One Dimensional Martingale Rearrangement Couplings
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 495-527

We are interested in martingale rearrangement couplings. As introduced by Wiesel in order to prove the stability of Martingale Optimal Transport problems, these are projections in adapted Wasserstein distance of couplings between two probability measures on the real line in the convex order onto the set of martingale couplings between these two marginals. In reason of the lack of relative compactness of the set of couplings with given marginals for the adapted Wasserstein topology, the existence of such a projection is not clear at all. Under a barycentre dispersion assumption on the original coupling which is in particular satisfied by the Hoeffding-Frechet or comonotone coupling, Wiesel gives a clear algorithmic construction of a martingale rearrangement when the marginals are finitely supported and then gets rid of the finite support assumption by relying on a rather messy limiting procedure to overcome the lack of relative compactness. Here, we give a direct general construction of a martingale rearrangement coupling under the barycentre dispersion assumption. This martingale rearrangement is obtained from the original coupling by an approach similar to the construction we gave in Jourdain and Margheriti [Electr. J. Probab. (2020)] of the inverse transform martingale coupling, a member of a family of martingale couplings close to the Hoeffding-Fréchet coupling, but for a slightly different injection in the set of extended couplings introduced by Beiglböck and Juillet and which involve the uniform distribution on [0,1] in addition to the two marginals. We last discuss the stability in adapted Wassertein distance of the inverse transform martingale coupling with respect to the marginal distributions.

DOI : 10.1051/ps/2022012
Classification : 60G42, 60E15, 91G80, 49Q22
Keywords: Martingale couplings, Martingale Optimal Transport, Adapted Wasserstein distance, Robust finance, Convex order
@article{PS_2022__26_1_495_0,
     author = {Jourdain, B. and Margheriti, W.},
     title = {One {Dimensional} {Martingale} {Rearrangement} {Couplings}},
     journal = {ESAIM: Probability and Statistics},
     pages = {495--527},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2022012},
     mrnumber = {4525181},
     zbl = {1528.60034},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2022012/}
}
TY  - JOUR
AU  - Jourdain, B.
AU  - Margheriti, W.
TI  - One Dimensional Martingale Rearrangement Couplings
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 495
EP  - 527
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2022012/
DO  - 10.1051/ps/2022012
LA  - en
ID  - PS_2022__26_1_495_0
ER  - 
%0 Journal Article
%A Jourdain, B.
%A Margheriti, W.
%T One Dimensional Martingale Rearrangement Couplings
%J ESAIM: Probability and Statistics
%D 2022
%P 495-527
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2022012/
%R 10.1051/ps/2022012
%G en
%F PS_2022__26_1_495_0
Jourdain, B.; Margheriti, W. One Dimensional Martingale Rearrangement Couplings. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 495-527. doi: 10.1051/ps/2022012

[1] D.J. Aldous, Weak Convergence and General Theory of Processes (1981), unpublished.

[2] C.D. Aliprantis and K.C. Border, Infinite dimensional analysis: A Hitchhiker’s guide, 3rd edn., Springer (2006). | MR | Zbl

[3] J. Backhoff-Veraguas, D. Bartl, M. Beiglböck and M. Eder, Adapted Wasserstein distances and stability in mathematical finance, Finance Stoch. 24 (2020) 601-632. | MR | Zbl | DOI

[4] J. Backhoff-Veraguas, D. Bartl, M. Beiglböck and M. Eder, All adapted topologies are equal, Probab. Theory Related Fields 178 (2020) 1125-1172. | MR | Zbl | DOI

[5] J. Backhoff-Veraguas, D. Bartl, M. Beiglböck and J. Wiesel, Estimating processes in adapted Wasserstein distance. Ann. Appl. Probab. 32 (2022) 529-550. | MR | Zbl

[6] J. Backhoff-Veraguas and G. Pammer, Stability of martingale optimal transport and weak optimal transport, Ann. Appl. Probab. Ann. Appl. Probab., 32 (2022) 721-752. | MR | Zbl

[7] M. Beiglböck, P. Henry-Labordère and F. Penkner, Model-independent bounds for option prices: a mass transport approach. Finance Stoch. 17 (2013) 477-501. | MR | Zbl | DOI

[8] M. Beiglböck, B. Jourdain, W. Margheriti and G. Pammer, Stability of the Weak Martingale Optimal Transport Problem. (2021). | arXiv | MR

[9] M. Beiglböck, B. Jourdain, W. Margheriti and G. Pammer, Approximation of martingale couplings on the line in the weak adapted topology. Probab. Theory Related Fields 183 (2022) 359-413. | MR | Zbl | DOI

[10] M. Beiglböck and N. Juillet, On a problem of optimal transport under marginal martingale constraints. Ann. Probab. 44 (2016) 42-106. | MR | Zbl | DOI

[11] M. Beiglböck and N. Juillet, Shadow couplings. Trans. Am. Math. Soc. 374 (2021) 4973-5002. | MR | Zbl | DOI

[12] M. Beiglböck, T. Lim and J. Obłój, Dual attainment for the martingale transport problem. Bernoulli 25 (2019) 1640-1658. | MR | Zbl | DOI

[13] M. Beiglböck, M. Nutz and N. Touzi, Complete duality for martingale optimal transport on the line. Ann. Probab. 45 (2017) 3038-3074. | MR | Zbl | DOI

[14] J. Bion-Nadal and D. Talay, On a Wasserstein-type distance between solutions to stochastic differential equations. Ann. Appl. Probab. 29 (2019) 1609-1639. | MR | Zbl | DOI

[15] M. Brückerhoff and N. Juillet, Instability of Martingale optimal transport in dimension d 2 . Electron. Commun. Probab. 27 (2022) Paper No. 24. | MR | Zbl

[16] H. De March, Local structure of multi-dimensional martingale optimal transport. (2018). | arXiv

[17] H. De March, Quasi-sure duality for multi-dimensional martingale optimal transport. (2018). | arXiv

[18] H. De March and N. Touzi, Irreducible convex paving for decomposition of multi-dimensional martingale transport plans. Ann. Probab. 47 (2019) 1726-1774. | MR | Zbl | DOI

[19] A. Galichon, P. Henry-Labordère and N. Touzi, A stochastic control approach to no-arbitrage bounds given marginals, with an application to Lookback options. Ann. Appl. Probab. 24 (2014) 312-336. | MR | Zbl | DOI

[20] S. Gerhold and I.C. Gülüm, Peacocks nearby: approximating sequences of Measures. Stoch. Process. Appl. 129 (2019) 24062436. | MR | Zbl | DOI

[21] S. Gerhold and I.C. Gülüm, Consistency of option prices under bid-ask spreads. Math. Finance 30 (2020) 377-402. | MR | Zbl | DOI

[22] N. Ghoussoub, Y.-H. Kim and T. Lim, Structure of optimal martingale transport plans in general dimensions. Ann. Probab. 47 (2019) 109-164. | MR | Zbl | DOI

[23] M.F. Hellwig, Sequential decisions under uncertainty and the maximum theorem. J. Math. Econ. 25 (1996) 443-464. | MR | Zbl | DOI

[24] P. Henry-Labordere, X. Tan and N. Touzi, An explicit version of the one-dimensional Brenier’s theorem with full marginals constraint. Stoch. Process. Appl. 126 (2016) 2800-2834. | MR | Zbl | DOI

[25] P. Henry-Labordere and N. Touzi, An explicit martingale version of the one-dimensional Brenier theorem. Finance Stoch. 20 (2016) 635-668. | MR | Zbl | DOI

[26] B. Jourdain and W. Margheriti, A new family of one dimensional martingale Couplings. Electr. J. Probab. 25 (2020). | MR | Zbl

[27] B. Jourdain and W. Margheriti, One dimensional martingale rearrangement couplings. (2021). | arXiv | MR | Zbl

[28] L.V. Kantorovich, On the translocation of masses. Doklady Akademii Nauk SSSR 37 (1942) 199-201. | MR | Zbl

[29] R. Lassalle, Causal transference plans and their Monge-Kantorovich problems. Stoch. Anal. Appl. 36 (2018) 452-484. | MR | Zbl | DOI

[30] G. Monge, Mémoire sur la théorie des déblais et des remblais. Histoire de l’académie Royale des Sciences de Paris (1781).

[31] G.C. Pflug and A. Pichler, A distance for multistage stochastic optimization models. SIAM J. Optim. 22 (2012) 1-23. | MR | Zbl | DOI

[32] G.C. Pflug and A. Pichler, Multistage stochastic optimization, Springer Series in Operations Research and Financial Engineering, Springer, Cham (2014). | MR | Zbl

[33] G.C. Pflug and A. Pichler, Dynamic generation of scenario trees. Comput. Optim. Appl. 62 (2015) 641-668. | MR | Zbl | DOI

[34] G.C. Pflug and A. Pichler, From empirical observations to tree models for stochastic optimization: convergence properties. SIAM J. Optim. 26 (2016) 1715-1740. | MR | Zbl | DOI

[35] S.T. Rachev and L. Rüschendorf, Mass Transportation Problems: Volume I: Theory. Springer Science & Business Media (1998). | MR | Zbl

[36] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren der mathematischen Wissenschaften, 3rd edn. Springer-Verlag, Berlin Heidelberg (1999). | MR | Zbl

[37] L. Rüschendorf, On the minimum discrimination information theorem. Stat. Decis. Suppl. 1 (1984) 263-283. | MR | Zbl

[38] V. Strassen, The existence of probability measures with given marginals. Ann. Math. Stat. 36 (1965) 423-439. | MR | Zbl | DOI

[39] J. Wiesel, Continuity of the martingale optimal transport problem on the real line. (2020). | arXiv | Zbl

Cité par Sources :

This research benefited from the support of the “Chaire Risques Financiers”, Fondation du Risque