentation process of interest, we analyse the corresponding mean measure (or first moment semigroup). We show that its ergodic behaviour is, as expected, governed by the maximal eigenelements. In the long run, the total mass of the mean measure increases exponentially fast while the type-dependent density in trait converges to an explicit distribution N, independent of the initial condition, at some exponential speed. We then obtain a law of large numbers that relates the long term behaviour of the stochastic process to the limiting distribution N. In the particular model we consider, which depends on only 3 parameters, all the quantities needed to describe this asymptotic behaviour are explicit, which paves the way for parameter inference based on data collected in lab experiments.

DOI : 10.1051/ps/2022013
Classification : 60J80, 35B40, 60J85, 92-10
Keywords: Branching processes, growth-fragmentation systems, limit theorems, spectral analysis
@article{PS_2022__26_1_397_0,
     author = {Toma\v{s}evi\'c, Milica and Bansaye, Vincent and V\'eber, Amandine},
     title = {Ergodic {Behaviour} of a {Multi-Type} {Growth-Fragmentation} {Process} {Modelling} the {Mycelial} {Network} of a {Filamentous} {Fungus}},
     journal = {ESAIM: Probability and Statistics},
     pages = {397--435},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2022013},
     mrnumber = {4516847},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2022013/}
}
TY  - JOUR
AU  - Tomašević, Milica
AU  - Bansaye, Vincent
AU  - Véber, Amandine
TI  - Ergodic Behaviour of a Multi-Type Growth-Fragmentation Process Modelling the Mycelial Network of a Filamentous Fungus
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 397
EP  - 435
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2022013/
DO  - 10.1051/ps/2022013
LA  - en
ID  - PS_2022__26_1_397_0
ER  - 
%0 Journal Article
%A Tomašević, Milica
%A Bansaye, Vincent
%A Véber, Amandine
%T Ergodic Behaviour of a Multi-Type Growth-Fragmentation Process Modelling the Mycelial Network of a Filamentous Fungus
%J ESAIM: Probability and Statistics
%D 2022
%P 397-435
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2022013/
%R 10.1051/ps/2022013
%G en
%F PS_2022__26_1_397_0
Tomašević, Milica; Bansaye, Vincent; Véber, Amandine. Ergodic Behaviour of a Multi-Type Growth-Fragmentation Process Modelling the Mycelial Network of a Filamentous Fungus. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 397-435. doi: 10.1051/ps/2022013

[1] O. Arino, A survey of structured cell population dynamics. Acta Biotheor. 43 (1995) 3–25. | DOI

[2] S. Asmussen and H. Hering Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Zeitsch. Wahrscheinlichkeitstheorie Verwandte Gebiete 36 (1976) 195–212. | MR | Zbl | DOI

[3] K.B. Athreya Limit theorems for multitype continuous time Markov branching processes. Zeitsch. Wahrscheinlichkeitstheorie Verwandte Gebiete 12 (1969) 320–332. | MR | Zbl | DOI

[4] W. Balmant, M.H. Sugai-Guérios, J.H. Coradin, N. Krieger, A.F. Junior and D.A. Mitchell, A model for growth of a single fungal hypha based on well-mixed tanks in series: simulation of nutrient and vesicle transport in aerial reproductive hyphae. PLoS One 10 (2015) e0120307. | DOI

[5] J. Banasiak, K. Pichór and R. Rudnicki Asynchronous exponential growth of a general structured population model. Acta Appl. Math. 119 (2012) 149–166. | MR | Zbl | DOI

[6] V. Bansaye, B. Cloez, P. Gabriel and A. Marguet, A non-conservative Harris’ ergodic theorem. To appear in J. London Math. Soc. 2019). | arXiv | MR

[7] V. Bansaye, J.-F. Delmas, L. Marsalle and V.C. Tran Limit theorems for Markov processes indexed by continuous time Galton-Watson trees. Ann. Appl. Probab. 21 (2011) 2263–2314. | MR | Zbl | DOI

[8] D.J. Barry and G.A. Williams Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis. J. Microsc. 244 (2011) 1–20. | DOI

[9] J. Bertoin and A.R. Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations. J. Funct. Anal. 274 (2018) 2163–2204. | MR | DOI

[10] L. Boddy, J. Wood, E. Redman, J. Hynes and M.D. Fricker Fungal network responses to grazing. Fungal Genet. Biol. 47 (2010) 522–530. | DOI

[11] G.P. Boswell and F.A. Davidson Modelling hyphal networks. Fungal Biol. Rev. 26 (2012) 30–38. | DOI

[12] F. Brikci, J. Clairambault and B. Perthame Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Modell. 47 (2008) 699–713. | MR | Zbl | DOI

[13] J. Calvo, M. Doumic and B. Perthame Long-time asymptotics for polymerization models. Commun. Math. Phys. 363 (2018) 111–137. | MR | DOI

[14] J.A. Cañizo, P. Gabriel and H. Yoldaş Spectral gap for the growth-fragmentation equation via Harris’s Theorem. SIAM J. Math. Anal. 53 (2021) 5185–5214. | MR | DOI

[15] V. Capasso and F. Flandoli On the mean field approximation of a stochastic model of tumour-induced angiogenesis. Eur. J. Appl. Math. 30 (2019) 619–658. | MR | DOI

[16] R. Catellier, Y. D’Angelo and C. Ricci, A mean-field approach to self-interacting networks, convergence and regularity. Math. Models Methods Appl. Sci. 31 (2021) 2597–2641. | MR | DOI

[17] B. Chauvin Sur la propriété de branchement. Ann. IHP Probab. Statist. 22 (1986) 233–236. | MR | Zbl | Numdam

[18] B. Cloez Limit theorems for some branching measure-valued processes. Adv. Appl. Probab. 49 (2017) 549–580. | MR | DOI

[19] B. Cloez, B. De Saporta and T. Roget Long-time behavior and Darwinian optimality for an asymmetric size-structured branching process. J. Math. Biol. 83 (2021) 1–30. | MR | DOI

[20] J. Dikec, A. Olivier, C. Bobéee, Y. D’Angelo, R. Catellier, P. David, F. Filaine, S. Herbert, C. Lalanne, H. Lalucque, L. Monasse, M. Rieu, G. Ruprich-Robert, A. Véeber, F. Chapeland-Leclerc and E. Herbert, Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserine. Sci. Rep. 10 (2020) 3131. | DOI

[21] M. Doumic, A. Olivier and L. Robert, Estimating the division rate from indirect measurements of single cells. ArXiv preprint 2019). | arXiv | MR

[22] H. Du, M. Ayouz, P. Lv and P. Perrée, A lattice-based system for modeling fungal mycelial growth in complex environments. Physica A 511 (2018) 191–206. | DOI

[23] H. Du, T.-B.-T. Tran and P. Perrée, A 3-variable PDE model for predicting fungal growth derived from microscopic mechanisms. J. Theor. Biol. 470 (2019) 90–100. | MR | DOI

[24] J. Engländer, S.C. Harris and A.E. Kyprianou Strong law of large numbers for branching diffusions. Ann. l'I.H.P. Probab. Stat. 46 (2010) 279–298. | MR | Zbl | Numdam

[25] M. Fricker, L. Heaton, N. Jones and L. Boddy The Mycelium as a Network. Microbiol. Spectr. 5 (2017) 3131. | DOI

[26] L. Heaton, B. Obara, V. Grau, N. Jones, T. Nakagaki, L. Boddy and M.D. Fricker Analysis of fungal networks. Fungal Biol. Rev. 26 (2012) 12–29. | DOI

[27] H. Kesten and B.P. Stigum, A Limit Theorem for Multidimensional Galton-Watson Processes, Ann. Math. Statist. 37 (1966) 1211–1223. | MR | Zbl | DOI

[28] A. Lamour, F. Van Den Bosch, A.J. Termorshuizen and M.J. Jeger, Modelling the growth of soil-borne fungi in response to carbon and nitrogen. IMA J. Math. Appl. Med. Biol. 17 (2000) 329–346. | Zbl | DOI

[29] A. Marguet Uniform sampling in a structured branching population. Bernoulli 25 (2019) 2649–2695. | MR | DOI

[30] S. Mischler and J. Scher Spectral analysis of semigroups and growth-fragmentation equations. Ann. l'Institut Henri Poincare (C) Non Linear Anal. 33 (2016) 849–898. | MR | Numdam | DOI

[31] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators. Cambridge Tracts in Mathematics, Cambridge University Press (1984). | MR | Zbl

[32] B. Perthame, Transport equations in biology. Springer Science and Business Media (2006). | MR | Zbl

[33] S.H. Tindemans, N. Kern and B.M. Mulder The diffusive vesicle supply center model for tip growth in fungal hyphae. J. Theor. Biol. 238 (2006) 937–948. | MR | DOI

[34] V.C. Tran Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM: PS 12 (2008) 345–386. | MR | Zbl | Numdam | DOI

Cité par Sources :