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ERGODIC BEHAVIOUR OF A MULTI-TYPE

GROWTH-FRAGMENTATION PROCESS MODELLING THE

MYCELIAL NETWORK OF A FILAMENTOUS FUNGUS

Milica Tomašević1,*, Vincent Bansaye1 and Amandine Véber2

Abstract. In this work, we introduce a stochastic growth-fragmentation model for the expansion
of the network of filaments, or mycelium, of a filamentous fungus. In this model, each individual is
described by a discrete type e ∈ {0, 1} indicating whether the individual corresponds to an internal
or terminal segment of filament, and a continuous trait x ≥ 0 corresponding to the length of this seg-
ment. The length of internal segments cannot grow, while the length of terminal segments increases at a
deterministic speed v. Both types of individuals/segments branch according to a type-dependent mech-
anism. After constructing the stochastic bi-type growth-fragmentation process of interest, we analyse
the corresponding mean measure (or first moment semigroup). We show that its ergodic behaviour
is, as expected, governed by the maximal eigenelements. In the long run, the total mass of the mean
measure increases exponentially fast while the type-dependent density in trait converges to an explicit
distribution N , independent of the initial condition, at some exponential speed. We then obtain a law of
large numbers that relates the long term behaviour of the stochastic process to the limiting distribution
N . In the particular model we consider, which depends on only 3 parameters, all the quantities needed
to describe this asymptotic behaviour are explicit, which paves the way for parameter inference based
on data collected in lab experiments.
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1. Introduction

Filamentous fungi are complex expanding organisms that are omnipresent in nature. They form filamentous
structures known as hyphae. These filaments grow and branch to create potentially huge networks called mycelia,
sometimes covering up to a few square kilometers. To feed the whole mycelium, hyphae tamper with their
environment by decomposing the dead organic matter, making its chemical components available to the next
generation of organisms (including the fungus itself). Thereby, filamentous fungi play a key role in the functioning
of natural ecosystems. They are also able to quickly respond to local threats such as attacks by predators, physical
obstacles, or noxious local conditions, through an efficient chemical communication along the hyphal network,
leading to its partial reorganisation or to the reorientation of the growth capacity of the mycelium away from
danger [10, 25]. All these characteristics made these species appealing to the biochemical (and in particular,
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pharmaceutical) industry, in which they are now routinely used to catalyse various reactions and produce
different types of metabolites. See the review paper [8] for numerous examples and for a careful discussion of
the relation between the extent of mycelial branching and metabolite production.

In this paper, we aim at understanding the basic growth properties of the mycelium in a given species of
filamentous fungi, leaving aside the complex interactions with its environment and ecosystem mentioned above.
More precisely, assuming that the fungus grows in homogeneous conditions and away from predators or pests
(e.g., on a Petri dish in a lab experiment), we want to identify simple descriptors that characterise the growth of
the fungus and allow us to quantify the impact of various forms of stresses (nutrient depletion, pH, etc.) on the
mycelial growth and structure. These descriptors should be robust enough to allow the comparison of different
fungus species.

The expansion of the hyphal network rests upon several biological processes. The first one is the growth of
“primary” hyphae, in a more or less radial way. These hyphae extend the area already covered by the mycelium,
exploring the environment in search for new sources of nutrients. They grow in numbers by branching in two at
their tips (or apexes – we shall later speak of apical branching) at some rate. As in a spider web, these primary
hyphae serve as a backbone for “secondary” hyphae, that branch off from the primary structure (approximately
uniformly along the existing hyphae – we shall later speak of lateral branching). The secondary hyphae increase
the density of the network by growing in different directions and by themselves branching both laterally and at
their apexes. A third process is the fusion of two hyphae when they cross, called anastomosis. This phenomenon
improves the connectivity of the mycelium, as it creates shortcuts for the diffusion of molecules along the network
of filaments. Note that hyphae do not necessarily merge when they cross, even when they are constrained to
evolve in two spatial dimensions as in lab conditions. Alternatively, they may simply bypass each other and keep
growing in different directions; anastomosis represents only a fraction of the outcomes of the crossing events
and these crossings may in fact occur less frequently in nature (in which fungi grow in three dimensions) than
on the two dimensional surface of a Petri dish.

Understanding the basic growth properties and the branching structure of the network of hyphae that results
from them will be the first step before engaging in a more detailed modelling of the fungal growth taking into
account flows of nutrients and chemical signalling along the network, which will be the object of future work.
These questions have already been the object of a lot of attention, and the current state of the art in models
of mycelial growth is substantial. A significant part of it relies on graph theory and consists in the statistical
analysis of experimental quantitative data (number of internal nodes, of apexes, hyphal length, etc., of mycelia
grown in laboratory) [8, 20, 26]. The major difficulties in these approaches, on which progress is still being
made, is to set up a high-quality recording of this multi-scale growth dynamics (starting from a spore of a few
micrometres and ending when the mycelium covers the few square centimetres of a Petri dish), and to be able to
extract the topological network information of interest thanks to semi- or fully automated post-processing tools
able to resolve most of the ambiguities present in the images (note that the number of branch points observable
in these images can reach 105, rendering node identification “with the eye” clearly unfeasible). We refer to [20]
for more details on current challenges in this area. More mechanistic approaches gave rise to a variety of spatially
explicit stochastic models for the spatial spread of fungal mycelia, either lattice-based or lattice-free, in which
hyphae grow in length by colonising neighbouring (free) locations, branch at some rate to give birth to a new
hypha colonising free locations in another direction, and sometimes merge with another hypha when they cross.
See [11] for a review of such models and [22] and references therein for more recent work. Despite their clear
mathematical formulation, to our knowledge no analytical results on the long-term growth properties of these
stochastic networks have been derived, in particular due to the difficulty of handling spatial interactions such
as anastomosis and self-avoidance. The analysis instead relies on intensive simulations, exploring the space of
parameters to find families of parameters producing patterns that match the observations, or looking for phase
transitions in the mycelial growth pattern.

On a much finer scale, most models zoom in on the tip of a single hypha to understand the mechanisms
triggering its extension (see, e.g., [4, 33]). In contrast, other models focus on much larger spatial and temporal
scales and describe the interaction between filamentous fungi and their environments in natural conditions,
mostly in an aggregated way: the whole mycelium is assimilated with a single scalar quantity, its biomass,
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Figure 1. Schematic representation of a network of filaments. Black dots represent branch
points (except the left-most dot which corresponds to the start point of the network), while
open ends that keep on elongating are depicted by triangles. In this example, the network is
made of 15 segments of filaments, of which 7 are internal (i.e., lie between two branch points)
and 8 are terminal (i.e., lie between a branch point and the open end of a filament).

and a system of ordinary differential equations describes the circulation of nutrients and chemical molecules
between the fungus and the environment and its effect on the growth and degradation of the fungus biomass
and on different characteristics of the environment (see, e.g., [28]). More recently, spatially explicit models were
introduced, based on reaction-diffusion partial differential equations [23] or based on a system of stochastic
differential equations (encoding the behaviour of each hypha, including anastomosis and self-avoidance) and its
mean-field deterministic limit [16]. These models are in the same vein as models of tumor-induced angiogenesis
(see, e.g., [15]) and allow in particular to study global quantities such as the stationary shape and speed of the
invasion front formed by the whole mycelium on the spatial scale of observation with the naked eye.

In this work, we instead focus on an intermediate spatial scale, observable in lab experiments thanks to
the previously mentionned technology for the automated recording and analysis of movies such as the one
developped at LIED (University of Paris), which was used in [20] to measure several quantities (exponential
growth rates of the number of free ends of filaments – “open” ends – and of the number of internal nodes in
the network – “closed” ends – in particular) analogous to those which will naturally appear in our analysis
below. Because we shall neglect anastomosis in order to keep a tractable model as a first exploration tool in
what follows, some care will be needed when doing parameter inference based on the model developed below.
This issue will be discussed in Section 6.

Let us now describe our approach. It is based on two strong assumptions which are mostly motivated by
our aim to understand the exponential growth behaviour observed in [20] through a simple but informative
half-mechanistic, half-statistical model:

(i) In completely homogeneous conditions and over small space- and time-scales, the spatial organisation of
the hyphae does not (really) matter. That is, since the mycelium naturally spreads over the available
space, we shall make the approximation that every piece of filament evolves in the same conditions as
the others. Here we neglect the depletion of food due to the high density of hyphae around the origin (or
centre) of the mycelium, which is a reasonable choice when considering short timescales;

(ii) Anastomosis (the fusion of crossing hyphae) does not need to be explicitly modelled and its impact can
be incorporated via an appropriate statistical treatment of the data when doing parameter inference. See
the section on Apex, node and length growth dynamics in [20] and Section 6 below for more details on this
point.

The second assumption may look like a surprising modelling choice, but it has the paramount advantage that
distinct (pieces of) filaments will not interact with each other in the model, allowing us to encode the mycelium
as a branching process.

Each individual in our branching process corresponds to a segment of filament lying between two branching
points (internal, or closed, segment), or between a branching point and the extremity of the filament (terminal,
or open, segment). See Figure 1. An individual is represented by a pair (e, x), where x ≥ 0 is the current length
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Figure 2. (a) Apical branching. An open segment branches into two new filaments at its end.
The open end of the segment therefore closes (and the segment becomes “closed” itself) and
two open segments, initially of length 0, are created and start growing in length. (b) Lateral
branching. A new open segment of initial length zero branches off from an existing segment,
which can be open or closed, at a location which is uniformly distributed along the current length
of the existing segment. This branching event fragments the existing length into 2 segments
(one necessarily closed, and one of the same type as the fragmented segment), and adds a third
segment which is open and initially of length zero.

of the corresponding segment and e ∈ {0, 1} encodes whether the segment is open (e = 1) or closed (e = 0).
More precisely, the space in which the pairs (e, x) take their values is

S :=
(
{0} × (0,∞)

)
∪
(
{1} × [0,∞)

)
, (1.1)

excluding closed segments of length 0 for mathematical convenience. Indeed, in the dynamics defined below the
state (0, 0) is an absorbing state and individuals with these characteristics will a.s. never be produced by the
fragmentation of other individuals (see Rem. 2.1). Therefore, should we include (0, 0) in the definition of S, the
mass of such individuals in the population would remain constant equal to its initial value, and taking this mass
into account would only create an artificial particular case to be considered in each step of our analysis.

At every time t ≥ 0, the set of all segments constituting the network is fully described by the following point
measure on S

Zt :=
∑
u∈Vt

δ(eu,xut ), (1.2)

where Vt denotes the indexing set of the individuals alive at time t and zut = (eu, xut ) denotes the characteristics
at time t of individual u ∈ Vt. Note that this representation of the population of segments at any given time
does not allow us to infer who is hooked up with whom in the network, but it will be sufficient for our purposes
(cf. Assumption (i)). We write Mp(S) for the space of all finite point measures on S and we endow it with the
topology of weak convergence. We shall also use the standard notation, for ν =

∑n
i=1 δzi and ϕ a measurable

function on S,

〈ν, ϕ〉 :=

∫
S

ϕ(z)ν(dz) =

n∑
i=1

ϕ(zi).

Let us fix v, b1, b2 ∈ (R∗+)3. The dynamics of the process (Zt)t≥0 are as follows:

(a) Elongation. Open segments elongate deterministically at speed v, while closed segments cannot grow.
More precisely, for every s, t ≥ 0 and u ∈ Vs, conditionally on individual u not being involved in a branching
event during the time interval [s, s+ t), we have for all r ∈ [0, t),

xus+r = xus + euvr. (1.3)
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(b) Apical branching. Each open segment branches “at its apex” at rate b1. That is, every extant individual
u such that eu = 1, independently of each other and at rate b1, is removed from the population and
replaced by three new individuals: one closed individual of the same length as the “parent”, therefore with
characteristics (0, xut−) (where t is the time of the branching event), and two open individuals of length 0
(and thus both with characteristics (1, 0)). See Figure 2(a).

(c) Lateral branching. Every segment (open or closed) of length x > 0 branches laterally at rate b2x and
the branch point is chosen uniformly at random along the segment. That is, for every t ≥ 0 and every
u ∈ Vt− such that xut− > 0, at the instantaneous rate b2x

u
t− individual u is removed from the population

and is replaced by three new individuals: one closed individual of length αuxut−, one individual with
first characteristics eu (i.e., open if the parent was open, or closed if the parent was closed) and length
(1− αu)xut−, and finally an open individual of length 0, where αu is an independent draw from a uniform
distribution over [0, 1]. See Figure 2(b). All individuals branch “laterally” independently of each other and
independently of the apical branching events described in (b).

In the above, removing (resp., adding) an individual naturally translates into removing (resp., adding) the
corresponding atom in Zt at the time of the branching event. Inspired by this description, let us introduce the
following operator G, on which the martingale problem satisfied by (Zt)t≥0 will be based. Let C1

b (R) stand for
the set of all bounded functions on R of class C1 with bounded derivative, and let C1

b (S) stand for the set of
all bounded continuous functions on S with bounded and continuous derivatives w.r.t. the variable x. For every
F ∈ C1

b (R), f ∈ C1
b (S), let the function Ff be defined by

Ff (ν) := F (〈ν, f〉), ν ∈Mp(S), (1.4)

and define for all such functions Ff and all ν ∈Mp(S):

GFf (ν) :=F ′(〈ν, f〉)
∫
S

ev
∂f

∂x
(e, x)ν(de,dx) (1.5)

+ b1

∫
S

e
{
F
(
〈ν, f〉 − f(e, x) + f(0, x) + 2f(1, 0)

)
− F

(
〈ν, f〉

)}
ν(de,dx)

+ b2

∫
S

x

∫
(0,1)

{
F
(
〈ν, f〉 − f(e, x) + f(0, (1− α)x) + f(e, αx) + f(1, 0)

)
− F

(
〈ν, f〉

)}
dαν(de,dx).

Note that if ν gives positive mass to the point (1, 0) ∈ S, by convention we use the right limit f(0, 0+) to give a
sense to the a priori undefined term f(0, 0) appearing in the second integral on the r.h.s of (1.5). In Remark 2.1,
we shall argue that the Lebesgue measure of the set of times t at which the measure describing the current state
of the population has an atom at (1, 0) is zero, so that the chosen convention is unimportant.

In Section 2, we follow [29] and construct a process (Zt)t≥0 on a larger space in which the genealogical
relationship between individuals is retained through the standard Ulam-Harris-Neveu encoding U . This is the
result of Theorem 2.2. If we then restrict our attention to its marginal over S and write (Zt)t≥0 for the resulting
Mp(S)-valued process (see Eq. (2.6) for a more precise definition), we have the following property, under a first
moment assumption which is enough for our purposes. It is also proved in Section 2. Let pl : S → R+ be the
projector on the “length” coordinate, defined by pl(e, x) = x for all (e, x) ∈ S.

Proposition 1.1. Let Z0 be a random variable with values in Mp(S) such that

E
[
〈Z0, 1〉

]
<∞ and E

[
〈Z0, pl〉

]
<∞. (1.6)
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Let (Zt)t≥0 be the càdlàg Mp(S)-valued process constructed in (2.5)–(2.6), starting at Z0 = Z0. Then for every
F ∈ C1

b (R) and f ∈ C1
b (S), (

Ff (Zt)− Ff (Z0)−
∫ t

0

GFf (Zs)ds
)
t≥0

(1.7)

is a martingale.

To be more precise, we have tacitly assumed that Z
0

is constructed from Z0 by giving a label 1, 2, . . . ,
〈Z0, 1〉 to the atoms of Z0 to obtain a point measure on U × S. See Section 2 for more details. Observe that
Theorem 2.2 ensures that Zt is well-defined at any time t ≥ 0, which is not obvious from the informal description
of the process in terms of growth and branching events. Indeed, the total branching rate at time t is proportional
to the number of open individuals 〈Zt,1{e=1}〉 and to the total length 〈Zt, pl〉. Since the total length process
itself increases between the branching times at a speed proportional to the number of open individuals, we
need to check that no explosion occurs. We also derive useful bounds on the expectation of the total number of
individuals and of the total length at time t in Lemma 2.3. From now on, we work with the process (Zt)t≥0 of
Proposition 1.1.

What we have just defined is a stochastic growth-fragmentation model, in which the growth term simply
corresponds to the elongation of each open individual at a fixed linear speed while the branching of an individual
corresponds to its fragmentation “into three pieces” (some of length 0) in such a way that the total length is
conserved. Growth-fragmentation models are now common, in particular in the literature on partial differential
equations where they have been extensively studied. See [32] for a classic and [5, 13, 21] for more recent examples
covering different biological phenomena. Other approaches based on probabilistic representations of the solutions
to growth-fragmentation equations appeared more recently, see in particular [6, 9] and references therein for the
non-conservative case of which our model is an example. Potential applications include the evolution of age-
structured populations (where age is the continuous individual trait that grows linearly and is “fragmented”
into one individual with the same age and one individual with age 0 at the event of a birth), the growth of
bacterial populations (in which the length, or another continuous individual trait of a bacterium, grows during
its lifetime and is split between the two offspring bacteria resulting from a division event), as well as more
general fragmentation phenomena (e.g., of polymers) in which potentially more than two individuals come out
of a fragmentation event and the sharing of the “parental” trait between the “offspring” may not be conservative
(with the production of dust, for instance). Of particular interest is the long-term behaviour of the population
size and trait distribution. A huge literature is devoted to this question, and we refer to the introduction of
[30] for a comprehensive overview. In general, what is shown is that there exists an exponent λ ∈ R (called the
Malthusian exponent) and a stationary profile N on the trait space such that the density nt(x) of individuals
of trait x at time t behaves like

nt(x) ≈ eλt 〈n0, ψ〉N(x) as t→∞, (1.8)

where ψ is a function characterising the impact of the initial condition. The approximation (1.8) is made rigorous
by considering the appropriate function space and by proving the convergence of e−λtnt to 〈n0, ψ〉N in this
space. Although multidimensional continuous traits (age and size, etc.) are sometimes considered, the case of
additional non-evolving discrete types that influence the individual growth and branching properties (like our
type e ∈ {0, 1}) is less common and we could only find a few studies dealing with quiescent and proliferative
cells in models for tumour growth (see, e.g., Sect. 6 in [1], or [12]).

Such deterministic approaches apply when one considers very large populations, already distributed on the
trait space according to some continuous density at the origin of time, for which we suspect that the stochasticity
inherent to the branching or fragmentation dynamics only plays a minor role and the average behaviour of the
population is sufficient to understand how the trait distribution evolves in time. To deal with initially small pop-
ulations, or to justify the growth-fragmentation equation at the population level as being the large-population
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limit of a model at the microscopic level of individual dynamics, individual-based stochastic models are par-
ticularly appropriate tools. The classical connection between the branching process (Zt)t≥0 and deterministic
growth-fragmentation equations is made through the mean measure (or first moment semigroup) defined as fol-
lows. LetMf (S) be the space of all finite measures on S (also endowed with the topology of weak convergence).
For every t ≥ 0, let nt ∈Mf (S) be defined by: for every bounded measurable function f on S,

〈nt, f〉 := E
[
〈Zt, f〉

]
. (1.9)

Note that these quantities are well-defined for all t thanks to the bound on E[〈Zt, 1〉] obtained in Lemma 2.3.
Note also that the definition of nt depends on the distribution of Z0, although for now we do not report this
dependence in the notation for simplicity. To ease the statement of our next results, let us decompose each nt
as follows: for every bounded measurable f : S → R,

〈nt, f〉 =

∫
R+

f(1, x)n1
t (dx) +

∫
R∗+
f(0, x)n0

t (dx), (1.10)

where the measure n1
t on R+ (resp., n0

t on R∗+) is uniquely defined by the set of equations (1.10) written for all
f such that f(e, x) = 0 whenever e = 0 (resp., e = 1).

In Section 3, we use the martingale problem formulation (1.7) to show that if n1
0 and n0

0 both admit a density
with respect to Lebesgue measure, then this property also holds true at any later time and, furthermore, these
densities solve a system of growth-fragmentation equations. More precisely, we prove the following result.

Proposition 1.2. Suppose that the assumptions of Proposition 1.1 are satisfied, and that the measures n1
0 and

n0
0 defined by (1.10) (with t = 0) are absolutely continuous with respect to Lebesgue measure on R+ and R∗+,

respectively. Then for every t ≥ 0, n1
t and n0

t are also absolutely continuous with respect to Lebesgue measure.
Furthermore, abusing notation and writing

n1
t (dx) = n1

t (x) dx and n0
t (dx) = n0

t (x) dx, (1.11)

then the couple (n0
t , n

1
t )t≥0 is a weak solution to the following system: For all x > 0,

∂
∂tn

1
t (x) + v ∂

∂xn
1
t (x) + (b1 + b2x)n1

t (x) = b2
∫∞
x
n1
t (y)dy,

vn1
t (0) = 2b1

∫∞
0
n1
t (y)dy + b2

∫∞
0
y(n1

t (y) + n0
t (y))dy,

∂
∂tn

0
t (x) + b2xn

0
t (x) = b1n

1
t (x) + 2b2

∫∞
x
n0
t (y)dy + b2

∫∞
x
n1
t (y)dy.

(1.12)

The notion of weak solution that we use here will be made precise in the proof.

Once this system has been derived, we may use it to understand the long-term behaviour of the mean measure
(instead of the full stochastic process, to start with). To do so, let us first observe that if we scale time by a
factor 1/v and consider (nt/v)t≥0, then all the above remains true but elongation now happens at speed ṽ = 1,

apical branching at rate b̃1 = b1/v and lateral branching at rate b̃2x := (b2/v)x. Therefore, to ease the notation
and without loss of generality, we now suppose that v = 1. Second, let us introduce the following functions,
which will be needed for our convergence theorem below. Let λ > 0 be the unique positive solution to

b1 +
b2
λ

= λ. (1.13)

We shall see later that λ is the maximal eigenvalue of the spectral problem associated to (1.12), and we now
turn to the corresponding eigenvector.
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Let N1 : R+ → R+ and N0 : R∗+ → R+ be defined by

N1(x) = (b1 + b2x+ λ)e−
∫ x
0

(b1+b2y+λ)dy, (1.14)

and

N0(x) =
N1(x)

(b2x+ λ)2

(
b2 + b1(b2x+ λ)

)
+
b2e
−

∫ x
0

(b1+b2y+λ)dy

(b2x+ λ)3

(
2b2 + b1(b2x+ λ)

)
. (1.15)

We shall show in Proposition 4.1 that N1 and N0 are probability densities (i.e., they integrate to 1). Let us also
define the functions ψ and V on S as follows:

ψ(e, x) =
λ2

λ2 + b2

(
e +

b2
λ
x

)
, V (e, x) = ψ(e, x) + 1 + x2. (1.16)

These quantities may look fairly mysterious at the moment. We shall see in Section 4.1 that they are the
eigenelement of the adjoint problem associated to (1.12) (see Prop. 4.1) and a Lyapunov function useful to
control the dynamics starting from large initial values, respectively. We can now formulate the following theorem.

Theorem 1.3. There exist C,w > 0 such that for any solution (n0
t , n

1
t )t≥0 of (1.12) satisfying 〈n0, V 〉 < ∞,

we have for all t ≥ 0∥∥e−λtn1
t − 〈n0, ψ〉N1

∥∥
L1(R+)

+
∥∥e−λtn0

t − 〈n0, ψ〉N0

∥∥
L1(R∗+)

≤ Ce−wt〈n0, V 〉. (1.17)

Theorem 1.3 is in fact a corollary of the finer convergence theorem formulated in Section 4.2, namely Theo-
rem 4.3, in which the convergence is shown to occur in weighted total variation norm in the appropriate functional
space. Since its statement requires another round of heavy notation, we only provide here a more reader-friendly
version. The proof of Theorem 4.3 uses an analogue of Harris’ ergodic theorem for non-conservative semigroups
(i.e., whose total mass is not conserved through time) derived from growth-fragmentation equations. More pre-
cisely, we use Theorem 2.1 in [6] and most of Section 4.2 will be devoted to proving that the assumptions of
this theorem are satisfied by (nt)t≥0.

This approach was also used in the recent paper [19] in which individuals (bacteria) can be of two types with
different growth parameters: for both types of individuals, the trait considered grows exponentially fast but at
two different rates α0, α1 > 0, and the branching/fragmentation rate is common to all individuals and is trait-
dependent. During each fragmentation event, the length of the “parent” is split between the two offspring in
fixed proportions θ0, θ1 = 1− θ0. Because of the very quick elongation of both types of individuals, together with
the assumption that the (positive) branching rate tends to infinity as the individual length goes to infinity, it is
natural (although not at all easy to prove) that the same form of convergence (1.8) as in similar systems with only
one type of individuals should occur in their framework, and indeed this constitutes the main results of [19]. In
contrast, in our case closed individuals do not elongate and the length of open individuals increases rather slowly
(linearly with time). Since the branching rate of closed individuals is proportional to their lengths, it is not at all
obvious that the subpopulation of closed individuals will develop quickly enough that the whole population size
increases exponentially fast. Furthermore, smaller and smaller closed individuals may accumulate, preventing
the length distribution within the population from stabilising. Therefore, the convergence stated in Theorem 1.3
is a somehow more surprising example of the robustness of the asymptotic behaviour of growth-fragmentation
equations.

Finally, we can build on Theorem 1.3 to obtain the long-term behaviour of our multi-type growth-
fragmentation stochastic model (Zt)t≥0 through a law of large numbers. Indeed, let us define the following
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measure N on S, in the same spirit as the decomposition (1.10): for every bounded measurable f : S → R,

〈N, f〉 =

∫
R+

f(1, x)N1(dx) +

∫
R∗+
f(0, x)N0(dx),

where N1 and N0 are the probability distributions defined in (1.14) and (1.15). Our last result is the following.

Theorem 1.4. Assume that the conditions stated in (1.6) are satisfied. Then for every measurable function
f : S → R such that sup(e,x)∈S |f(e, x)|/(1 + x) <∞, the following convergence in probability holds:

lim
t→∞

〈Zt, f〉
〈Zt, 1〉

=
1

2
〈N, f〉.

The proof of this law large numbers follows a well-established strategy. It exploits the classical martingale
associated to the eigenvalue λ, (Yt)t≥0 := (exp(−λt)〈Zt, ψ〉)t≥0, and the decorrelation properties of the genealogy
of the most recent commun ancestors. More precisely, following [7, 18] and using the spectral gap guaranteed
by Theorem 4.3, we shall prove a convergence in L2 via a formula for forks (or many-to-two formula) and
simultaneously estimate the speed of convergence. More generally, there is a long story of law of large numbers
for multitype branching processes. The L logL criterion guaranteeing the non-degenerescence of the limit of
the martingale Y and the a.s. convergence of the proportions of each type of individuals within the population
(without moment assumptions) hold for the case of a finite number of types [3, 27]. These results admit various
extensions in infinite dimensions (see, e.g., [2, 24]), involving some additional spectral or moment assumptions.
In particular, [2] guarantees a.s. convergence under an additional hypothesis of uniformity of the approximation
of the asymptotic profil of the first moment semigroup by eigenelements. Adapting the arguments of [2, 24]
would probably allow us to obtain the a.s. convergence of the ratios considered in Theorem 1.4. Our result is
weaker, but the approach chosen here for the estimation of the first moment semigroup and the law of large
numbers both cover the class of test functions in which we are interested and should be well suited for future
relevant extensions of this work. Indeed, the techniques of proof used in this work should easily extend to more
generalised forms for the fragmentation and growth rates as well as to varying environments, and should allow
us to estimate the speed of convergence of the estimators of interest in such models.

Roughly speaking, Theorem 1.4 means that the empirical distribution Zt/〈Zt, 1〉 is close to the probability
distribution (1/2)N when t is large. In view of our application, if we could consider that the mycelium grew
only by branching and elongation (disregarding anastomosis), this would allow us to set up a statistical method
to infer the three parameters of the model from experimental data on the type- and length-distribution of the
segments of mycelium observed at some large time t. In particular, a direct consequence of Theorem 1.4 and of
the relation

λ

∫ ∞
0

x(N1(x) +N0(x))dx =

∫ ∞
0

N1(x)dx

that we shall derive at the end of Appendix A.1 is the following. Recall the notation pl for the projector on
the “length” coordinate, and let pe : S → {0, 1} denote the projector on the “type” coordinate defined by
pe(e, x) = e, for all (e, x) ∈ S. For t ≥ 0, let us define the following estimator of λ:

Λ̂t :=
〈Zt, pe〉
〈Zt, pl〉

. (1.18)

Applying Theorem 1.4 to pl and pe, we obtain that Λ̂t converges in probability to λ as t → ∞. Hence, in the
absence of anastomosis, the exponential growth rate of the (total) number of segments can be simply estimated
by the ratio of the number of “open” segments (or extremal pieces of filaments) to the total length of the
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network at some large time t. In Section 6 we shall briefly discuss how the fusion of filaments distorts these
expectations and the directions we shall pursue in future work to get around this issue.

Finally, note that the theorems from [29] and [6] on which our existence and long-term convergence results
hinge are very general and would allow us to consider various generalisations of our type-dependent growth
and fragmentation mechanisms. However, in the particular case considered here all the quantities and functions
of interest are explicit (a nice property which is bound to fail for most generalisations) and in future work
we intend to apply this precise model to experimental data, in collaboration with our colleagues from the
NEMATIC1 research project. We shall therefore stick to this particular model, which should be seen as a simple
but characteristic example of what may be done with other multi-type growth-fragmentation dynamics.

The rest of the paper is organised as follows. In Section 2 we construct theMp(S)-valued process of interest,
(Zt)t≥0, and provide useful bounds on the expected total size 〈Zt, 1〉 and total length 〈Zt, pl〉 of the system
at any time t ≥ 0. In Section 3, we prove Proposition 1.2. In Section 4, we analyse the long time behaviour
of the mean measure. First, we state the spectral problem associated to the system (1.12) and its adjoint and
provide explicit solutions to both problems (Sect. 4.1). Second, in Section 4.2, we prove the finer convergence
Theorem 4.3, of which Theorem 1.3 is a consequence. Theorem 1.4 is proved in Section 5, and the challenges
related to parameter inference are discussed in Section 6. Finally, we prove several technical results in the
appendices. In Appendix A.1, we show that the eigenvalues of the above mentionned spectral problem are
solutions to equation (1.13). In Appendix A.2, we check that the explicit values we provided as the solutions to
the spectral problem indeed satisfy it.

2. Construction of the process (Zt)t≥0

We work on a probability space (Ω,F ,P) rich enough to accommodate all the objects we need below. Following
the method used in [29], we first construct a process (Zt)t≥0 keeping track of the different lines of descent. To
do so, we use the standard Ulam notation to identify each individual:

U = ∪n∈N
{
N× ({1, 2, 3})n

}
. (2.1)

For a given initial state of the population Z0 with I0 individuals (or atoms in Z0), we label its atoms by 1, . . . , I0.
The offspring of an individual u ∈ U are denoted by u1, u2, u3.

We now proceed as in Section 2 of [29], with a few simplifications due to our particular framework. First,
the growth and branching dynamics are homogeneous in time and consequently, in their notation we may take
X = Y = S (we do not need to add a last coordinate to keep track of the current value of time as they do in
their definition of X ). The flow Φ describing the deterministic growth process is simply given for any (e, x) ∈ S
and 0 ≤ s ≤ t by

Φ((e, x), s, t) :=
(
e, x+ e(t− s)v

)
. (2.2)

The instantaneous rate at which a division (or reproduction) event happens to an individual with characteristics
(e, x) is given by

B(e, x) := b1e + b2x. (2.3)

The function B is continuous on S. Each reproducing individual is replaced by exactly 3 offspring, and so in
the notation of [29] we have pk(e, x) = 1{k=3} for all (e, x) ∈ S. The characteristics at birth of the 3 offspring
of an individual of characteristics z = (e, x) are given by a triplet (F1(z,Θ), F2(z,Θ), F3(z,Θ)), where Θ is
an independent draw from a uniform random variable on (0, 1) and the functions F1, F2, F3 : S × (0, 1) →

1Growing and branching networks: Analysis, modelling and simulation of multi-scale spatial exploration, spreading and
morphogenesis under constraints. Confrontation with experimental data obtained from mycelial thalli of Podospora anserina.



ERGODIC BEHAVIOUR OF A MULTI-TYPE GROWTH-FRAGMENTATION PROCESS 407

{0, 1} × R+ are given by: for every (e, x) ∈ S and θ ∈ (0, 1),(
F1(e, x, θ), F2(e, x, θ), F3(e, x, θ)

)
(2.4)

:=


((

0, x θ(b1e+b2x)
b2x

)
,
(
e, x
(

1− θ(b1e+b2x)
b2x

))
, (1, 0)

)
if θ < b2x

b1e+b2x
,(

(0, x), (1, 0), (1, 0)
)

if θ ≥ b2x
b1e+b2x

.

In words, assuming that Θ follows a uniform distribution on (0, 1) we see that the branching of an open individual
(e = 1) is “lateral” (first line above) with probability b2x/(b1 + b2x), or “apical” with probability b1/(b1 + b2x).
Conditionally on Θ < b2x/(b1 + b2x), the first offspring inherits a fraction Θ/[b2x/(b1 + b2x)] of the parental
length, which indeed corresponds to a uniformly distributed split. If we now consider closed individuals (e = 0),
we have b2x/(b1e + b2x) = 1 and since we have excluded the case θ = 1, only “lateral” branching can occur and
during such an event, the parental length x is split uniformly at random between the first two offspring.

Remark 2.1. Note that the function F1 can take the value (0, 0) (which is excluded from S), but only when
applied to (1, 0). Since open individuals grow at deterministic speed v > 0, the amount of time a given individual
spends in the state (1, 0) has Lebesgue measure zero. Once we have introduced the Poisson point measure driving
the reproduction events below, this will guarantee that the probability that a reproduction event occurs during
which an individual with characteristics (1, 0) gives birth to an individual with characteristics (0, 0) is zero.
Consequently, provided that the initial state of the population has support in S, this property will hold true at
any later time with probability one.

On top of the individuals’ characteristics, we follow their labels in U indicating the genealogical relationship
between them. Let thus Mp(U × S) be the space of all finite point measures on U × S, equipped with the
topology of weak convergence. The state of the population at any time t will take the form

Zt :=
∑
u∈Vt

δ(u,eu,xut ), (2.5)

where Vt is the index set of all individuals alive at time t (i.e., of all atoms of Zt). Restricting our attention to
the marginal on S of Zt, we shall then obtain the following measure Zt ∈Mp(S):

Zt :=
∑
u∈Vt

δ(eu,xut ). (2.6)

The main result of this section is the following theorem. Let M be a Poisson point measure on R+×U ×R+×
(0, 1) with intensity ds⊗ ν(du)⊗ dz ⊗ dθ, where ν(du) denotes the counting measure on U . Let (Ft)t≥0 denote
the natural filtration associated to M . Finally, let C1

b (U × S) stand for the space of all measurable functions on
U × S that are bounded, continuously differentiable with respect to the variable x and whose first derivatives
w.r.t. x are bounded uniformly in u, e.

Theorem 2.2. Let Z
0 ∈ Mp(U × S). Then, there exists a strongly unique (Ft)t≥0-adapted càdlàg process

(Zt)t≥0 with values in Mp(U × S) such that Z0 = Z
0

a.s., and for all f ∈ C1
b (U × S) and all t ≥ 0,

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
U×S

ve
∂f

∂x
(u, e, x)Zs(du,de,dx) ds (2.7)

+

∫
[0,t]×U×R+×(0,1)

1{u∈Vs−, z≤B(eu,xus−)}

[ 3∑
i=1

f
(
ui, Fi(e

u, xus−, θ)
)
− f

(
u, eu, xus−

)]
M(ds,du,dz,dθ).
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We prove Theorem 2.2 and then show that it implies Proposition 1.1.

Proof of Theorem 2.2. We only have to check that Assumptions A and B of Theorem 2.1 in [29] are satisfied.
Concerning A.1, we have for all (e, x) ∈ S

B(e, x) ≤ (b1 ∨ b2)(|e|+ |x|),

and so Assumption A.1 is satisfied with γ = 1.
Assumption A.2 is trivially satisfied since for all (e, x) ∈ S and θ ∈ (0, 1), we have

3∑
i=1

Fi(e, x, θ) ≤ (2, x) componentwise.

Assumption A.3 is satisfied since the offspring number is a.s. equal to 3, independently of the parental
characteristics.

As concerns Assumption A.4, the branching rate of open individuals is bounded from below by b1 > 0, which
yields the result in this case. Since elements of S of the form (0, x) satisfy that x > 0 by construction, we can
write ∫ t

s

B
(
Φ((0, x), s, r)

)
dr = b2x(t− s)→ +∞ a.s. as t→∞,

which is the desired condition.
It remains to check Assumption B. Recall from A.1 that γ = 1. The infinitesimal generator of the individual

trait dynamics corresponding to the flow Φ is simply given by: for all f ∈ C1
b (S) and (e, x) ∈ S,

Hf(e, x) := ve
∂f

∂x
(e, x).

The function h : (e, x) 7→ (|e| + |x|)γ = e + x does not belong to the domain of H since it is not bounded.
However, it is easy to construct a sequence (hn)n≥1 of functions on S such that for every n ≥ 1, hn and h
coincide on the set {(e, x) ∈ S : x ≤ n}, hn ∈ C1

b (S) and there exists c1, c2 ≥ 0 such that for all n ≥ 1 and
(e, x) ∈ S,

lim
n→∞

Hhn(e, x) ≤ c1(e + x) + c2.

For instance, define hn(e, x) = h(e, x) if x ≤ n, hn(e, x) = e + (n + 1) if x ≥ n + 1 and define hn(e, x) for
x ∈ (n, n + 1) in such a way that hn is differentiable with respect to x and its derivative is bounded by 2 on
[n, n+ 1].

Theorem 2.1 in [29], together with Remark 2.1, then yield the result (observing that the martingales Mf
0,·(x)

in Theorem 2.2 are identically equal to 0 in our case since the individual growth process is deterministic).

Let us now allow the initial condition Z
0

to be random (recall that we supposed that (Ω,F ,P) could be as

large as needed), and assume from now on that Z
0

is such that

E
[
〈Z0

, 1〉
]
<∞ and E

[
〈Z0

, pl〉
]
<∞, (2.8)

where we have used again the notation pl (introduced just before Prop. 1.1) for the projector (u, e, x) 7→ x on
the length coordinate.
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If we restrict our attention to functions f that are independent of the U-coordinate, equation (2.7) reads

〈Zt, f〉 = 〈Z0, f〉+

∫ t

0

∫
S

ve
∂f

∂x
(e, x)Zs(de,dx) ds (2.9)

+

∫
[0,t]×U×R+×(0,1)

1{u∈Vs−, z≤B(eu,xus−)}

[ 3∑
i=1

f
(
Fi(e

u, xus−, θ)
)
− f

(
eu, xus−

)]
M(ds,du,dz,dθ).

For f ≡ 1, this yields for all t ≥ 0

〈Zt, 1〉 = 〈Z0, 1〉+ 2

∫
[0,t]×U×R+×(0,1)

1{u∈Vs−, z≤B(eu,xus−)}M(ds,du,dz,dθ). (2.10)

Taking expectations in the above and using that B(e, x) ≤ b1 + b2x for all (e, x) ∈ S and Fubini’s theorem, we
obtain:

E[〈Zt, 1〉] = E[〈Z0, 1〉] + 2

∫ t

0

E
[
〈Zs, B〉

]
ds

≤ E[〈Z0, 1〉] + 2b1

∫ t

0

E
[
〈Zs, 1〉

]
ds+ 2b2

∫ t

0

E
[
〈Zs, pl〉

]
ds

≤ E[〈Z0, 1〉] + 2b2tE[〈Z0, pl〉] + (2b1 + 2b2vt)

∫ t

0

E
[
〈Zs, 1〉

]
ds, (2.11)

where on the last line we have used the fact (〈Zs, 1〉)s≥0 is a non-decreasing process and therefore

E[〈Zt, pl〉] ≤ E[〈Z0, pl〉] + vtE[〈Zt, 1〉]. (2.12)

Combining (2.11), Gronwall’s lemma and (2.12), we obtain the following bounds.

Lemma 2.3. There exists C1 > 0 such that for all t ≥ 0, we have

E[〈Zt, 1〉] ≤
(
E[〈Z0, 1〉] + 2b2tE[〈Z0, pl〉]

)
eC1t

2

and

E[〈Zt, pl〉] ≤ E[〈Z0, pl〉] +
(
E[〈Z0, 1〉] + 2b2tE[〈Z0, pl〉]

)
vteC1t

2

.

Lemma 2.3 gives rather crude bounds on the expectations of the two quantities that control the total branching
rate of (Zt)t≥0 (or equivalently, of (Zt)t≥0). Its main point is that these expectations are finite at all times. It
will be used in the proof of Proposition 1.1.

Proof of Proposition 1.1. The proof is rather standard. Recall the notation Ff from (1.4). Conditionning on the

value of Z
0

and using the construction of (Zt)t≥0 given in Theorem 2.2, we can write that for every F ∈ C1
b (R)

and f ∈ C1
b (S) (abusing notation and seeing f as a function in C1

b (U × S) independent of the first coordinate),
and every 0 ≤ t ≤ t′,

F
(
〈Zt′ , f〉

)
− F

(
〈Zt, f〉

)
−
∫ t′

t

∫
S

veF ′
(
〈Zs, f〉

)∂f
∂x

(e, x)Zs(de,dx) ds
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=

∫
(t,t′]×U×R+×(0,1)

1{u∈Vs−, z≤B(eu,xus−)}

[
F
(
〈Zs−, f〉+

3∑
i=1

f
(
Fi(e

u, xus−, θ)
)
− f

(
eu, xus−

))
− F

(
〈Zs−, f〉

)]
M(ds,du,dz,dθ),

so that

F
(
〈Zt′ , f〉

)
− F

(
〈Zt, f〉

)
−
∫ t′

t

GFf (Zs) ds (2.13)

=

∫
(t,t′]×U×R+×(0,1)

1{u∈Vs−, z≤B(eu,xus−)}

[
F
(
〈Zs−, f〉+

3∑
i=1

f
(
Fi(e

u, xus−, θ)
)
− f

(
eu, xus−

))
− F

(
〈Zs−, f〉

)]
M(ds,du,dz,dθ)

− b1
∫ t′

t

∫
S

e
{
F
(
〈Zs−, f〉 − f(e, x) + f(0, x) + 2f(1, 0)

)
− F

(
〈Zs−, f〉

)}
Zs−(de,dx)

− b2
∫ t′

t

∫
S

x

∫ 1

0

{
F
(
〈Zs−, f〉 − f(e, x) + f(0, (1− α)x) + f(e, αx) + f(1, 0)

)
− F

(
〈Zs−, f〉

)}
dαZs−(de,dx).

Consequently, using Fubini’s theorem we obtain that

E
[∣∣∣∣F (〈Zt′ , f〉)− F

(
〈Zt, f〉

)
−
∫ t′

t

GFf (Zs) ds

∣∣∣∣]
≤ 2‖F‖∞

∫ t′

t

E
[
〈Zs−, B〉

]
ds+ 2b1‖F‖∞

∫ t′

t

E
[
〈Zs−, 1〉

]
ds

+ 2b2‖F‖∞
∫ t′

t

E
[
〈Zs−, pl〉

]
ds.

By Lemma 2.3, this quantity is finite and so the quantity on the l.h.s. of (2.13) is integrable for all 0 ≤ t ≤ t′.
The martingale property of (

F
(
〈Zt, f〉

)
− F

(
〈Z0, f〉

)
−
∫ t

0

GFf (Zs) ds

)
t≥0

is then easy to show using the expression given on the r.h.s. of (2.13). Proposition 1.1 is proved.

3. Growth-fragmentation system: Proof of Proposition 1.2

In this section, we analyse the process of mean measures (nt)t≥0 defined in (1.9). Namely, we prove Proposi-
tion 1.2, which gives conditions under which for every t ≥ 0, the marginals n0

t (dx) and n1
t (dx) of nt with respect

to the type variable are absolutely continuous w.r.t. Lebesgue measure and describes the growth-fragmentation
system (1.12) satisfied by the corresponding densities.

Suppose the assumptions of Proposition 1.2 are satisfied. Using the result of Proposition 1.1 with a sequence
(Fj)j≥1 of functions in C1

b (R) converging to the identity function Id and whose first derivatives converge to
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1 both uniformly over compact subsets of R, together with the dominated convergence theorem (whose use is
justified by the bounds obtained in Lem. 2.3), one can write that for every f ∈ C1

b (S),

(
〈Zt, f〉 − 〈Z0, f〉 −

∫ t

0

GIdf
(
Zs
)
ds

)
t≥0

(3.1)

is a martingale, where we have extended the definition of G given in (1.5) to write

GIdf (ν) :=

∫
S

ev
∂f

∂x
(e, x)ν(de,dx) + b1

∫
S

e
{
f(0, x) + 2f(1, 0)− f(e, x)

}
ν(de,dx)

+ b2

∫
S

x

∫ 1

0

{
f(0, (1− α)x) + f(e, αx) + f(1, 0)− f(e, x)

}
dαν(de,dx).

Writing that the expectation of the value at any time t ≥ 0 of the martingale (3.1) is zero, using the
decomposition of each nt introduced in (1.10) and performing a change of variables on the last line, we arrive
at ∫

R+

f(1, x)n1
t (dx) +

∫
R∗+
f(0, x)n0

t (dx) (3.2)

=

∫
R+

f(1, x)n1
0(dx) +

∫
R∗+
f(0, x)n0

0(dx) + v

∫ t

0

∫
R+

∂f

∂x
(1, x)n1

s(dx)ds

+ 2b1f(1, 0)

∫ t

0

∫
R+

n1
s(dx)ds+ b1

∫ t

0

∫
R+

(f(0, x)− f(1, x))n1
s(dx)ds

+ b2f(1, 0)

∫ t

0

∫
R∗+
x(n1

s(dx) + n0
s(dx))ds− b2

∫ t

0

∫
R∗+
x(f(1, x)n1

s(dx) + f(0, x)n0
s(dx))ds

+ b2

∫ t

0

∫
R+

∫ x

0

(f(1, y) + f(0, y))dy n1
s(dx)ds+ 2b2

∫ t

0

∫
R∗+

∫ x

0

f(0, y)dy n0
s(dx)ds.

(Recall from Rem. 2.1 that for all s ≥ 0, n1
s(dx) gives no mass to {0}, so that the fifth integral on the r.h.s is

well-defined even though f is not defined on (0, 0).) This equation will be a key element of the proof below.
Let us first prove that for every t ≥ 0, the measures n1

t and n0
t are absolutely continuous with respect to

Lebesgue measure on R+ and R∗+, respectively. To do so, we follow the strategy of [34].
Notice first that equation (3.2) can be extended to time-dependent test functions f(t, e, x) = ft(e, x) defined

on R+ × S and of class C1,0,1
b (R+ × S) (i.e., continuously differentiable with respect to the variables t and x,

bounded and with first derivatives uniformly bounded over R+ × S). We have∫
R+

ft(1, x)n1
t (dx) +

∫
R∗+
ft(0, x)n0

t (dx) (3.3)

=

∫
R+

f0(1, x)n1
0(dx) +

∫
R∗+
f0(0, x)n0

0(dx) +

∫ t

0

∫
R+

∂fs
∂s

(1, x)n1
s(dx)ds

+

∫ t

0

∫
R∗+

∂fs
∂s

(0, x)n0
s(dx)ds+ v

∫ t

0

∫
R+

∂fs
∂x

(1, x)n1
s(dx)ds

+ 2b1

∫ t

0

fs(1, 0)

∫
R+

n1
s(dx)ds+ b1

∫ t

0

∫
R∗+

(fs(0, x)− fs(1, x))n1
s(dx)ds
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+ b2

∫ t

0

fs(1, 0)

∫
R∗+
x(n1

s(dx) + n0
s(dx))ds

− b2
∫ t

0

∫
R∗+
x(fs(1, x)n1

s(dx) + fs(0, x)n0
s(dx))ds

+ b2

∫ t

0

∫
R∗+

∫ x

0

(fs(1, y) + fs(0, y))dyn1
s(dx)ds+ 2b2

∫ t

0

∫
R∗+

∫ x

0

fs(0, y)dyn0
s(dx)ds.

We first show that n1
t is absolutely continuous w.r.t. Lebesgue measure on R+ for every t > 0. We already know

from Remark 2.1 that n1
t has no atom at 0, which will allow us to write all the integrals below over R∗+ instead

of R+. Let φ be a nonnegative function in C1
K(R+), the set of all compactly supported functions of class C1 on

R+. Fix t > 0. For every s ∈ [0, t] and x ∈ R+, let us define fs(x) := φ(v(t− s) + x). It is straightforward to see
that f satisfies the following equation:

{
∂fs
∂s (x) + v ∂fs∂x (x) = 0, 0 ≤ s ≤ t,
ft(x) = φ(x).

(3.4)

Let us now set ϕs(e, x) = efs(x) for all s ∈ [0, t] and (e, x) ∈ S. Applying (3.3) to ϕ, neglecting the negative
terms and using (3.4), we can write

∫
R∗+
φ(x)n1

t (dx) ≤
∫
R∗+
φ(tv + x)n1

0(dx) + 2b1

∫ t

0

φ(v(t− s))
∫
R∗+
n1
s(dx)ds (3.5)

+ b2

∫ t

0

φ(v(t− s))
∫
R∗+
x(n1

s(dx) + n0
s(dx))ds

+ b2

∫ t

0

∫
R∗+

∫ x

0

φ(v(t− s) + y)dyn1
s(dx)ds.

Using our assumption that n1
0 has a density with respect to Lebesgue measure and performing the appropriate

changes of variables, we can rewrite the inequality (3.5) as

∫
R∗+
φ(x)n1

t (dx) ≤
∫ ∞
tv

φ(y)n1
0(y − tv)dy +

2b1
v

∫ tv

0

φ(y)

∫
R∗+
n1
t− yv

(dx)dy (3.6)

+
b2
v

∫ tv

0

φ(y)

∫
R∗+
x
(
n1
t− yv

(dx) + n0
t− yv

(dx)
)
dy

+
b2
v

∫ tv

0

∫
R∗+

∫ x

0

φ(α+ y)dyn1
t−αv

(dx)dα.

Notice that by the Fubini-Tonneli theorem, we have

∫ tv

0

∫
R∗+

∫ x

0

φ(α+ y) dy n1
t−αv

(dx) dα =

∫ tv

0

∫
R∗+
φ(α+ y)

(∫ ∞
y

n1
t−αv

(dx)

)
dydα.
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Finally, plugging the previous expression into (3.6) and performing a last change of variable (y′ = α + y), we
obtain ∫

R∗+
φ(x)n1

t (dx) ≤
∫
R∗+
φ(y)H(t, y)dy, (3.7)

where

H(t, y) :=1{y>tv}n
1
0(y − tv) +

2b1
v
1{y<tv}

∫
R∗+
n1
t− yv

(dx)

+
b2
v
1{y<tv}

∫
R∗+
x
(
n1
t− yv

(dx) + n0
t− yv

(dx)
)

+
b2
v

∫ tv

0

∫ ∞
y−α

n1
t−αv

(dx)dα.

Obviously, H is a nonnegative function. Using Lemma 2.3, we can show that
∫
R∗+
H(t, y)dy <∞ and since φ is

bounded, the integral on the r.h.s. of (3.7) is also finite. Since this property holds true for every φ ∈ C1
K(R+),

a simple density argument allows us to conclude that the measure n1
t is dominated by a measure which is

absolutely continuous w.r.t. Lebesgue measure, and this gives us the desired result.
Let us now turn to n0

t and let φ ∈ C1
K(R∗+). Since individuals of type 0 do not grow, we do not need to

consider test functions that depend on time. Instead, we set f(e, x) = (1 − e)φ(x) for all (e, x) ∈ S. Applying
(3.2) to f and neglecting the negative terms, we obtain∫

R∗+
φ(x)n0

t (dx) ≤
∫
R∗+
φ(x)n0

0(dx) + b1

∫ t

0

∫
R∗+
φ(x)n1

s(dx) ds

+ b2

∫ t

0

∫
R∗+

∫ x

0

φ(y)dy n1
s(dx) ds+ 2b2

∫ t

0

∫
R∗+

∫ x

0

φ(y) dy n0
s(dx) ds.

Using the fact that n0
0 and all n1

s have a density with respect to Lebesgue measure, together with the Fubini-
Tonelli theorem, we arrive at∫

R∗+
φ(x)n0

t (dx) ≤
∫
R∗+
φ(x)

(
n0

0(x) + b1

∫ t

0

n1
s(x) ds+ b2

∫ t

0

∫ ∞
x

n1
s(y)dy ds

+ 2b2

∫ t

0

∫ ∞
x

n0
s(dy) ds

)
dx

=:

∫
R∗+
φ(x)G(t, x) dx.

As G(t, ·) is nonnegative and integrable, we can use the same arguments as above to conclude that n0
t is

absolutely continuous w.r.t. Lebesgue measure on R∗+.
The fact that (n0

t , n
1
t )t≥0 is a weak solution to the system (1.12) is easily obtained applying equation (3.2)

to test functions such that f(0, x) = 0 for all x > 0 (to obtain the equation with boundary condition for n1) or
such that f(1, x) = 0 for all x ≥ 0 (to obtain the equation for n0). Namely, for φ ∈ C1

b (R+) we have

〈n1
t , φ〉 = 〈n1

0, φ〉+ v

∫ t

0

〈n1
s, φ
′〉 ds−

∫ t

0

〈n1
s, (b1 + b2(·))φ〉 ds+ b2

∫ t

0

〈n1
s,

∫ ·
0

φ(y) dy〉 ds

+ φ(0)

∫ t

0

(
2b1

∫ ∞
0

n1
s(y) dy + b2

∫ ∞
0

y(n1
s(y) + n0

s(y)) dy

)
ds,
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and for φ ∈ C1
b (R∗+) we have

〈n0
t , φ〉 =〈n0

0, φ〉+ b1

∫ t

0

〈n1
s, φ〉 ds−

∫ t

0

〈n0
s, b2(·)φ〉 ds+ 2b2

∫ t

0

〈n0
s,

∫ ·
0

φ(y) dy〉 ds

+ b2

∫ t

0

〈n1
s,

∫ ·
0

φ(y) dy〉 ds.

This is the weak formulation of (1.12) we aimed for. The proof of Proposition 1.2 is now complete.

4. Long time behaviour

In this section we formulate the spectral problems related to the operator in (1.12) and its adjoint (Sect. 4.1).
We then provide the explicit solutions to these problems, the stationary profilesN1 andN0. Finally, in Section 4.2
we prove that the mean measures n1

t and n0
t converge towards these profiles as t → ∞ (in a sense that will

be made precise in Thm. 4.3). Theorem 1.3 will then be a simple corollary of Theorem 4.3. As explained in
Section 1, from now on we suppose that v = 1 without loss of generality.

4.1. Stationary profiles

For t > 0, let us replace n1
t and n0

t by eλtN1 and eλtN0, respectively, in (1.12). Doing so, we obtain the
following spectral problem related to the operator in (1.12), which captures the stationary profile of the mean
measure: 

(N1)′(x) + (b1 + b2x+ λ)N1(x) = b2

∫ ∞
x

N1(y)dy,

N1(0) = 2b1

∫ ∞
0

N1(y)dy + b2

∫ ∞
0

y(N1(y) +N0(y))dy,

(b2x+ λ)N0(x) = b1N1(x) + 2b2

∫ ∞
x

N0(y)dy + b2

∫ ∞
x

N1(y)dy.

(4.1a)

(4.1b)

(4.1c)

Somewhat surprisingly, it is possible to find an explicit solution to this system by first solving the equation
satisfied by N1 and then solving for N0. See Appendix A.2 for more details.

Next, we shall prove in Appendix A.1 that any eigenvalue λ necessarily satisfies

b1 +
b2
λ

= λ.

From now on, we only consider the maximal eigenvalue, which is the unique positive solution to the above
equation. It is given by

λ =
b1 +

√
b21 + 4b2
2

. (4.2)

Let us now introduce the dual problem. To do so, let us use (1.12) and integration by parts (together with
the boundary condition stated in (1.12) to replace nt(0) by the sum of two integrals) to obtain that for every
f ∈ C1

b (S), we have

d

dt
〈nt, f〉 =

∫
R+

(
(2b1 + b2x)f(1, 0) +

∂f

∂x
(1, x)− f(1, x)(b1 + b2x) + b2

∫ x

0

f(1, y)dy
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+ b1f(0, x) + b2

∫ x

0

f(0, y)dy

)
n1
t (x)dx

+

∫
R∗+

(
b2xf(1, 0)− b2xf(0, x) + 2b2

∫ x

0

f(0, y)dy

)
n0
t (x)dx.

= 〈nt,Lf〉, (4.3)

where L is the adjoint operator of the operator acting on nt in (1.12). The spectral problem associated to L for
the maximal eigenvalue λ reads:

− ψ′1(x) + (b1 + b2x+ λ)ψ1(x) = b1ψ0(x) + b2

∫ x

0

ψ0(y)dy

+ b2

∫ x

0

ψ1(y)dy + ψ1(0)
(
2b1 + b2x

)
,

(b2x+ λ)ψ0(x) = 2b2

∫ x

0

ψ0(y)dy + b2xψ1(0),

(4.4a)

(4.4b)

The eigenvector (ψ1, ψ0) will allow us to quantify the influence of the initial condition on the growth of the
population size.

Here again, the spectral problem can be solved to obtain an explicit expression for ψ0 and ψ1. This leads to
the following result.

Proposition 4.1. The following quadruplet of non-negative functions (N0, N1, ψ0, ψ1) is solution to the spectral
problem given by (4.1) and (4.4):

N1(x) = (b1 + b2x+ λ)e−
∫ x
0

(b1+b2y+λ)dy,

N0(x) =
N1(x)

(b2x+ λ)2
(b2 + b1(b2x+ λ)) +

b2e
−

∫ x
0

(b1+b2y+λ)dy

(b2x+ λ)3
(2b2 + b1(b2x+ λ)),

ψ1(x) = c0

(
1 +

b2
λ
x

)
,

ψ0(x) = c0
b2x

λ
,

where c0 = λ2

λ2+b2
. Besides, this solution satisfies∫ ∞

0

(N1(x) +N0(x)) dx = 2, and

∫ ∞
0

(ψ1(y)N1(y) + ψ0(y)N0(y)) dy = 1. (4.5)

Note that the definition of ψ1, ψ0 in Proposition 4.1 is equivalent to the definition of ψ given in (1.16) in that
ψ(e, x) = ψe(x).

The proof of Proposition 4.1 is given in Appendix A.2. The quadruplet of functions provides the unique
solution to the spectral problem associated to the maximal eigenvalue λ under the normalising conditions (4.5).
Uniqueness in the weighted space related to a particular Lyapunov function Vγ will be obtained in the next
section, see Theorem 4.3.

4.2. Convergence of the mean measure

In this section, we prove Theorem 1.3 about the long-time convergence of the mean density of open and
closed individuals (or, in view of our application, of external and internal filaments). In fact, we shall prove a
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more general statement involving the semigroup associated to the process (Zt)t≥0, of which Theorem 1.3 will
be an easy corollary. Before we present this result, we need some notational preparation. The approach we shall
adopt is the semigroup approach of [6].

Recall the definition of the function ψ given in (1.16), motivated by the result of Proposition 4.1. For any
γ ≥ 2 and for all (e, x) ∈ S, let us define

Vγ(e, x) = ψ(e, x) + xγ + 1. (4.6)

Observe that when γ = 2, we recover the definition of V given in (1.16). Let B(Vγ) denote the set of all
measurable functions f : S → R such that the following quantity is finite:

‖f‖B(Vγ) := sup
z∈S

|f(z)|
Vγ(z)

. (4.7)

LetM(Vγ) denote the set of all signed measures on S that integrate Vγ . The spaceM(Vγ) is endowed with the
weighted total variation norm

‖µ‖M(Vγ) := sup
‖f‖B(Vγ )≤1

∣∣∣∣∫
S

f(z)µ(dz)

∣∣∣∣ . (4.8)

By Proposition 1.1, the stochastic process (Zt)t≥0 is well-defined for any initial condition made of a single atom
at some z = (e, x) ∈ S. We can thus define, for any t ≥ 0 and any nonnegative measurable function f on S:

Mtf(z) = Eδz [〈Zt, f〉] ∈ [0,+∞]. (4.9)

Let us set

B =
⋃
γ≥2

B(Vγ).

The following result extends M = (Mt)t≥0 to this set of functions, on which it takes values in the set of finite
functions on S and satisfies the semigroup property.

Lemma 4.2. (i) For any γ ≥ 2, there exists Cγ > 0 such that for all t ≥ 0,

MtVγ(z) ≤ eCγtVγ(z), ∀z ∈ S.

(ii) For any nonnegative f ∈ B, Mtf(z) is finite for all z ∈ S. We can therefore extend the definition of M to
B as follows: For any γ ≥ 2, f ∈ B(Vγ) and t ≥ 0, we set

Mtf(z) = Eδz
[
〈Zt, f〉

]
:= Mtf+(z)−Mtf−(z), ∀z ∈ S,

where f+ ( resp. f−) is the positive ( resp. negative part) of f . We have Mtf ∈ B(Vγ).
(iii) (Mt)t≥0 is a positive semigroup on B and satisfies

Mtf(e, x) =f(e, x+ et)e−
∫ t
0

(b1e+b2(x+es)) ds

+

∫ t

0

e−
∫ s
0

(b1e+b2(x+es′)) ds′
∫
S

Mt−sf(ē, x̄)Q(e, x+ es,dē,dx̄) ds,
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where for (e, x) ∈ S, we have

Q(e, x,dē, dx̄) =1{x̄≤x}

[
b1e
[
2δ1(dē)⊗ δ0(dx̄) + δ0(dē)⊗ δx(dx̄)

]
+ b2x

[
δ1(dē)⊗ δ0(dx̄) + δ0(dē)⊗ dx̄

x
+ δe(dē)⊗

dx̄

x

]]
.

Proof of Lemma 4.2. To prove (i), let us observe that the adjoint operator L introduced in (4.3) can be rewritten
in a more compact way as follows:

Lf(e, x) := e
∂f

∂x
+ b1e

(
f(0, x) + 2f(1, 0)− f(e, x)

)
+ b2x

∫ 1

0

(
f(0, (1− α)x) + f(e, αx) + f(1, 0)− f(e, x)

)
dα, (4.10)

= e
∂f

∂x
− (b1e + b2x)f(e, x) +

∫
S

f(ē, x̄)Q(e, x,dē,dx̄), (4.11)

and that if we write (1.5) with F = Id, we have for all ν ∈Mp(S)

GIdf (ν) =

∫
S

Lf(e, x)ν(de,dx). (4.12)

For convenience, let us define the function hγ : (e, x) 7→ xγ + 1, so that Vγ = ψ+ hγ . Since ψ is an eigenfunction
for L associated to the eigenvalue λ, we have Lψ = λψ. Furthermore, using (4.11) we can write that for every
(e, x) ∈ S,

Lhγ(e, x) = eγxγ−1 −
(
b1e + b2x

)(
xγ + 1

)
+ 2b1e× 1 + b1e(x

γ + 1) + b2x× 1

+ 2b2

∫ x

0

(
x̄γ + 1

)
dx̄

= eγxγ−1 − b2xγ+1 + 2b1e +
2b2
γ + 1

xγ+1 + 2b2x

= eγxγ−1 − b2
γ − 1

γ + 1
xγ+1 + 2b1e + 2b2x. (4.13)

Combining these two results, we obtain that for every (e, x) ∈ S,

LVγ(e, x) = λψ(e, x) + eγxγ−1 − b2
γ − 1

γ + 1
xγ+1 + 2b1e + 2b2x. (4.14)

Now recall from Proposition 4.1 (or, equivalently, from Eq. (1.16)) that

ψ(e, x) = c0

(
e +

b2
λ
x

)
with c0 =

λ2

λ2 + b2
,

so that

2b2x ≤ 2λ

(
e +

b2
λ
x

)
≤ 2λ

c0
ψ(e, x) and λψ ≤ λ

c0
ψ. (4.15)
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Likewise, we have

2b1e ≤
2b1
c0
ψ(e, x). (4.16)

Next, since e ≤ 1, we can write that

eγxγ−1 − b2
γ − 1

γ + 1
xγ+1 ≤ e

(
γxγ−1 − b2

γ − 1

γ + 1
xγ+1

)
.

When e = 0 the bound on the r.h.s. is zero, while when e = 1 the expression on the r.h.s. is bounded by some
constant x0 = x0(γ) > 0. Consequently, the quantity on the l.h.s. is bounded by ex0 ≤ (x0/c0)ψ. Combining
the above, we obtain that

LVγ(e, x) ≤ 3λ+ 2b1 + x0

c0
ψ(e, x). (4.17)

Using the Kolmogorov equation (valid for f ∈ C1
b (S))

d

dt
E [〈Zt, f〉] = E [〈Zt,Lf〉] .

with a sequence (fn)n≥0 of functions increasing to Vγ , together with a standard monotone convergence argument,
the fact that ψ ≤ Vγ and finally Gronwall’s lemma, we obtain that for any z ∈ S and t ≥ 0,

MtVγ(z) ≤ e(3λ+2b1+x0)t/c0Vγ(z). (4.18)

(ii) is a direct consequence of (i) noticing that the definition of M on the embedded sets B(Vγ) is compatible since
it coincides with E[〈Zt, f〉|Z0 = δz]. The semigroup property is classical: it is a consequence of the branching
Markov property of Z. Finally, the proof of Duhamel’s formula in (iii) comes as usual by conditioning on the
first jump of Z and using the strong Markov property.

We are ready to state the convergence result in its full generality. For every bounded measurable f : S → R,
we define the following measure N on S, in the same spirit as the decomposition (1.10):

〈N, f〉 =

∫
R+

f(1, x)N1(dx) +

∫
R∗+
f(0, x)N0(dx). (4.19)

The fact that we know (explicitly here) an eigenfunction ψ allows us to invoke a Doob h-transform. This method
is powerful to study non-conservative semigroups [31], and in particular to study the first moment properties of
branching processes. We can then derive ergodic estimates for our semigroup M from a Harris ergodic theorem
applied to the associated conservative semigroup, as recently achieved in [14] for other growth-fragmentation
PDEs. Instead, here we obtain these results directly by applying Theorem 2.1 in [6]. The two methods are
equivalent but the latter is more convenient in our framework. It also allows the extension of the results to
models where the positive eigenfunction is not known a priori, which would be the case when the growth rate
or fragmentation are different.

Theorem 4.3. Let γ ≥ 2. There exist C,w > 0, depending on γ, such that for all t ≥ 0 and µ ∈M(Vγ),

‖e−λtµMt − 〈µ, ψ〉N‖M(Vγ) ≤ Ce−wt‖µ‖M(Vγ).
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Let us mention that combining the proof below and the results of [6] provides a lower bound on the spectral
gap and speed of convergence w in terms of the parameters of the growth-fragmentation model, see forthcoming
Remark 4.4.

Before we prove Theorem 4.3, let us show how we can deduce Theorem 1.3 from it.

Proof of Theorem 1.3. Take µ = n0 (where n0 is the finite measure on S constructed from the densities n0
0 and

n1
0 as in (1.10)) and observe that the function ϕ ≡ 1 belongs to B(Vγ) for any γ ≥ 2 and satisfies ‖ϕ‖B(Vγ) ≤ 1.

Since

‖n0‖M(Vγ) = sup
‖f‖B(Vγ )≤1

∣∣∣∣∫
S

f(z)n0(dz)

∣∣∣∣ ≤ ∫
S

Vγ(z)n0(dz),

taking γ = 2 we obtain that (1.17) is indeed satisfied.

Proof of Theorem 4.3. We write f . g to mean that there exists a constant C > 0 (also independent of the
time variable when this notation is used with Mtf over a finite time interval [0, T ]) such that f ≤ Cg. For some
Rγ > 0 that will be chosen later, let us define

Kγ =
{
z ∈ S : Vγ(z) ≤ Rγψ(z)

}
and first observe that ψ ≤ Vγ on S and Vγ . ψ on Kγ . Second, using (4.18) and the fact that ψ is an
eigenfunction, we obtain that for every T > 0,

MVγ . Vγ and Mψ & ψ on [0, T ]× S.

To apply Theorem 2.1 in [6] and obtain the desired estimate, we need to check the following assumption.

Assumption A. There exist τ > 0, β > α > 0, θ ≥ 0, (c, d) ∈ (0, 1]2, K ⊂ S and ν a probability measure on S
supported in K such that

(A1) MτVγ ≤ αVγ + θ1Kψ,

(A2) Mτψ ≥ βψ,

(A3) For all z ∈ K and all nonnegative function f ∈ B(Vγ/ψ),

Mτ (fψ)(z) ≥ c 〈ν, f〉Mτψ(z),

(A4) For every integer n ≥ 1,

d sup
z∈K

Mnτψ(z)

ψ(z)
≤
〈
ν,
Mnτψ

ψ

〉
.

Recall that in view of (3.1) and (4.12), we have for every f ∈ B(Vγ)

∂(Mtf)

∂t
= Mt(Lf). (4.20)

Informally, Assumption (A1) corresponds to a Lyapunov-type condition to control the trait distribution in the
population (and to show that these traits tend to be confined in compact sets). Assumption (A3) corresponds to a
Doeblin (small set)-type condition and guarantees a local mixing property which, in turn, yields the exponential
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convergence of the trait distribution. The additional Assumptions (A2) and (A4) are needed to exploit these
estimates and to control the original (non-conservative) semigroup M . The fact that we use the eigenfunction
ψ there makes them particularly natural to check.

Let us first observe that for any τ > 0, (A2) and (A4) are satisfied with β = eλτ and d = 1. Indeed, ψ is an
eigenfunction of the adjoint operator, so that Lψ = λψ. Consequently, we have for any t ≥ 0,

Mtψ = eλtψ.

The rest of the proof consists of two steps. In Step 1 we check (A1), while Step 2 is devoted to checking (A3).
Suitable values for Rγ will be fixed in Step 1, while the value of τ will be fixed in Step 2.

Step 1. Using (4.17), we can write that for every (e, x) ∈ S,

MtVγ(e, x) ≤ Vγ(e, x) +
3λ+ 2b1 + x0

c0

∫ t

0

Msψ(e, x)ds

= Vγ(e, x) +
(3λ+ 2b1 + x0)

c0

(eλt − 1)

λ
ψ(e, x).

Now, using that on Kcγ we have ψ ≤ 1
Rγ
Vγ , we can write

MtVγ(e, x) ≤ Vγ(e, x) +
(3λ+ 2b1 + x0)(eλt − 1)

λc0

1

Rγ
Vγ(e, x)

+
(3λ+ 2b1 + x0)(eλt − 1)

λc0
ψ(e, x)1Kγ (e, x).

Now, suppose we have fixed a value for τ (which we shall do in the next step). To obtain (A1), it is natural to
set

α := 1 +
(3λ+ 2b1 + x0)(eλτ − 1)

λc0

1

Rγ
(4.21)

and

θ :=
(3λ+ 2b1 + x0)(eλτ − 1)

λc0
. (4.22)

To obtain that α < β = eλτ , it suffices to take Rγ large enough. Note that an appropriate lower bound on Rγ
ensuring that the latter condition is satisfied depends on the constant multiplying eλτ in (4.21), but can be
taken to be independent of τ .

Finally, with our choice of Rγ we should justify that Kγ is non empty and bounded. As we can choose
Rγ > C0 + 2, it is easy to see that Kγ then contains all points (1, x) such that 0 ≤ x ≤ 1. Moreover, since for
any e ∈ {0, 1} we have

lim
x→∞

ψ(e, x)

xγ
= 0,
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the values of x for which (e, x) belongs to Kγ must be bounded. As a consequence, there exist k0, K0 and K1

such that

Kγ = ({0} × [k0,K0]) ∪ ({1} × [0,K1]) .

Pairs of the form (0, x) where x is small enough do not belong to Kγ as Vγ(0, x) ≥ 1 while ψ(0, x) tends to 0 as
x tends to 0, which means that k0 > 0 in the above.

Step 2. Thanks to the properties of ψ, we can reformulate Assumption (A3) in the following way: there exist
τ > 0, c ∈ (0, 1], and ν a probability measure on S supported in Kγ such that for all z ∈ Kγ and all nonnegative
function f ∈ B(Vγ/ψ), we have

Mτ (fψ)(z)

eλτψ(z)
≥ c 〈ν, f〉.

To start with some intuitive argument, observe that the measure ν is meant to put its weight on a compact
subset of S to which the lines of descent of “typical” individuals sampled from the population come back
recurrently. Because of the growth-fragmentation dynamics, in which “lateral” branching/fragmentation splits
an individuals’ length uniformly at random, we expect an appropriate measure ν to be absolutely continuous
with respect to Lebesgue measure on the “length” coordinate and to have support in a connected set of the
form ({0} × [a0, b0]) ∪ ({1} × [0, b1]) with 0 < a0 < b0 and b1 > 0 (recall that (0, 0) /∈ S). This is indeed what
we shall obtain in (4.36).

To rigorously construct these objects, let us define a new semigroup P = (Pt)t≥0 as follows. For every z ∈ S,
t ≥ 0 and every nonnegative f ∈ B(Vγ/ψ), let us set

Ptf(z) :=
Mt(ψf)(z)

eλtψ(z)
. (4.23)

Defined in this way, P is a conservative semigroup (take f = 1 to see the conservation of mass property). The
above condition can thus be rewritten: there exist τ > 0, c ∈ (0, 1], and ν a probability measure on S supported
in Kγ such that for all z ∈ Kγ and all nonnegative f ∈ B(Vγ/ψ), we have

Pτf(z) ≥ c
∫
Kγ
f(z′)ν(dz′). (4.24)

In order to prove the above statement, we shall first analyse the generator A of P . For an appropriate test
function f , we compute

Af(e, x) =
∂(Ptf)

∂t

∣∣∣∣
t=0

(e, x).

Using the formulation of L given (4.11) to pass from the first to the second line, and then the fact that
λ = (Lψ)/ψ to pass from the second to the third line, we can write

∂

∂t

Mt(ψf)

eλtψ

∣∣∣∣
t=0

(e, x) =
L(ψf)

ψ
(e, x)− λf(e, x)

= e
∂ψ

∂x
(e, x)

f(e, x)

ψ(e, x)
+ e

∂f

∂x
(e, x)− (b1e + b2x)f(e, x)
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+

∫
S

f(e′, x′)ψ(e′, x′)

ψ(e, x)
Q(e, x,de′,dx′)− λf(e, x)

= e
∂f

∂x
(e, x) +

∫
S

(
f(e′, x′)− f(e, x)

)ψ(e′, x′)

ψ(e, x)
Q(e, x,de′,dx′).

Let us define

B(e, x) :=

∫
S

ψ(e′, x′)

ψ(e, x)
Q(e, x,de′,dx′), ∀(e, x) ∈ S. (4.25)

Then, as before, the semigroup (Pt)t≥0 admits the following representation:

Ptf(e, x) =f(e, x+ et)e−
∫ t
0
B(e,x+es))ds (4.26)

+

∫ t

0

e−
∫ s
0
B(e,x+es′)ds′

∫
S

Pt−sf(e′, x′)Q(e, x+ es,de′,dx′)ds, (4.27)

where for (e, x) ∈ S, we have set

Q(e, x,de′,dx′) =
ψ(e′, x′)

ψ(e, x)
Q(e, x,de′,dx′).

Here, ψ should be understood as a weight function.
Before we start building the measure ν, we first compute the death rate B. Using (4.25), we readily obtain

that for (e, x) ∈ S,

B(e, x) =
1

ψ(e, x)

(
2b1e + b1e

b2x

λ
+ b2x+

b22x
2

λ
+ b2xe

)
.

Let us first remark that B(e, x) > 0 for all (e, x) ∈ S. In addition, it is straightforward to check that there exist
%1, %2 > 0 depending only on b1, b2 and λ such that for every A > 0, we have

sup
e∈{0,1},x≤A

B(e, x) ≤ %1 + %2A. (4.28)

The latter will be very useful when proving (4.24), as for x ≤ K0 ∨K1 we shall have

e−
∫ t
0
B(e,x+es′)ds′ ≥ e−t(%1+%2(K0∨K1+t)). (4.29)

Let us now start from an individual (1, x) ∈ Kγ and fix t > 2(K0 ∨K1). From (4.27), keeping only the two open
filaments of size zero coming from the term describing the apical branching, we have

Ptf(1, x) ≥
∫ t

0

e−
∫ s
0
B(1,x+s′)ds′2(Pt−sf)(1, 0)

1

1 + b2
λ (x+ s)

ds.

Now, for one of the terms of the form (Pt−sf)(1, 0), we only keep the growth term (4.26). For the other one, we
only keep the term corresponding to apical branching and an individual of type 0 coming from it. Doing so, we
obtain

Ptf(1, x) ≥ Ht + Jt, (4.30)
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where

Ht = b1

∫ t

0

e−
∫ s
0
B(1,x+s′)ds′e−

∫ t−s
0

B(1,s′)ds′f(1, s)
1

1 + b2
λ (x+ s)

ds,

Jt = b21

∫ t

0

e−
∫ s
0
B(1,x+s′)ds′ 1

1 + b2
λ (x+ s)

∫ t−s

0

e−
∫ u
0
B(1,u′)du′Pt−s−uf(0, u)

ψ(0, u)

ψ(1, u)
duds.

Now, for the first term we use that x ≤ K1 and t ≥ K1. It comes, using (4.29)

Ht ≥
b1e
−t(%1+%2(K0∨K1+t))

1 + b2
λ (K1 + t)

∫ K1

0

f(1, s)ds.

For the second term, we find yet another lower bound, by keeping only the growth term (4.26) and apply Fubini’s
theorem. It comes, after using that x ≤ K1 and t ≥ 2K0,

Jt ≥
b21

1 + b2
λ (K1 + t)

∫ t

0

e−
∫ s
0
B(1,x+s′)ds′

∫ t−s

0

e−
∫ u
0
B(1,u′)du′e−(t−s−u)B(0,u)f(0, u)

× (b2u)/λ

1 + (b2u)/λ
duds.

Using again (4.29) and defining

C1(t) :=
b21
b2
λ e
−t(%1+%2(K0∨K1+t))

(1 + b2
λ (K1 + t))(1 + b2

λ t)
,

we obtain

Jt ≥ C1(t)

∫ t

0

∫ t−s

0

uf(0, u)duds ≥ C1(t)

∫ t

0

uf(0, u)(t− u)du

≥ K0C1(t)

∫ K0

0

uf(0, u)du.

Plugging the bounds for Ht and Jt into (4.30), we obtain

Ptf(1, x) ≥ C2(t)

∫ K1

0

f(1, s)ds+K0C1(t)

∫ K0

0

uf(0, u)du, (4.31)

where

C2(t) :=
b1e
−t(%1+%2(K0∨K1+t))

1 + b2
λ (K1 + t)

.

Hence,

Ptf(1, x) ≥ C2(t)

∫ K1

0

f(1, s)ds+K0C1(t)k0

∫ K0

k0

f(0, u)du. (4.32)
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Let us now start from (0, x) ∈ Kγ . Keeping only the term corresponding to lateral branching in (4.27) yields

Ptf(0, x) ≥
∫ t

0

e−B(0,x)sPt−sf(1, 0)
ψ(1, 0)

ψ(0, x)
b2xds = λ

∫ t

0

e−B(0,x)sPt−sf(1, 0)ds.

Now, using (4.31) with t replaced by t− s and x = 0, we obtain

Ptf(0, x) ≥λ
∫ t

0

e−B(0,x)s

(
C2(t− s)

∫ K1

0

f(1, u)du

+ K0C1(t− s)
∫ K0

0

uf(0, u)du

)
ds.

Using again (4.29) together with the definition of the functions C1 and C2, we obtain

Ptf(0, x) ≥λb1e
−t(%1+%2(K0∨K1+t))

1 + b2
λ (K1 + t)

∫ t

0

∫ K1

0

f(1, u)duds

+
K0b

2
1(b2/λ)e−t(%1+%2(K0∨K1+t))

(1 + b2
λ (K1 + t))(1 + b2

λ t)
λ

∫ t

0

∫ K0

0

uf(0, u)duds. (4.33)

Hence, we can write

Ptf(0, x) ≥ C3(t)

∫ K1

0

f(1, u)du+ C4(t)

∫ K0

k0

f(0, u)du, (4.34)

where

C3(t) := λt
b1e
−t(%1+%2(K0∨K1+t))

1 + b2
λ (K1 + t)

, C4(t) :=
K0b

2
1(b2/λ)e−t(%1+%2(K0∨K1+t))

(1 + b2
λ (K1 + t))(1 + b2

λ t)
λk0t.

Now, we need to normalise the measures appearing in (4.32) and (4.34) and choose τ large enough so that
the resulting factors are smaller than 1 (see (4.24)). After the renormalisation, we should choose τ such that
τ ≥ 2(K0 ∨K1) and

C4(τ)(K0 − k0) ≤ 1, C3(τ)K1 ≤ 1, C2(τ)K1 ≤ 1, C1(τ)k0K0(K0 − k0) ≤ 1. (4.35)

Since the values of K0,K1 depend on Rγ which is itself independent of τ (see the remark just below (4.21)),
the exponential decay dominates in all the expressions. Hence, for τ large enough, there exists c ∈ (0, 1] such
that for all (e, x) ∈ Kγ ,

Pτf(e, x) ≥ c

(∫ K0

k0

f(0, u)
du

K0 − k0
+

∫ K1

0

f(0, u)
du

K1

)
.

Hence, Assumption (A3) is satisfied for the probability measure ν defined by

ν(de,dx) :=
1{k0≤x≤K0}

K0 − k0
δ0(de)dx+

1{x≤K1}

K1
δ1(de)dx. (4.36)



ERGODIC BEHAVIOUR OF A MULTI-TYPE GROWTH-FRAGMENTATION PROCESS 425

Conclusion Now that we have proved that Assumption A is satisfied, we are in the position to apply
Theorem 1.1 in [6] to conclude the proof.

Remark 4.4. The above computations can be used to find an explicit value for the speed of convergence ω
appearing in Theorem 4.3. Indeed, (Prop. 3.6, [6]) gives quantitative estimates depending on the parameters
α, β, θ, c, d and τ involved in Assumptions (A1)–(A4). The resulting expression is technical, but can be derived
once we have identified all the parameters involved. Indeed, for us β = eλτ , d = 1, and α and θ are respectively
defined in (4.21) and (4.22). Obtaining explicit values for τ and c is more challenging. In fact, τ depends on
the constants k0,K0 and K1 (which we would also need to make explicit, see the definition of the compact set
K) and is such that (4.35) holds true. The latter involves the complicated expressions C1(τ), C2(τ), C3(τ) and
C4(τ). Then, c would be equal to the minimum between the four values appearing in Condition (4.35) once τ
has been fixed. We chose not to develop this point further as it is lengthy and will not be needed later.

5. Law of large numbers

Now that the asymptotic behaviour of the mean measure has been determined, we are interested in relating
this behaviour to the realisations of the process Z. Namely, in Theorem 4.3, we obtained that e−λtE(〈Zt, f〉)
behaves like 〈N, f〉 as t→∞ for appropriate test functions f . Ideally, for a realisation of the process Z, we would
also like to obtain that 〈Zt(ω), f〉 (once correctly renormalised) behaves like 〈N, f〉 as t → ∞. Unfortunately,
we are only able to show the convergence in probability stated in Theorem 1.4.

To prove Theorem 1.4, we exploit the classical martingale associated to the eigenelements (ψ, λ) (harmonic
function).

We start with a preliminary lemma divided in two parts. The first one is about deriving a bound on the
first moment semigroup, which is a direct consequence of Theorem 4.3. This will be used several times in the
forthcoming proofs. The second part is the L2 estimate we shall use for the martingale and law of large numbers
below, in the vein of many-to-two formula (or formula for forks [7]).

Lemma 5.1. Let λ be the eigenvalue defined in (4.2).
i) Let z0 = (e0, x0) ∈ S, γ ≥ 2 and f ∈ B(Vγ). Then, there exists a constant C > 0 such that

Mtf(z0) ≤ Ceλt(1 + xγ0).

ii) There exists C > 0 such that for any z0 = (e0, x0) ∈ S and g : S → R measurable function such that which
satisfy |g(e, x)| ≤ 1 + x for any (e, x) ∈ S, we have

Eδz0
(
〈Zt, g〉2

)
≤ Ceλt(1 + x2

0)

+

∫ t

0

∫
S4

Mt−sg(z1)Mt−sg(z2)K(z, dz1dz2)Ms(z0,dz) ds.

Here M(z0, .) is the measure associated to the positive semigroup M and defined for any Borel measurable set
A ⊂ S by Ms(z0, A) := Ms1A(z0) and

K(z, dz1dz2) := b1e
{

2δ(0,x),(1,0)(dz1, dz2) + δ(1,0),(1,0)(dz1, dz2)
}

+

∫ 1

0

b2x
{
δ(0,(1−α)x),(e,αx)(dz1, dz2) + δ(0,(1−α)x),(1,0)(dz1, dz2) + δ(e,αx),(1,0)(dz1, dz2)

}
dα.

Proof of Lemma 5.1. i) Fixing γ ≥ 2, Theorem 4.3 yields for any t ≥ 0,

|e−λtMtf(z0)− ψ(z0)〈N, f〉| ≤ Ce−wtVγ(z0),
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where w > 0 and C > 0. Now, one can check that 〈N, f〉 < ∞ by a direct computation since N decreases
exponentially. Recalling that ψ ≤ Vγ and Vγ(z0) is dominated by 1 + xγ0 ends the proof of i).

ii) For the L2 computation, we follow [7] and use the underlying genealogy and the Ulam-Harris-Neveu notation
evoked in Section 1. For t > 0, we have

〈Zt, g〉 =
∑
u∈Vt

g(zut ),

where we remind that Vt denotes the indexing set of the individuals alive at time t and zut = (eu, xut ) denotes
the characteristics at time t of individual u ∈ Vt. In addition, for u, v ∈ U , u ∧ v denotes the label of the most
recent ancestor of u and v, and (vi)i∈{1,2,3} are the descendants of v, and u < v encodes the order in the tree
(i.e. u is a descendant of v). Having all this in mind, we first notice that

〈Zt, g〉2 =
∑
u,v∈Vt

g(zut )g(zvt ) =
∑
u∈Vt

g(zut )2 +
∑
w∈U

1b(w)<t It(w) (5.1)

where for any w ∈ U , b(w) is the time at which the individual labelled by w branches (by convention it is infinite
if this event does not happen) and

It(w) =
∑
u,v∈Vt

i,j∈{1,2,3}, i 6=j
u<wi, v<wj

g(zut )g(zvt ) =
∑

i,j∈{1,2,3}, i 6=j

 ∑
u∈Vt, u<wi

g(zut ) ×
∑

v∈Vt, v<wj

g(zvt )



We evaluate the expectation of each term involved in 〈Zt, g〉2. First, in view of Lemma 5.1 with γ = 2, for any
z0 ∈ S, we have

Eδz0

(∑
u∈Vt

g(zut )2

)
= Mt(g

2)(z0) ≤ Ceλt(1 + x2
0). (5.2)

Second, we deal with Eδz0
(∑

w∈U 1b(w)<t It(w)
)
. For any w ∈ U and for i ∈ {1, 2, 3}, we have

1b(w)<t E

 ∑
u∈Vt, u<wi

g(zut )
∣∣ b(w), zwib(w)

 = 1b(w)<tMt−b(w)g(zwib(w)).

For any w ∈ U , the branching property then yields

1b(w)<t Eδz0
(
It(w)

∣∣Fb(w)

)
= 1b(w)<t

∑
i6=j∈{1,2,3}

Mt−b(w)g(zwib(w))Mt−b(w)g(zwjb(w)).

Combining these identities, we obtain

Eδz0

(∑
w∈U

1b(w)<t It(w)

)
= Eδz0

∑
w∈U

1b(w)<t

∑
i6=j∈{1,2,3}

Mt−b(w)g(zwib(w))Mt−b(w)g(zwjb(w))

 .
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Recalling that B(z) is the branching rate of individual of type z defined in (2.3), we observe that

Eδz0

(∑
w∈U

1b(w)<t f(zwb(w−), b(w))

)
=

∫
S×[0,t]

B(z)f(z, s)Ms(z0,dz) ds

for any f non-negative measurable function defined on S × [0, t]. Denoting by p(z, dz1dz2dz3) the distribution
of types of the three off-springs of an individual with type z, we obtain

Eδz0

(∑
w∈U

1b(w)<t It(w)

)

=

∫ t

0

∫
S4

∑
i 6=j∈{1,2,3}

Mt−sg(zi)Mt−sg(zj)p(z, dz1dz2dz3)B(z)Ms(z0,dz) ds

Introducing the measure K defined by

B(z)

∫
S3

p(z, dz1dz2dz3)
∑

i 6=j∈{1,2,3}

f1(zi)f2(zj) =

∫
S2

K(z, dz1dz2)f1(z1)f2(z2)

where f1, f2 are non-negative measurable functions, we obtain

Eδz0

(∑
w∈U

1b(w)<t It(w)

)

=

∫ t

0

∫
S3

Mt−sg(z1)Mt−sg(z2)K(z, dz1dz2)Ms(z0,dz) ds. (5.3)

Finally, we observe that K is the kernel of binary splitting of ancestral lineages at division of the individual
z, i.e. we choose two of the three offsprings. Its form can be explicitly derived, which ends the proof of ii) by
combining (5.2) and (5.3).

We consider now the classical local martingale associated to the eigenfunction ψ:

Yt := exp(−λt)〈Zt, ψ〉, t ≥ 0,

recalling that λ is the eigenvalue defined in (4.2) and ψ is the eigenfunction defined in (1.16). We show that it
converges a.s. to a non-degenerate random variable.

Proposition 5.2. Under Assumption (1.6) and assuming that Z0 has at least one atom with probability 1,
(Yt)t≥0 converges a.s, as t→∞, to a positive finite random variable W .

Proof of Proposition 5.2. The fact that (Yt)t≥0 is a local martingale is classical since we use here the harmonic
function ψ. It can be directly derived from (3.2).

Now, we first prove that (Yt)t≥0 is bounded in L2(Ω) when we start from one single individual with random
and bounded initial condition Z0 ∈ S (Step 1). This ensures that the limit is positive with positive probability.
In Step 2, we obtain that the limit is a.s. positive by standard arguments using the branching property. In
Step 3, we end the proof by extending the a.s. convergence to the case of initial conditions involving several
individuals and unbounded types, under Assumption 1.6.



428 M. TOMAŠEVIĆ ET AL.

Step 1. Since ψ is dominated by 1 + x, we may apply Lemma 5.1-ii) to g = ψ. Writing µ0 the law of Z0 and
µ0Ms(dz) = E(Ms(Z0,dz)) = EδZ0

(Zs(dz)) and using that Mtψ(z) = eλtψ(z), it leads to

EδZ0

(
〈Zt, ψ〉2

)
≤ C ′eλt(1 + x2

0)

+

∫ t

0

e2λ(t−s)
∫
S3

ψ(z1)ψ(z2)K(z, dz1dz2)µ0Ms(dz) ds,

for some C ′ ≥ 0. Adding that K((e, x), S2) ≤ cx and defining f(e, x) = 1 + x3, we have∫
S3

ψ(z1)ψ(z2)K(z, dz1dz2)µ0Ms(dz) ≤ µ0Msf.

Use now that f ∈ B(V3), it comes from Lemma 5.1-i)

EδZ0
〈Zt, ψ〉2 ≤ C ′eλt(1 + x2

0) + C ′′e2λt(1 + x3
0),

where C ′′ > 0 and x0 is the a.s. bound on the second component of Z0. Starting from Z0 = δZ0
, it ensures that

the local martingale Yt is bounded in L2 and thus converges a.s. and in L2 to a finite random variable W . This
guarantees that E(W ) > 0 and W is positive with positive probability.

Step 2. Let us now prove that W is a.s. positive using the regeneration property due to open segments. The
argument given here exploits the branching property along a stopping line, in the same vein as [17]. Let us
write W (1,0) for the limiting martingale when the initial condition is one single open segment of length x = 0.
The previous step ensures that P(W (1,0) > 0) > 0. Besides, each open segment branches at constant rate b1 > 0
through the mechanism we described as “apical branching”, giving birth to two open segments of length 0. As a
consequence, restricting our attention to this subpopulation of open segments (disregarding the open segments
of length zero created by “lateral branching”) we obtain a binary Yule process embedded in the original process,
for which the first open segment of size zero is the root. Since the Yule process a.s. tends to infinity, for any
N ≥ 1, we can consider a finite stopping line in the original process Z where we have N segments of initial size 0.
By the branching property, each one independently gives rise to a growth-fragmentation process, with the same
law as Z starting from δ(1,0) and corresponding martingale limits (Wi)i=1,...N , independent and distributed like

W (1,0). On the event {W = 0}, each Wi has to be zero, which happens with probability P(W (1,0) = 0)N . But
the latter quantity becomes arbitrarily small as N becomes large. Hence, we have P(W = 0) = 0.

Step 3. Let us now consider an initial condition Z0 satisfying (1.6) and extend the previous result by a
truncation argument. The index set of the initial individuals is given by V0 = {1, . . . , 〈Z0, 1〉} ⊂ N and (Zi(0))i∈V0

are their initial type. We introduce the branching process Z(i) issued from the single individual i. Note that
if this individual does not exist in the process at time 0, one can artificially choose a type for it, say (1, 1)

otherwise. We also set Y
(i)
t = exp(−λt)〈Zit , ψ〉. For any integer k, we introduce the event

Ak =
{
〈Z0, 1〉 ≤ k, 〈Z0,1{0,1}×[k,∞)〉 = 0

}
which allows to bound both the number of individuals and their maximal length at initial time. We consider

Mk
t = 1AkYt = 1Ak

∑
i∈V0

Y
(Zki )
t ,
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where Zki is the initial condition Zi whose second component has been truncated at k. Step 1 ensures that

for each i, Y
(Zki )
t converges a.s. to a positive finite random variable. Hence, on the event Ak, Mk

t is the sum

involving a bounded and non zero number of terms (Y
(Zki )
t ’s) and each one of them has a finite positive limit as

t→∞. This ensures that Mk
t converges a.s. to a finite positive limit. Adding that the sequence 1Ak increases

a.s. to 1 as k → ∞ thanks to (1.6), we obtain that Yt converges a.s., as t → ∞, to a positive finite random
variable. This ends the proof.

Now we are ready to prove Theorem 1.4 that describes the asymptotic empirical distribution in type and
lengths in our exponential growing population.

Proof of Theorem 1.4. For convenience, we introduce the probability measure π on S defined by 〈π, f〉 :=
1
2 〈N, f〉. We achieve the proof in the case of a single initial individual with bounded initial condition Z0 ∈ S.
Then, the convergence can be extended as in the previous proof.

Assume we showed that for any g : S → R such that

sup
(e,x)∈X

|f(e, x)|/(1 + x) <∞, 〈π, g〉 = 0,

it holds

EδZ0

(
e−2λt〈Zt, g〉2

)
→ 0, t→∞. (5.4)

Then, the conclusion for any f : S → R dominated by ψ follows by taking g = f − 〈π,f〉〈π,ψ〉ψ and by applying

Proposition 5.2 to obtain the following convergence in probability:

〈Zt, f〉
〈Zt, ψ〉

=
e−λt〈Zt, g〉
e−λt〈Zt, ψ〉

+
〈π, f〉
〈π, ψ〉

→ 0

W
+
〈π, f〉
〈π, ψ〉

, t→∞.

It remains to check that (5.4) holds true. In view of Lemma 5.1-ii), we have

EδZ0

(
e−2λt〈Zt, g〉2

)
≤ e−2λt

∫ t

0

∫
S3

Mt−sg(z1)Mt−sg(z2)K(z, dz1dz2)µ0Ms(dz) ds+ Ce−λt,

where C is a constant depending only on the bound of the initial condition Z0. Now, for any t > 0, apply
Theorem 4.3 for γ = 2 having in mind that 〈π, g〉 = 0. It comes

|e−λtMtg(z)| ≤ CV (z)e−ωt.

The above estimate together with the fact that K(z, S2) ≤ Cx and V (z) ≤ C(1 + x2) yields

E
(
e−2λt〈Zt, g〉2

)
≤ C

∫ t

0

∫
S

f(z)e−2λs−2ω(t−s)Ms(z0,dz) ds =

∫ t

0

e−2λs−2ω(t−s)Msf ds

with f(e, x) = 1 + x5. Applying Lemma 5.1 with γ = 5 on Msf , we obtain that

E
(
e−2λt〈Zt, g〉2

)
≤ C(1 + x5

0)

∫ t

0

esλe−2λs−2ω(t−s) ds.

and (5.4) is proved.
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6. Parameter estimation

Our first motivation for this work was to answer the following question: Given a panorama of the state of the
fungal mycelium at the end time of some growth experiment such as those carried out in [20], can we reconstruct
the elongation rate v, and the rates of apical branching (b1) and lateral branching (b2) that gave rise to the
observed numbers and length distributions of internal and external (or terminal) segments of filaments?

Assuming that the fusion of filaments may be neglected, we may use the model developped in this work in
a direct way and calibrate it with the count and length data. Indeed, recall that to obtain Theorem 1.3, we
scaled time in such a way that elongation happens at speed 1. For a general v > 0, the quantities b1 and b2
appearing in the definitions of λ (see (1.13)), N1 and N0 (see (1.14–1.15)) should thus be replaced by b1/v and
b2/v. Combining the estimator Λ̂T of the growth rate λ defined in (1.18) by

Λ̂T =
〈ZT , pe〉
〈ZT , pl〉

≈ nb of filament apexes at time T

total mycelial length at time T
, (6.1)

where T > 0 is the end time of the experiment, and the explicit formulae for the stationary length distributions
of external and internal segments approximated by their empirical counterparts, a simple fitting procedure
would allow us to reconstruct v, b1 and b2. Note that estimating v from a temporal series of panoramas taken
at sufficiently close times is rather easy and may prove to be more robust than estimating v through the above
procedure, since the very large number of open segments of filaments offers many realisations of the same
deterministic growth process (with potential measurement errors, though).

However, it was shown in [20] that anastomosis cannot be disregarded and does have an impact on the growth
properties of the network, and consequently λ cannot be simply approximated by the ratio of the number of
apexes to the total length of the mycelium appearing on the right-hand-side of (6.1). A rule of thumb led the
authors of [20] to conclude that if we write αA for the exponential growth rate of the observed number of apexes
(i.e., open ends of filaments) and αN for the exponential growth rate of the observed number of internal branch
points (i.e., ends of internal segments of filaments), then these quantities can be related to the theoretical
growth rate αb = λ at which branching globally increases the total number of nodes and to the rate αa at which
anastomosis turns open ends of filaments into internal branch points as follows (see Eqs. (1) and (2) in [20]):

αN = λ+ αa,

αA = λ− αa. (6.2)

Therefore, using a temporal series of panoramas instead of a single “final” panorama, we may obtain a measure
of v as discussed above, and of λ by writing

λ̂T ≈
αN (T ) + αA(T )

2
, (6.3)

where αN (T ) (resp., αA(T )) are the empirical slopes of the logarithm of the number of internal branch points
(resp., of apexes) through time over the time interval [0, T ]. Once we have an empirical value for v and λ, we are
back in line with our simple branching model (since λ corresponds to the growth rate of the number of nodes
due to branching) and equation (1.13) applies. But a last hurdle remains: anastomosis may have stopped the
growth of some of the observed segments (and turned open segments into closed ones), distorting the stationary
length profiles N0 and N1.

To circumvent this problem, note that in practice the centre of the mycelial network rapidly becomes very
dense in such experiments, rendering the identification and measurement of segments in this region very difficult.
In [20], the authors resorted to considering only the information contained in a large ring centred at the location
of the initial spore but excluding the denser central part of the network (see Fig. 3 in [20]). The second advantage
of this approach is that, because the spatial spread of the mycelium happens radially, the directions taken by
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the “primary” filaments serving as a backbone for the network diverge and the network becomes more and more
well-spread as we go from the centre towards the outside. This property renders the measurements easier in the
ring, and in this region anastomosis mainly happens to relatively long filaments. This suggests that matching
the data on types and lengths to the stationary distributions N1, N0 over an interval of lengths of the form
(0, L) only, for some small L that will have to be determined empirically, may allow us to get around the fact
that anastomosis prevents some of the long segments to occur and thereby distorts the tail of the distribution
in segment lengths. We shall pursue this direction in future work.
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Appendix A

A.1 Characterisation of eigenvalues

In this section, we consider the spectral problem (4.1) with eigenfunctions N1 and N0 satisfying the following
conditions: ∫

R∗+
(1 + x)|N0(x)|dx <∞,

∫
R+

(1 + x)|N1(x)|dx <∞,

lim
x→∞

N1(x) = 0 and lim
x→∞

xN1(x) = 0.

We prove that the associated eigenvalues satisfy (1.13).
First, observe that ∫ ∞

0

N1(x)dx =

∫ ∞
0

N0(x)dx. (A.1)

To see this, it suffices to integrate (4.1a) and (4.1c) over R∗+ and then to substract one expression from the
other. Since limx→∞N1(x) = 0, we have

(b1+λ)

∫ ∞
0

N1(x)dx− λ
∫ ∞

0

N0(x)dx

= N1(0)− b1
∫ ∞

0

N1(x)dx− b2
∫ ∞

0

x(N1(x) +N0(x))dx.

Plugging in the value prescribed for N1(0) in (4.1b), we can conclude that (A.1) holds true.
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Let us now sum up the two integrated equations. It comes

lim
x→∞

(
N1(x)−N1(0) + λ

∫ ∞
0

(N1(x) +N0(x))dx

)
= b2

∫ ∞
0

x(N1(x) +N0(x))dx.

Using (4.1b), we can write that

λ

∫ ∞
0

(N1(x) +N0(x))dx = 2b1

∫ ∞
0

N1(x)dx+ 2b2

∫ ∞
0

x(N1(x) +N0(x))dx. (A.2)

Multiplying both (4.1a) and (4.1c) by x, integrating over R+, summing up the two expressions just obtained
and then integrating by parts and using Fubini’s theorem, we arrive at

[
xN1(x)

]∞
0
−
∫ ∞

0

N1(x)dx+ λ

∫ ∞
0

x(N1(x) +N0(x))dx = 0.

Using that limx→∞ xN1(x) = 0, we obtain

λ

∫ ∞
0

x(N1(x) +N0(x))dx =

∫ ∞
0

N1(x)dx. (A.3)

Plugging (A.3) into (A.2) and using (A.1), we can finally conclude that λ satisfies the desired equation

λ = b1 +
b2
λ
.

A.2 Proof of Proposition 4.1

We first deal with (4.1a). Let us define Ñ1(x) = (b1 + b2x+ λ)e−
∫ x
0

(b1+b2y+λ)dy. Notice that

Ñ ′1(x) = (b2 − (b1 + b2x+ λ)2)e−
∫ x
0

(b1+b2y+λ)dy

and ∫ ∞
x

Ñ1(y)dy = e−
∫ x
0

(b1+b2y+λ)dy.

Hence, Ñ1 obviously satisfies (4.1a). Moreover, notice that
∫∞

0
Ñ1(x)dx = 1.

Now, let us define

Ñ0(x) :=
Ñ1(x)

(b2x+ λ)2
(b2 + b1(b2x+ λ)) +

b2e
−

∫ x
0

(b1+b2y+λ)dy

(b2x+ λ)3
(2b2 + b1(b2x+ λ)).

We first notice that ∫ ∞
0

Ñ0(x)dx =

∫ ∞
0

Ñ1(x)dx. (A.4)

Indeed, from the definition of Ñ1 we have that
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∫ ∞
0

Ñ0(x)dx =

∫ ∞
0

Ñ1(x)

(b2x+ λ)2
(b2 + b1(b2x+λ))dx+ b2

∫ ∞
0

2b2 + b1(b2x+ λ)

(b2x+ λ)3

∫ ∞
x

Ñ1(y)dy dx =: I + II.

Integrating by parts in the second term in the above expression, we obtain that

II =

(
b1
λ

+
b2
λ2

)∫ ∞
0

Ñ0(x)dx− I.

Combining these identities with the fact that λ satisfies the equality λ2 = b1λ+ b2, we obtain that (A.4) holds
true. This necessarily implies that the first condition in (4.5) is satisfied.

Now, we turn to (4.1c). A tenacious reader may check that the following is true: For any x > 0

∫ ∞
x

Ñ0(y)dy =

(
b1

λ+ b2x
+

b2
(λ+ b2x)2

)
e−

∫ x
0

(b1+λ+b2y) dy.

Hence, plugging (Ñ0, Ñ1) and the above value into (4.1c) and rearranging the terms, we obtain that the couple
(Ñ0, Ñ1) indeed satisfies (4.1c).

In order to finish with the system (4.1), it remains to verify that the value prescribed in (4.1b) matches
Ñ1(0) = b1 + λ. Using the equation satisfied by λ and the fact that

∫∞
0
Ñ1(x)dx = 1, we have

Ñ1(0) = b1 + λ = 2b1

∫ ∞
0

Ñ1(x)dx+
b2
λ

∫ ∞
0

Ñ1(x)dx.

To obtain the condition in (4.1b), notice that Ñ1 and Ñ0 satisfy the relationship in (A.3) thanks to the fact that
they solve (4.1a) and (4.1c), respectively. Plugging this relationship in the above expression gives the desired

result. We have now shown that (N1, N0) = (Ñ1, Ñ0).
We now proceed with ψ. For any c ∈ R, plugging

ψ1(x) = c

(
1 +

b2
λ
x

)
and ψ0(x) = c

b2x

λ

in (4.4a) and (4.4b), we easily obtain that these functions are solutions to this system of equations.
The relation in (4.5) fixes the above constant c. Indeed, we must have

c

(
1 +

b2
λ

∫
x(N1(x) +N0(y))dx

)
= 1.

From (A.3), we obtain that c = λ2

λ2+b2
.
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[5] J. Banasiak, K. Pichór and R. Rudnicki, Asynchronous exponential growth of a general structured population model. Acta
Appl. Math. 119 (2012) 149–166.

[6] V. Bansaye, B. Cloez, P. Gabriel and A. Marguet, A non-conservative Harris’ ergodic theorem. To appear in J. London Math.
Soc. arXiv:1903.03946 (2019).

[7] V. Bansaye, J.-F. Delmas, L. Marsalle and V.C. Tran, Limit theorems for Markov processes indexed by continuous time
Galton-Watson trees. Ann. Appl. Probab. 21 (2011) 2263–2314.

[8] D.J. Barry and G.A. Williams, Microscopic characterisation of filamentous microbes: towards fully automated morphological
quantification through image analysis. J. Microsc. 244 (2011) 1–20.

[9] J. Bertoin and A.R. Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations. J. Funct. Anal.
274 (2018) 2163–2204.

[10] L. Boddy, J. Wood, E. Redman, J. Hynes and M.D. Fricker, Fungal network responses to grazing. Fungal Genet. Biol. 47
(2010) 522–530.

[11] G.P. Boswell and F.A. Davidson, Modelling hyphal networks. Fungal Biol. Rev. 26 (2012) 30–38.
[12] F. Brikci, J. Clairambault and B. Perthame, Analysis of a molecular structured population model with possible polynomial

growth for the cell division cycle. Math. Comput. Modell. 47 (2008) 699–713.
[13] J. Calvo, M. Doumic and B. Perthame, Long-time asymptotics for polymerization models. Commun. Math. Phys. 363 (2018)

111–137.
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[17] B. Chauvin, Sur la propriété de branchement. Ann. IHP Probab. Statist. 22 (1986) 233–236.
[18] B. Cloez, Limit theorems for some branching measure-valued processes. Adv. Appl. Probab. 49 (2017) 549–580.

[19] B. Cloez, B. de Saporta and T. Roget, Long-time behavior and Darwinian optimality for an asymmetric size-structured
branching process. J. Math. Biol. 83 (2021) 1–30.

[20] J. Dikec, A. Olivier, C. Bobée, Y. D’Angelo, R. Catellier, P. David, F. Filaine, S. Herbert, C. Lalanne, H. Lalucque, L. Monasse,
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