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ONE DIMENSIONAL MARTINGALE REARRANGEMENT
COUPLINGS∗

B. Jourdain and W. Margheriti**

Abstract. We are interested in martingale rearrangement couplings. As introduced by Wiesel in order
to prove the stability of Martingale Optimal Transport problems, these are projections in adapted
Wasserstein distance of couplings between two probability measures on the real line in the convex
order onto the set of martingale couplings between these two marginals. In reason of the lack of rela-
tive compactness of the set of couplings with given marginals for the adapted Wasserstein topology, the
existence of such a projection is not clear at all. Under a barycentre dispersion assumption on the orig-
inal coupling which is in particular satisfied by the Hoeffding-Fréchet or comonotone coupling, Wiesel
gives a clear algorithmic construction of a martingale rearrangement when the marginals are finitely
supported and then gets rid of the finite support assumption by relying on a rather messy limiting
procedure to overcome the lack of relative compactness. Here, we give a direct general construction
of a martingale rearrangement coupling under the barycentre dispersion assumption. This martingale
rearrangement is obtained from the original coupling by an approach similar to the construction we
gave in Jourdain and Margheriti [Electr. J. Probab. (2020)] of the inverse transform martingale cou-
pling, a member of a family of martingale couplings close to the Hoeffding-Fréchet coupling, but for
a slightly different injection in the set of extended couplings introduced by Beiglböck and Juillet and
which involve the uniform distribution on [0, 1] in addition to the two marginals. We last discuss the
stability in adapted Wassertein distance of the inverse transform martingale coupling with respect to
the marginal distributions.
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1. Introduction
Let ρ ≥ 1 and µ, ν be in the set Pρ(R) of probability measures on the real line with finite order ρ moment.

We denote by Π(µ, ν) the set of couplings between µ and ν, that is π ∈ Π(µ, ν) iff π is a measure on R×R with
first marginal µ and second marginal ν. We denote by ΠM(µ, ν) the set of martingale couplings between µ and
ν:

ΠM(µ, ν) =
{
M ∈ Π(µ, ν) | µ(dx)-a.e.,

∫
R
yMx(dy) = x

}
, (1.1)
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where for any coupling π ∈ Π(µ, ν) we denote by (πx)x∈R its disintegration with respect to its first marginal, that
is π(dx, dy) = µ(dx)πx(dy), or with a slight abuse of notation π = µ × πx. The celebrated Strassen theorem
[38] ensures that ΠM(µ, ν) 6= ∅ iff µ and ν are in the convex order, which we denote µ ≤cx ν, that is iff∫
R f(x)µ(dx) ≤

∫
R f(y) ν(dy) for any convex function f : R→ R, which implies that

∫
R xµ(dx) =

∫
R yν(dy).

Fix π ∈ Π(µ, ν) with µ ≤cx ν. We are interested in finding a projection of π on the set ΠM(µ, ν) for the
adapted Wasserstein distance AWρ (defined in (1.5) below), that is finding a martingale coupling M between
µ and ν such that

AWρ(π,M) = inf
M ′∈ΠM(µ,ν)

AWρ(π,M ′). (1.2)

This problem arose our interest when Wiesel [39] highlighted its connection for ρ = 1 with the stability of
the Martingale Optimal Transport (MOT) problem. The MOT problem was introduced in discrete time by
Beiglböck, Henry-Labordère and Penkner [7] and in continuous time by Galichon, Henry- Labordère and Touzi
[19] in order to get model-free bounds of an option price. It consists in the classical Optimal Transport problem,
which was formulated by Gaspard Monge [30] in 1781 and modernised by Kantorovich [28] in 1942, to which an
additional martingale constraint is added in order to reflect the arbitrage-free condition of the market. In our
setting the MOT problem consists in the minimisation

MOT(µ, ν) := inf
M∈ΠM(µ,ν)

∫
R×R

C(x, y)M(dx, dy), (MOT)

where C : R× R→ R+ is a nonnegative measurable payoff function. The study of its stability, that is the con-
tinuity of the map (µ, ν) 7→ MOT(µ, ν), represents a major stake, since it confirms the robustness of model-free
bounds of an option price. Backhoff-Veraguas and Pammer [6] gave a positive answer under mild regularity
assumptions by showing the stability of the so called martingale C-monotonicity property, which is proved
sufficient for optimality. Independently, Wiesel [39] also gave a positive answer. More recently, Beiglböck, Pam-
mer and the two authors generalised those stability results to the weak MOT problem [8]. For adaptations of
celebrated results on classical optimal transport theory to the MOT problem, we refer to Beiglböck and Juillet
[10], Henry-Labordère, Tan and Touzi [24] and Henry- Labordère and Touzi [25]. On duality, we refer to Bei-
glböck, Nutz and Touzi [13], Beiglböck, Lim and Ob lój [12] and De March [17]. We also refer to Ghoussoub,
Kim and Lim [22], De March [16] and De March and Touzi [18] for the multi-dimensional case, where stability
fails according to a nice counter-example by Brückerhoff and Juillet [15].

We recall that the Wasserstein distance with index ρ between µ and ν is defined by

Wρ(µ, ν) = inf
π∈Π(µ,ν)

(∫
R×R
|x− y|ρ π(dx,dy)

)1/ρ
. (1.3)

The infimum is attained by the comonotonic or Hoeffding-Fréchet coupling πHF between µ and ν, that is the
image of the Lebesgue measure on (0, 1) by u 7→ (F−1

µ (u), F−1
ν (u)), where F−1

η (u) = inf{x ∈ R : η((−∞, x]) ≥ u}
denotes the quantile function of a probability measure η on R. As a consequence,

Wρ(µ, ν) =
(∫

(0,1)
|F−1
µ (u)− F−1

ν (u)|ρdu
)1/ρ

. (1.4)

The topology induced by the Wasserstein distance is not always well suited for any setting, especially in
mathematical finance. Indeed, the symmetry of this distance does not take into account the temporal structure
of martingales. One can easily get convinced that two stochastic processes very close in Wasserstein distance can
yield radically unalike information, as Figure 1 of [3] illustrates very well. Therefore, one needs to strengthen,
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or adapt this usual topology. This can be done in many different ways, such as the adapted weak topology
(see below), Hellwig’s information topology [23], Aldous’s extended weak topology [1] or the optimal stopping
topology [4]. Strikingly, all those apparently independent topologies are actually equal, at least in discrete time
([4], Thm. 1.1).

Hence it induces no loss of generality to focus on the so called adapted Wasserstein distance. For an extensive
background, we refer to [14, 29, 31–34]. For all µ′, ν′ ∈ Pρ(R) and π′ ∈ Π(µ′, ν′), the adapted Wasserstein
distance with index ρ between π and π′ is defined by

AWρ(π, π′) = inf
χ∈Π(µ,µ′)

(∫
R×R

(
|x− x′|ρ +Wρ

ρ (πx, π′x′)
)
χ(dx, dx′)

)1/ρ
. (1.5)

Note that by Lemma A.1 below there always exists a coupling χ ∈ Π(µ, µ) optimal for AWρ(π, π′). Moreover
it is easy to check that Wρ ≤ AWρ, so that AWρ induces a finer topology than Wρ. For π ∈ Π(µ, ν) with
µ ≤cx ν, Wiesel [39] studies Problem (1.2) for ρ = 1 and introduces the notion of martingale rearrangement: a
martingale coupling M ∈ ΠM(µ, ν) is called a martingale rearrangement coupling of π if

AW1(π,M) = inf
M ′∈ΠM(µ,ν)

AW1(π,M ′). (1.6)

Actually, he works with the nested Wasserstein distance, which according to (1.3) of [5] is equal to the adapted
Wasserstein distance. In the present paper, even if we mainly concentrate on martingale rearrangements, we
will also consider a slight extension of the latter definition: a martingale coupling M ∈ ΠM(µ, ν) is called an
AWρ-minimal martingale rearrangement coupling of π if

AWρ(π,M) = inf
M ′∈ΠM(µ,ν)

AWρ(π,M ′). (1.7)

Note that the existence of an AWρ-minimal martingale rearrangement coupling is not clear in the general
case. Indeed, let (Mn)n∈N be a sequence of martingale couplings between µ and ν such that (AWρ(π,Mn))n∈N
converges to AWρ(π,M). The tightness of the marginals µ and ν guarantees tightness and therefore relative
compactness of (Mn)n∈N for theWρ-distance, but not necessarily for the AWρ-distance. In order to compensate
this lack of relative compactness, Wiesel [39] introduces a new assumption: the coupling π ∈ Π(µ, ν) is said to
satisfy the barycentre dispersion assumption iff

∀a ∈ R,
∫
R
1[a,+∞)(x)

(
x−

∫
R
y πx(dy)

)
µ(dx) ≤ 0. (1.8)

The latter assumption is important in this context since it provides a sufficient condition for a coupling π
between µ and ν to admit a martingale rearrangement coupling. More precisely, Wiesel shows Lemma 2.1 of
[39] that in the general case,

inf
M ′∈ΠM(µ,ν)

AW1(π,M ′) ≥
∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx), (1.9)

and there exists M ∈ ΠM(µ, ν) such that AW1(π,M) =
∫
R
∣∣∫

R y πx(dy)− x
∣∣ µ(dx) when π satisfies the

barycentre dispersion assumption (1.8) ([39], Prop. 2.4).
The problem (1.2) was in a certain way already considered by Rüschendorf [37], who looked for a projection

of a probability measure on a set of probability measures with given linear constraints. Since the martingale
constraint is linear, his study encompasses our problem. Yet he considered the projection with respect to the
Kullback-Leibler distance, also known as relative entropy, in place of AWρ and this does not suit our purpose.
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More recently, Gerhold and Gülüm looked at a very similar problem ([20], Prob. 2.4) for the infinity Wasserstein
distance, the Prokhorov distance, the stop-loss distance, the Lévy distance or modified versions of them. Once
again, despite being of great interest in their setting, in particular for their application to the existence of a
market model which is consistent with a finite set of European call options prices on a single underlying asset
[21], their choice of distance is still inadequate for a connection with the stability of (MOT).

In Section 2 we briefly recall Wiesel’s construction [39] of a martingale rearrangement coupling of any cou-
pling π which satisfies the barycentre dispersion assumption (1.8). Then we design our own construction of
a martingale rearrangement coupling of π. This construction is actually done through lifted couplings, in the
sense of Beiglböck and Juillet [11], that is probability measures on the enlarged space (0, 1)× R× R in which
the spatial domain R× R of regular couplings is embedded.

Our construction in Section 2 is highly inspired of the one we did in [26], where we designed the martingale
inverse transform coupling M IT between µ and ν as a special element of a family (MQ)Q∈Q of martingale
couplings between µ and ν such that µ ≤cx ν parametrised by a set Q of probability measures on (0, 1)2. This
family was meant to be as close as possible to the Hoeffding-Fréchet coupling πHF between µ and ν. As proved
by Wiesel ([39], Lem. 2.3), πHF satisfies the barycentre dispersion assumption (1.8). Section 3 is specialised to
martingale rearrangements of the Hoeffding-Fréchet coupling πHF . After presenting the family (MQ)Q∈Q and
the martingale inverse transform coupling M IT , we show that the lifted coupling associated with any element
of (MQ)Q∈Q is, in a very natural sense, a lifted martingale rearrangement coupling of a lift of πHF . At the level
of regular couplings on R× R, we can conclude the same as soon as the sign of F−1

ν − F−1
µ is constant on the

jumps of Fµ, which holds when F−1
ν − F−1

µ is constant on these jumps and πHF is concentrated on the graph
of the Monge transport map T = F−1

ν ◦ Fµ. When this condition is not met, the inverse transform martingale
coupling M IT may fail to be a martingale rearrangement of πHF as we show in Example 3.5.

We finally show in Section 4 the stability of the inverse transform martingale coupling for the AWρ-distance
with respect to its marginals. The latter stability holds in full generality at the lifted level but a condition on
the first marginals is needed at the level of regular couplings.

Let us now recall some standard results about cumulative distribution functions and quantile functions since
they will prove very handy one-dimensional tools. Proofs can be found for instance in Appendix of [26]. For
any probability measure η on R, denoting by Fη(x) = η((−∞, x]) and F−1

η (u) = inf{x ∈ R : Fη(x) ≥ u} the
cumulative distribution function and the quantile function of η, we have

1. Fη, resp. F−1
η , is right continuous, resp. left continuous, and nondecreasing;

2. For all (x, u) ∈ R× (0, 1),

F−1
η (u) ≤ x ⇐⇒ u ≤ Fη(x), (1.10)

which implies

Fη(x−) < u ≤ Fη(x) =⇒ x = F−1
η (u), (1.11)

and Fη(F−1
η (u)−) ≤ u ≤ Fη(F−1

η (u)); (1.12)

3. For η(dx)-almost every x ∈ R,

0 < Fη(x), Fη(x−) < 1 and F−1
η (Fη(x)) = x; (1.13)

4. The image of the Lebesgue measure on (0, 1) by F−1
η is η. This property is referred to as inverse transform

sampling.
5. Denoting by λ(0,1), resp. λ(0,1)2 , the Lebesgue measure on (0, 1), resp. (0, 1)2 and setting

θ(x, v) = Fµ(x−) + vµ({x}) for (x, v) ∈ R× [0, 1], (1.14)
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we have

(
(u, v) 7→ θ(F−1

µ (u), v)
)
]
λ(0,1)2 = λ(0,1), (1.15)

where ] denotes the pushforward operation. Coupled with the inverse transform sampling we also have
the equivalent formulation

θ](µ× λ(0,1)) = λ(0,1). (1.16)

2. Martingale rearrangements of couplings which satisfy the
barycentre dispersion assumption

2.1. Regular and lifted martingale rearrangement couplings
By (1.4) for the first equality and the inverse transform sampling for the second one, we have for η, η′ ∈ P1(R),

W1(η, η′) =
∫

(0,1)

∣∣∣F−1
η (u)− F−1

η′ (u)
∣∣∣du ≥ ∣∣∣∣∣

∫
(0,1)

F−1
η (u)du−

∫
(0,1)

F−1
η′ (u)du

∣∣∣∣∣ =
∣∣∣∣∫

R
x η(dx)−

∫
R
x η′(dx)

∣∣∣∣ .
(2.1)

The inequality is an equality iff either ∀u ∈ (0, 1), F−1
η (u) ≤ F−1

η′ (u) i.e. η is smaller than η′ for the stochastic
order which we denote η ≤st η′ or ∀u ∈ (0, 1), F−1

η (u) ≥ F−1
η′ (u) i.e. η ≥st η′.

Let µ, ν ∈ P1(R) such that µ ≤cx ν. We are now ready to reproduce the proof of Lemma 2.1 of [39] to check
(1.9). For M ∈ ΠM(µ, ν) and χ ∈ Π(µ, µ) we have, using (2.1) then the triangle inequality,

∫
R×R

(|x− x′|+W1(πx,Mx′)) χ(dx,dx′) ≥
∫
R×R

(
|x− x′|+

∣∣∣∣∫
R
y πx(dy)− x′

∣∣∣∣) χ(dx, dx′)

≥
∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx).
(2.2)

When π satisfies the barycentre dispersion assumption (1.8), finding a martingale rearrangement coupling of π
amounts to find a martingale coupling such that the inequalities in (2.2) are equalities. This observation leads
to the following lemma.

Lemma 2.1. Let µ, ν ∈ P1(R) be such that µ ≤cx ν and π ∈ Π(µ, ν) satisfy the barycentre dispersion assumption
(1.8). Then M ∈ ΠM(µ, ν) is a martingale rearrangement coupling of π iff there exists χ ∈ Π(µ, µ) such that
χ(dx,dx′)-almost everywhere,

x < x′ =⇒ πx ≥st Mx′ , x > x′ =⇒ πx ≤st Mx′ and x = x′ =⇒ πx ≤st Mx or πx ≥st Mx, (2.3)

in which case χ is optimal for AW1(π,M).

Proof. Suppose that M is a martingale rearrangement coupling of π and χ is optimal for AW1(π,M). Since
π satisfies the barycentre dispersion assumption, we know by Proposition 2.4 of [39] that AW1(M,π) =∫
R
∣∣∫

R y πx(dy)− x
∣∣ µ(dx). Then the first inequality in (2.2) is an equality, hence χ(dx, dx′)-almost everywhere,

W1(πx,Mx′) =
∣∣∫

R y πx(dy)− x′
∣∣, or equivalently πx and Mx′ are comparable in the stochastic order. Morever

the second inequality in (2.2) is an equality as well, hence χ(dx,dx′)-almost everywhere, x′ lies between x and
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R y πx(dy). We deduce that χ(dx, dx′)-almost everywhere,

(x− x′)
(
x′ −

∫
R
y πx(dy)

)
≥ 0, (2.4)

and πx ≤st Mx′ or πx ≥st Mx′ . Then (2.3) is easily deduced from the fact that the map η 7→
∫
R z η(dz) is

increasing for the stochastic order.
Conversely, suppose that (2.3) and therefore (2.4) holds for some χ ∈ Π(µ, µ). Then the inequalities in (2.2)

are equalities, hence χ is optimal for AW1(π,M) and M is a martingale rearrangement coupling of π.

To construct a martingale rearrangement coupling of π satisfying the barycenter dispersion assumption
(1.8), we will define a probability kernel (mu)u∈(0,1) such that

∫
R ymu(dy) = F−1

µ (u) du-a.e. and deduce that
the probability measure

M(dx, dy) =
∫ 1

0
δF−1

µ (u)(dx)mu(dy) du (2.5)

is a martingale coupling between µ and ν. Yet the probability kernel (mu)u∈(0,1) is not uniquely determined from
the knowledge of M . Hence the definition (2.5) induces a loss of information. In order to keep this information,
one can consider like Beiglböck and Juillet [11] instead of M its lifted martingale coupling

M̂(du,dx, dy) = λ(0,1)(du) δF−1
µ (u)(dx)mu(dy) ∈ Π(λ(0,1), µ, ν), (2.6)

where λ(0,1) denotes the Lebesgue measure on (0, 1). In the present paper, we only use the quantile coupling
λ(0,1)(du) δF−1

µ (u)(dx) between λ(0,1)(du) and µ(dx) whereas other couplings and in particular the independent
one are also considered in [11]. More generally, for any π ∈ Π(µ, ν), we call lifted coupling of π any coupling
π̂ ∈ Π(λ(0,1), µ, ν) such that there exists a probability kernel (pu)u∈(0,1) which satisfies

π̂(du,dx,dy) = λ(0,1)(du) δF−1
µ (u)(dx) pu(dy) and

∫
u∈(0,1)

π̂(du,dx, dy) = π(dx, dy).

We denote by Π̂(µ, ν) the set of all lifted couplings between µ and ν. Notice that there exists an easy
embedding

ι : Π(µ, ν)→ Π̂(µ, ν), π 7→ λ(0,1)(du) δF−1
µ (u)(dx)πF−1

µ (u)(dy). (2.7)

For π̂ = λ(0,1) × π̂u = λ(0,1) × δF−1
µ (u) × pu and π̂′ = λ(0,1) × π̂′u = λ(0,1) × δF−1

µ (u) × p′u two lifted couplings
of π ∈ Π(µ, ν) and π′ ∈ Π(µ′, ν′), we define their lifted adapted Wasserstein distance of order ρ by

ÂWρ(π, π′) = inf
χ∈Π(λ(0,1),λ(0,1))

(∫
(0,1)×(0,1)

(
|u− u′|ρ +AWρ

ρ(π̂u, π̂′u′)
)
χ(du,du′)

)1/ρ

= inf
χ∈Π(λ(0,1),λ(0,1))

(∫
(0,1)×(0,1)

(
|u− u′|ρ + |F−1

µ (u)− F−1
µ′ (u′)|ρ +Wρ

ρ (pu, p′u′)
)
χ(du,du′)

)1/ρ

.

Note that by Remark A.2 below there always exists a coupling χ ∈ Π(λ(0,1), λ(0,1)) optimal for ÂWρ(π̂, π̂′).
We denote by Π̂M(µ, ν) the set of all lifted martingale couplings between µ and ν, that is the set of all lifted
couplings λ(0,1)× δF−1

µ (u)×mu ∈ Π̂(µ, ν) such that
∫
R ymu(dy) = F−1

µ (u) for du-almost all u ∈ (0, 1). For ρ ≥ 1,

500
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we then call lifted ÂWρ-minimal martingale rearrangement coupling (or simply lifted martingale rearrangement
coupling when ρ = 1) of π̂ ∈ Π̂(µ, ν) any lifted martingale coupling M̂ ∈ Π̂M(µ, ν) such that

ÂWρ(π̂, M̂) = inf
M̂ ′∈Π̂M(µ,ν)

ÂWρ(π̂, M̂ ′).

Ignoring the non-negative contribution of |u − u′| in the definition of ÂW1 and reasoning like in (2.2), we
easily check the following lower bound analogous, at the lifted level, to (1.9).

Lemma 2.2. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. Then for all π̂ = λ(0,1) × δF−1
µ (u) × pu ∈ Π̂(µ, ν),

inf
M̂∈Π̂M(µ,ν)

ÂW1(π̂, M̂) ≥
∫

(0,1)

∣∣∣∣∫
R
y pu(dy)− F−1

µ (u)
∣∣∣∣ du.

The next proposition gives a sufficient condition for the collapse through (2.5) of a lifted martingale coupling
to be a martingale rearrangement.

Proposition 2.3. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. Let π̂ = λ(0,1) × δF−1
µ (u) × pu ∈ Π̂(µ, ν) be such that

u 7→ pu is constant on the jumps of Fµ, that is constant on the intervals (Fµ(x−), Fµ(x)], x ∈ R, which is
trivially satisfied when µ is atomless. Suppose that M̂ = λ(0,1) × δF−1

µ (u) ×mu ∈ Π̂M(µ, ν) is such that

∫
(0,1)
W1(pu,mu) du ≤

∫
(0,1)

∣∣∣∣∫
R
y pu(dy)− F−1

µ (u)
∣∣∣∣ du.

Then the martingale coupling M(dx, dy) =
∫
u∈(0,1) δF−1

µ (u)(dx)mu(dy) du is a martingale rearrangement
coupling of π =

∫
u∈(0,1) δF−1

µ (u)(dx) pu(dy) du which satisfies

AW1(π,M) =
∫
R
W1(πx,Mx)µ(dx) =

∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx).

Of course, under the hypotheses, ÂW1(π̂, M̂) ≤
∫

(0,1)W1(pu,mu) du ≤
∫

(0,1)
∣∣∫

R y pu(dy)− F−1
µ (u)

∣∣ du so
that, by Lemma 2.2, these inequalities are equalities and M̂ is a lifted martingale rearrangement of π̂.

Proof. By (1.9) it suffices to show that∫
R
W1(πx,Mx)µ(dx) ≤

∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx). (2.8)

For (x, v) ∈ R× (0, 1), let θ(x, v) = Fµ(x−) + vµ({x}). Using (1.16) and the fact that F−1
µ (θ(x′, v)) = x′ for

all (x′, v) ∈ R× (0, 1) , we get

π(dx,dy) =
∫
u∈(0,1)

δF−1
µ (u)(dx) pu(dy) du =

∫
(x′,v)∈R×(0,1)

δx′(dx) pθ(x′,v)(dy)µ(dx′) dv

=
∫
v∈(0,1)

µ(dx) pθ(x,v)(dy) dv.
(2.9)
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Hence we have µ(dx)-almost everywhere πx(dy) =
∫ 1

0 pθ(x,v)(dy) dv, and similarly we find Mx(dy) =∫ 1
0 mθ(x,v)(dy) dv. Using (1.16) for the first and last equality, we deduce that

∫
R
W1(πx,Mx)µ(dx) ≤

∫
R×(0,1)

W1(mθ(x,v), pθ(x,v))µ(dx) dv

=
∫

(0,1)
W1(mu, pu) du

≤
∫

(0,1)

∣∣∣∣∫
R
y pu(dy)− F−1

µ (u)
∣∣∣∣ du

=
∫
R×(0,1)

∣∣∣∣∫
R
y pθ(x,v)(dy)− F−1

µ (θ(x, v))
∣∣∣∣ µ(dx) dv.

For (x, v) ∈ R× (0, 1), F−1
µ (θ(x, v)) = x, and since u 7→ pu is constant on the jumps of Fµ, the map v 7→ pθ(x,v)

is constant on (0, 1), hence

∫
(0,1)

∣∣∣∣∫
R
y pθ(x,v)(dy)− F−1

µ (θ(x, v))
∣∣∣∣ dv =

∣∣∣∣∣
∫
R×(0,1)

y pθ(x,v)(dy) dv − x

∣∣∣∣∣ .
We deduce that

∫
R
W1(πx,Mx)µ(dx) ≤

∫
R

∣∣∣∣∣
∫
R×(0,1)

y pθ(x,v)(dy) dv − x

∣∣∣∣∣ µ(dx) =
∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx),

which proves (2.8) and concludes the proof.

2.2. Construction of an explicit martingale rearrangement coupling
We recall that a coupling π ∈ Π(µ, ν) between two probability measures µ, ν ∈ P1(R) in the convex order

satisfies the barycentre dispersion assumption formulated by Wiesel [39] iff

∀a ∈ R,
∫
R
1[a,+∞)(x)

(
x−

∫
R
y πx(dy)

)
µ(dx) ≤ 0. (2.10)

First we briefly recall Wiesel’s construction [39] of a martingale rearrangement coupling of a coupling π
which satisfies (2.10), which is well perceivable as soon as π has finite support but becomes rather implicit in
the general case. Then we design our own construction of such a martingale rearrangement coupling, whose
intelligibility does not depend on the finiteness of the support of π. Since the Hoeffding-Fréchet satisfies (2.10)
([39], Lem. 2.3), this construction extends the study made in Section 3.

Let µ, ν ∈ P1(R) be such that µ ≤cx ν and µ 6= ν and π ∈ Π(µ, ν) \ΠM (µ, ν) be a coupling between µ and ν
which satisfies the barycentre dispersion assumption (2.10). Suppose first that π has finite support. As Wiesel
[39] points out, the barycentre dispersion assumption (2.10) and the convex order between distinct µ and ν
imply that

x− := max
{
x : µ({x}) > 0 and

∫
R
y πx(dy) < x

}
< max

{
x : µ({x}) > 0 and

∫
R
y πx(dy) > x

}
=: x+.
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He then switches as much as possible the mass at y− := min{y : πx−({y}) > 0} and y+ := max{y : πx+({y}) >
0} of πx− and πx+ in order to rectify the barycentres. More precisely, he defines for all x ∈ S

π(1)
x = 1{x/∈{x−,x+}} πx + 1{x=x−}

(
πx− + λ

µ({x−}) (δy+ − δy−)
)

+ 1{x=x+}

(
πx+ + λ

µ({x+}) (δy− − δy+)
)
,

where λ ≥ 0 is taken as large as possible, so that

either π
(1)
x−({y−}) = 0, π

(1)
x+ ({y+}) = 0,

∫
R
y π

(1)
x+ (dy) = x+ or

∫
R
y π

(1)
x−(dy) = x−.

Then the measure π(1)(dx, dy) = µ(dx)π(1)
x (dy) is a coupling between µ and ν which satisfies the barycentre

dispersion assumption (2.10). After finitely many (in reason of the finite support of π) repetitions of this process,
the obtained coupling is a martingale coupling and even a martingale rearrangement coupling of π.

In the general case, there exists by Lemma 4.1 of [39] a sequence (πn)n∈N∗ of finitely supported measures
such that Wnd

1 (πn, π) ≤ 1/n for all n ∈ N∗. The marginals µn and νn of πn are not in the convex order, but a
mere adaptation of the previous reasoning yields the existence of a coupling πnmr between µn and νn which is
almost a martingale rearrangement coupling of πn, in the sense that∫

R

∣∣∣∣x− ∫
R
y (πnmr)x(dy)

∣∣∣∣ µn(dx) ≤ 1
n

and AW1(πnmr, πn) ≤
∫
R

∣∣∣∣x− ∫
R
y πnx (dy)

∣∣∣∣ µn(dx). (2.11)

Then Wiesel shows the existence of a coupling πmr between µ and ν such that AW1
( 1
n

∑n
k=1 π

k
mr, πmr

)
vanishes as n goes to +∞. By (2.11) taken to the limit n→ +∞ and (1.9) he deduces that πmr is a martingale
rearrangement coupling of π.

We now propose an alternate construction of a martingale rearrangement coupling of π, regardless of the
finiteness of its support, deduced from a lifted martingale coupling. Let us first give an intuitive description of
the construction. For u ∈ (0, 1) we set G(u) =

∫
R y πF−1

µ (u)(dy) so that, locally, the lack of martingale property
writes G(u) 6= F−1

µ (u). We want for each u ∈ (0, 1) such that G(u) < F−1(u) to find a partner v ∈ (u, 1) such
that G(v) > F−1

µ (v) (and conversely for each v ∈ (0, 1) such that G(v) > F−1
µ (v) to find a partner u ∈ (0, v)

such that G(u) < F−1(u)) and to mix πF−1
µ (u) and πF−1

µ (v) in order to construct probability measures mu

and mv with respective means F−1
µ (u) and F−1

µ (v) in order to restaure the martingale constraint. By taking
expectations, the only possible p ∈ [0, 1] for the equality pπF−1

µ (u) + (1− p)πF−1
µ (v) = pmu + (1− p)mv to hold

is

p(u, v) =
G(v)− F−1

µ (v)
G(v)− F−1

µ (v) + F−1
µ (u)−G(u)

.

According to Lemma 2.4 below, for this choice, it is possible to find mu and mv as desired with the additional
property πF−1

µ (u) ≤st mu and mv ≤st πF−1
µ (v), which, in view of Lemma 2.1, is a desirable feature in order to

obtain a martingale rearrangement coupling when replacing (πF−1
µ (u), πF−1

µ (v)) by (mu,mv). Introducing

∆+(u) =
∫ u

0
(F−1
µ −G)+(v) dv and ∆−(u) =

∫ u

0
(F−1
µ −G)−(v) dv, (2.12)

we will show that the barycenter dispersion assumption (2.10) is equivalent to

∀u ∈ [0, 1], ∆+(u) ≥ ∆−(u), (2.13)
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so that the choice ∆+(u) = ∆−(v) ensures both that u < v and (1− p(u, v))du = p(u, v)dv. The latter equality
ensures that the “rates” of consumption of πF−1

µ (u), of consumption of πF−1
µ (v), of production of mu and of

production of mv through the above mixing procedure are equal which is the key reason why the second
marginal ν is preserved.

To now make the construction precise, we first show that (2.10) is equivalent to (2.13). Using (1.10) we see
that for all u ∈ (0, 1) and a ∈ R, u > Fµ(a−) =⇒ F−1

µ (u) ≥ a =⇒ u ≥ Fµ(a−). By the latter implications
and the inverse transform sampling we deduce that (2.10) is equivalent to

∀a ∈ R,
∫ 1

Fµ(a−)
(F−1
µ (u)−G(u)) du ≤ 0.

Since ∆+(1) = ∆−(1), consequence of the equality of the respective means of µ and ν, we deduce that it is
equivalent to

∀a ∈ R, ∆+(Fµ(a−)) ≥ ∆−(Fµ(a−)).

By right continuity of Fµ, for all a ∈ R we have Fµ(a) = limh→0,h>0 Fµ((a + h)−), so by continuity of ∆+
and ∆− we also have ∆+(Fµ(a)) ≥ ∆−(Fµ(a)) for all a ∈ R. Moreover, for all a ∈ R such that µ({a}) > 0 and
u ∈ (Fµ(a−), Fµ(a)], we have by (1.11) that F−1

µ (u) = a, so ∆+ and ∆− are affine on (Fµ(a−), Fµ(a)]. We
deduce that we also have ∆+ ≥ ∆− on (Fµ(a−), Fµ(a)], hence the equivalence with (2.13).

We define

U+ = {u ∈ (0, 1) | F−1
µ (u) > G(u)}, U− = {u ∈ (0, 1) | F−1

µ (u) < G(u)},
and U0 = {u ∈ (0, 1) | F−1

µ (u) = G(u)},

and thanks to the equality ∆+(1) = ∆−(1) we can set for all u ∈ [0, 1]

φ(u) =

 ∆−1
− (∆+(u)) if u ∈ U+;

∆−1
+ (∆−(u)) if u ∈ U−;

u if u ∈ U0.

Applying ([26], Lem. 6.1) again with f1 = (F−1
µ − G)+, f2 = (F−1

µ − G)−, u0 = 1 and h : u 7→
1{G(φ(u))≤F−1

µ (φ(u))} yields

∫ 1

0
1{G(φ(u))≤F−1

µ (φ(u))} d∆+(u) =
∫ 1

0
1{G(v)≤F−1

µ (v)} d∆−(u) = 0.

Similarly, we get
∫ 1

0 1{G(φ(u))≥F−1
µ (φ(u))} d∆−(u) = 0. We deduce that

φ(u) ∈ U−, resp. φ(u) ∈ U+, for du-almost all u ∈ U+, resp. U−. (2.14)

This allows us to define for du-almost all u ∈ U+ ∪ U−

p(u) =
G(φ(u))− F−1

µ (φ(u))
F−1
µ (u)−G(u) +G(φ(u))− F−1

µ (φ(u))
· (2.15)

Notice that (2.14) implies that for du-almost all u ∈ U+, φ(φ(u)) = ∆−1
+ (∆−(∆−1

− (∆+(u)))). Since ∆− is
continuous we have ∆−(∆−1

− (v)) = v for all v ∈ [0,∆−(1)], and using (1.13) after an appropriate normalisation
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we get ∆−1
+ (∆+(v)) = v for dv-almost all v ∈ U+. We deduce that

u = φ(φ(u)), du-almost everywhere on U+. (2.16)

Similarly, φ(φ(u)) = u for all du-almost all u ∈ U−. We deduce that

for du-almost all u ∈ U+ ∪ U−, φ(φ(u)) = u, (2.17)

and

for du-almost all u ∈ U+ ∪ U−, p(φ(u)) =
G(u)− F−1

µ (u)
F−1
µ (φ(u))−G(φ(u)) +G(u)− F−1

µ (u)
= 1− p(u). (2.18)

In order to define the appropriate martingale kernel, we rely on the following lemma which allows us to inject
some stochastic order in the construction, a convenient tool for the computation of Wasserstein distances. We
recall that two probability measures µ and ν on the real line are said to be in the stochastic order, denoted
µ ≤st ν, iff F−1

µ (u) ≤ F−1
ν (u) for all u ∈ [0, 1]. Since the Hoeffding-Fréchet coupling between µ and ν is optimal

for W1(µ, ν), this implies by the inverse transform sampling that W1(µ, ν) =
∫
R y ν(dy)−

∫
R xµ(dx).

Lemma 2.4. Let B be the set of all quadruples (y, ỹ, µ, µ̃) ∈ R× R× P1(R)× P1(R) such that µ and µ̃ have
respective means x and x̃ and x < y ≤ ỹ < x̃. Endow P1(R) with the Borel σ-algebra of the weak convergence
topology and B with the trace of the product σ-algebra on R× R× P1(R)× P1(R).

Then there exist two measurable maps β, β̃ : B → P1(R) such that for all (y, ỹ, µ, µ̃), denoting ν =
β(y, ỹ, µ, µ̃), ν̃ = β̃(y, ỹ, µ, µ̃) and p =

∼
x−∼y

y−x+∼x−∼y where x and x̃ are the respective means of µ and µ̃, we have

∫
R
w ν(dw) = y,

∫
R
w ν̃(dw) = ỹ, µ ≤st ν, ν̃ ≤st µ̃ and pν + (1− p)ν̃ = pµ+ (1− p)µ̃. (2.19)

In particular, p δy(dz) ν(dw) + (1− p) δ∼y (dz) ν̃(dw) is a martingale coupling between pδy(dz) + (1− p)δ∼y (dz)
and pµ(dw) + (1 − p)µ̃(dw), and W1(µ, ν) = y − x, W1(µ̃, ν̃) = x̃ − ỹ. The proof, which consists in exhibiting
particular maps β and β̃, is moved to the end of the present section.

In order to use Lemma 2.4 we need to compare φ to the identity function. The inequality (2.13) is equivalent
by appropriate normalisation of (1.10) to u ≥ ∆−1

+ (∆−(u)) for all u ∈ [0, 1], hence

∀u ∈ U−, φ(u) ≤ u. (2.20)

Moreover, by (2.17), Lemma 6.1 of [26] applied with f1 = (F−1
µ − G)+, f2 = (F−1

µ − G)−, u0 = 1 and
h : u 7→ 1{u<φ(u)} we have

∫ 1

0
1{φ(u)<u} d∆+(u) =

∫ 1

0
1{φ(u)<φ(φ(u))} d∆+(u) =

∫ 1

0
1{u<φ(u)} d∆−(u).

By (2.20) the right-hand side is 0, hence

for du-almost all u ∈ U+, φ(u) ≥ u. (2.21)

Let

A+ = {u ∈ U+ | F−1
µ (φ(u)) < G(φ(u)), φ(φ(u)) = u and p(φ(u)) = 1− p(u)}
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and A− = {u ∈ U− | F−1
µ (φ(u)) > G(φ(u)), φ(φ(u)) = u and p(φ(u)) = 1− p(u)}.

For all u ∈ A+, we have by definition

φ(u) ∈ U−, F−1
µ (φ(φ(u))) = F−1

µ (u) > G(u) = G(φ(φ(u))),
φ(φ(φ(u))) = φ(u) and p(φ(φ(u))) = p(u) = 1− p(φ(u)),

hence φ(u) ∈ A−. Similarly, for all u ∈ A−, φ(u) ∈ A+. By (2.14), (2.17), (2.18), (2.21) and the monotonicity
of F−1

µ , we deduce that A+ and A− are two disjoint Borel sets such that the Lebesgue measure of (U+\A+) ∪
(U−\A−) is 0 and

∀u ∈ A+, G(u) < F−1
µ (u) ≤ F−1

µ (φ(u)) < G(φ(u)). (2.22)

For all u ∈ A+, πF−1
µ (u) and πF−1

µ (φ(u)) have by definition respective means G(u) and G(φ(u)), so by (2.22)
we can apply Lemma 2.4 with

(y, ỹ, µ, µ̃) = (F−1
µ (u), F−1

µ (φ(u)), πF−1
µ (u), πF−1

µ (φ(u))).

Hence there exist two probability measures mu, m̃u ∈ P1(R) with respective means F−1
µ (u), F−1

µ (φ(u)) and
such that

πF−1
µ (u) ≤st mu, m̃u ≤st πF−1

µ (φ(u)),

and p(u)mu + (1− p(u))m̃u = p(u)πF−1
µ (u) + (1− p(u))πF−1

µ (φ(u)).
(2.23)

Since A+ = φ(A−) and A− = φ(A+), for all u ∈ A− we can set mu = m̃φ(u), so that

∀u ∈ A+, πF−1
µ (u) ≤st mu and ∀u ∈ A−, mu ≤st πF−1

µ (u), (2.24)

and ,

∀u ∈ A+ ∪A−, p(u)mu + p(φ(u))mφ(u) = p(u)πF−1
µ (u) + p(φ(u))πF−1

µ (φ(u)). (2.25)

Finally, for all u ∈ U0 ∪ (U+\A+) ∪ (U−\A−) set mu = πF−1
µ (u). By composition of the measurable map

u 7→ (F−1
µ (u), F−1

µ (φ(u)), πF−1
µ (u), πF−1

µ (φ(u))) and the measurable map β defined in Lemma 2.4, the map u 7→ mu

is measurable. By Theorem 19.12 of [2] it is equivalent to say that (mu)u∈(0,1) is a probability kernel, hence we
can define

M̂(du,dx, dy) = λ(0,1)(du) δF−1
µ (u)(dx)mu(dy), (2.26)

and

M(dx,dy) =
∫ 1

0
δF−1

µ (u)(dx)mu(dy) du. (2.27)

We now state that M̂ is a lifted martingale rearrangement coupling of π̂ = ι(π).
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Proposition 2.5. Let µ, ν ∈ P1(R) be such that µ ≤cx ν and µ 6= ν and π ∈ Π(µ, ν) be a coupling between µ

and ν which satisfies the barycentre dispersion assumption (2.10). Then the measure M̂ defined by (2.26) is a
lifted martingale rearrangement coupling of the lifted coupling π̂ = ι(π):

inf
M̂ ′∈Π̂M(µ,ν)

ÂW1(π̂, M̂ ′) = ÂW1(π̂, M̂) =
∫

(0,1)
W1(πF−1

µ (u),mu) du =
∫

(0,1)

∣∣G(u)− F−1
µ (u)

∣∣ du.

Since u 7→ πF−1
µ (u) is constant on the jumps on Fµ by (1.11), we immediately deduce by Proposition 2.3 that

M is a martingale rearrangement coupling of π.

Corollary 2.6. Let µ, ν ∈ P1(R) be such that µ ≤cx ν and µ 6= ν and π ∈ Π(µ, ν) be a coupling between µ
and ν which satisfies the barycentre dispersion assumption (2.10). Then the measure M defined by (2.27) is a
martingale rearrangement coupling of π:

inf
M ′∈ΠM(µ,ν)

AW1(π,M ′) = AW1(π,M) =
∫
R
W1(πx,Mx)µ(dx) =

∫
R

∣∣∣∣∫
R
y πx(dy)− x

∣∣∣∣ µ(dx).

Remark 2.7. As seen from the proof of Proposition 2.5 just below, for M̂ defined by (2.26) to be a lifted
martingale rearrangement coupling of the lifted coupling π̂ = ι(π) and therefore M defined by (2.27) to be a
martingale rearrangement coupling of π, it is enough that u 7→ mu is measurable, satisfies (2.24), (2.25) and
mu = πF−1

µ (u) for all u ∈ U0 ∪ (U+\A+) ∪ (U−\A−).

Proof of Proposition 2.5. Assume for a moment that M̂ ∈ Π̂M(µ, ν). Then we have by (2.24) that for all u ∈
(0, 1), πF−1

µ (u) ≤st mu or mu ≤st πF−1
µ (u), hence W1(πF−1

µ (u),mu) = |G(u)− F−1
µ (u)| and

ÂW1(π̂, M̂) ≤
∫

(0,1)
W1(πF−1

µ (u),mu) du =
∫

(0,1)
|G(u)− F−1

µ (u)|du,

which proves the claim by Lemma 2.2.
It remains to show that M̂ ∈ Π̂M(µ, ν). By the inverse transform sampling and the fact that mu has mean

F−1
µ (u) for all u ∈ (0, 1), it is clear that M̂ is a lifted martingale coupling between µ and

∫
u∈(0,1)mu(dy) du. To

conclude it is therefore sufficient to check that∫
u∈(0,1)

mu(dy) du = ν. (2.28)

To this end, let H : [0, 1] → R be measurable and bounded. Using (2.15), (2.17) and Lemma 6.1 of [26]
applied with f1 = (F−1

µ − G)+, f2 = (F−1
µ − G)−, u0 = 1 and h : u 7→ H(φ(u))

F−1
µ (φ(u))−G(φ(u))+G(u)−F−1

µ (u) for the
third equality, we get∫

U+
(1− p(u))H(u) du =

∫ 1

0

(F−1
µ −G)+(u)

F−1
µ (u)−G(u) +G(φ(u))− F−1

µ (φ(u))
H(u) du

=
∫ 1

0
h(φ(u)) d∆+(u)

=
∫ 1

0
h(v) d∆−(v)

=
∫ 1

0

(F−1
µ −G)−(v)

F−1
µ (φ(v))−G(φ(v)) +G(v)− F−1

µ (v)
H(φ(v)) dv
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=
∫
U−

p(φ(v))H(φ(v)) dv.

Similarly, we have
∫
U−(1− p(u))H(u) du =

∫
U+ p(φ(u))H(φ(u)) du. We deduce that

∫ 1

0
H(u) du =

∫
U0
H(u) du+

∫
U+

p(u)H(u) du+
∫
U+

(1− p(u))H(u) du

+
∫
U−

p(u)H(u) du+
∫
U−

(1− p(u))H(u) du

=
∫
U0
H(u) du+

∫
U+∪U−

(p(u)H(u) + p(φ(u))H(φ(u))) du.

(2.29)

Let f : R→ R be measurable and bounded. Using (2.29) applied with H : u 7→
∫
R f(y)mu(dy) for the first

equality, the fact that mu = πF−1
µ (u) for all u ∈ U0 and (2.25) for the second equality, (2.29) again applied with

H : u 7→
∫
R f(y)πF−1

µ (u)(dy) for the third equality and the inverse transform sampling for the last equality, we
get

∫ 1

0

∫
R
f(y)mu(dy) du

=
∫
U0

∫
R
f(y)mu(dy) du+

∫
U+∪U−

∫
R
f(y) (p(u)mu(dy) + p(φ(u))mφ(u)(dy)) du

=
∫
U0

∫
R
f(y)πF−1

µ (u)(dy) du

+
∫
U+∪U−

∫
R
f(y) (p(u)πF−1

µ (u)(dy) + p(φ(u))πF−1
µ (φ(u))(dy)) du

=
∫ 1

0

∫
R
f(y)πF−1

µ (u)(dy) du

=
∫
R
f(y) ν(dy),

which shows (2.28) and concludes the proof.

Proof of Lemma 2.4. Let (y, ỹ, µ, µ̃) ∈ B, x and x̃ be the respective means of µ and µ̃ and p =
∼
x−∼y

y−x+∼x−∼y . First
we construct two measures ν, ν̃ ∈ P1(R) which satisfy (2.19). Then we show that ν and ν̃ are measurable in
(y, ỹ, µ, µ̃).

Let µ ∨ µ̃, resp. µ ∧ µ̃ be the image of the Lebesgue measure on (0, 1) by F−1
µ ∨ F−1

∼
µ

, resp. F−1
µ ∧ F−1

∼
µ

. Let
z, resp. z̃ be the mean of µ ∨ µ̃, resp. µ ∧ µ̃, that is

z =
∫ 1

0
(F−1
µ ∨ F−1

∼
µ

)(u) du and z̃ =
∫ 1

0
(F−1
µ ∧ F−1

∼
µ

)(u) du.

With the inverse transform sampling in mind, we have

∫ 1

0
F−1
µ (u) du = x < y ≤ ỹ < x̃ =

∫ 1

0
F−1
∼
µ

(u) du,
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from which we readily deduce that z > y > x and z̃ < ỹ < x̃. Therefore we can set a = z−y
z−x ∈ (0, 1), ã =

∼
y−∼z
∼x−∼z ∈

(0, 1) and define the probability measures

ν = aµ+ (1− a)(µ ∨ µ̃) and ν̃ = ãµ̃+ (1− ã)(µ ∧ µ̃).

Since ν ≤ µ+ µ̃ and ν̃ ≤ µ+ µ̃, we have that ν, ν̃ ∈ P1(R).
We can easily check that ax + (1− a)z = y and ãx̃ + (1− ã)z̃ = ỹ, hence ν and ν̃ have respective means y

and ỹ.
By definition of the stochastic order, it is clear that µ ≤st µ ∨ µ̃ and µ ∧ µ̃ ≤st µ̃, which directly implies that

µ ≤st ν and ν̃ ≤st µ̃.
Since µ ∨ µ̃+ µ ∧ µ̃ = µ+ µ̃, by taking the means we have that z + z̃ = x+ x̃, or equivalently z − x = x̃− z̃.

This helps us to see that

p(1− a) = x̃− ỹ
y − x+ x̃− ỹ

× y − x
z − x

= y − x
y − x+ x̃− ỹ

× x̃− ỹ
x̃− z̃

= (1− p)(1− ã).

Then we derive

pν + (1− p)ν̃ = paµ+ p(1− a)(µ ∨ µ̃) + (1− p)ãµ̃+ (1− p)(1− ã)(µ ∧ µ̃)
= paµ+ (1− p)ãµ̃+ p(1− a)(µ ∨ µ̃+ µ ∧ µ̃)
= paµ+ (1− p)ãµ̃+ p(1− a)(µ+ µ̃)
= paµ+ p(1− a)µ+ (1− p)ãµ̃+ (1− p)(1− ã)µ̃
= pµ+ (1− p)µ̃.

It remains to show that ν and ν̃ are measurable in (y, ỹ, µ, µ̃). From their definition it is clear that we must
show that a, ã, µ ∨ µ̃ and µ ∧ µ̃ are measurable in (y, ỹ, µ, µ̃). Since a and ã clearly are measurable functions of
y, ỹ and the means of µ, µ̃, µ∨ µ̃ and µ∧ µ̃, the only non-straightforward measurability properties to prove are
that of the maps

P1(R) 3 η 7→
∫
R
x η(dx) and P1(R)× P1(R) 3 (µ, µ̃) 7→ (µ ∨ µ̃, µ ∧ µ̃).

First of all, the functions x 7→ x+ and x 7→ x− being nonnegative and continuous, the maps P1(R) 3 η 7→∫
R x

+ η(dx) and P1(R) 3 η 7→
∫
R x
− η(dx) are lower semicontinuous and therefore measurable with respect to

the weak convergence topology. Hence their difference P1(R) 3 η 7→
∫
R x η(dx) is measurable.

Second of all, let f : R→ R be continuous and bounded, and (µn)n∈N, (µ̃n)n∈N ∈ P1(R)N converge weakly to
µ and µ̃ respectively. Then for all u outside the at most countable sets of discontinuities of F−1

µ and F−1
∼µ

, the
sequences (F−1

µn (u))n∈N and (F−1
∼
µn

(u))n∈N converge to F−1
µ (u) and F−1

∼
µ

(u) respectively. We then deduce by the
dominated convergence theorem that∫

R
f(x) (µn ∨ µ̃n)(dx) =

∫ 1

0
f
(
F−1
µn (u) ∨ F−1

∼µn
(u)
)

du

−→
n→+∞

∫ 1

0
f
(
F−1
µ (u) ∨ F−1

∼
µ

(u)
)

du =
∫
R
f(x) (µ ∨ µ̃)(dx),

hence (µn ∨ µ̃n)n∈N converges weakly to µ∨ µ̃. Similarly, (µn ∧ µ̃n)n∈N converges weakly to µ∧ µ̃. We deduce the
continuity and therefore the measurability of P1(R)×P1(R) 3 (µ, µ̃) 7→ (µ∨ µ̃, µ∧ µ̃), which ends the proof.
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3. Martingale rearrangement couplings of the
Hoeffding-Fréchet coupling

3.1. The inverse transform martingale coupling
We come back on the inverse transform martingale coupling and the family parametrised by Q introduced

in [26] since they will have particular significance in the remaining of the present paper. We briefly recall the
construction and main properties and refer to [26] for an extensive study. Let µ, ν ∈ P1(R) be such that µ ≤cx ν
and µ 6= ν. For u ∈ [0, 1] we define

Ψ+(u) =
∫ u

0
(F−1
µ − F−1

ν )+(v) dv and Ψ−(u) =
∫ u

0
(F−1
µ − F−1

ν )−(v) dv, (3.1)

with respective left continuous generalised inverses Ψ−1
+ and Ψ−1

− . We then define Q as the set of probability
measures on (0, 1)2 with first marginal 1

Ψ+(1)dΨ+, second marginal 1
Ψ+(1)dΨ− and such that u < v for Q(du,dv)-

almost every (u, v) ∈ (0, 1)2. Since dΨ+ and dΨ− are concentrated on two disjoint Borel sets, there exists for
each Q ∈ Q a probability kernel (πQu )u∈(0,1) such that

Q(du,dv) = 1
Ψ+(1)dΨ+(u)πQu (dv) = 1

Ψ+(1)dΨ−(v)πQv (du), (3.2)

and we exhibit a probability kernel (m̃Q
u )u∈(0,1) which satisfies for du-almost all u ∈ (0, 1) such that F−1

µ (u) 6=
F−1
ν (u)

m̃Q
u (dy) =

∫
v∈(0,1)

(
F−1
µ (u)− F−1

ν (u)
F−1
ν (v)− F−1

ν (u)
δF−1

ν (v)(dy) +
F−1
ν (v)− F−1

µ (u)
F−1
ν (v)− F−1

ν (u)
δF−1

ν (u)(dy)
)
πQu (dv), (3.3)

and m̃Q
u (dy) = δF−1

ν (u)(dy) for all u ∈ (0, 1) such that F−1
µ (u) = F−1

ν (u). Then the measure

M̂Q(du,dx, dy) = λ(0,1)(du) δF−1
µ (u)(dx) m̃Q

u (dy) (3.4)

is a lifted martingale coupling between µ and ν. Moreover it was shown by Proposition 2.18 of [26] and its proof
that for du-almost all u ∈ (0, 1),∫

R
|y − F−1

ν (u)| m̃Q
u (dy) = |F−1

µ (u)− F−1
ν (u)|, (3.5)

from which we deduce that the measure

MQ(dx,dy) =
∫ 1

0
δF−1

µ (u)(dx) m̃Q
u (dy) du (3.6)

is a martingale coupling between µ and ν which satisfies
∫
R×R |y − x|M

Q(dx, dy) ≤ 2W1(µ, ν). Let also

U+ = {u ∈ (0, 1) | F−1
µ (u) > F−1

ν (u)}, U− = {u ∈ (0, 1) | F−1
µ (u) < F−1

ν (u)}, (3.7)
and U0 = {u ∈ (0, 1) | F−1

µ (u) = F−1
ν (u)}. (3.8)
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Thanks to the equality Ψ+(1) = Ψ−(1), consequence of the equality of the respective means of µ and ν, we
can set for all u ∈ [0, 1]

ϕ(u) =

 Ψ−1
− (Ψ+(u)) if u ∈ U+;

Ψ−1
+ (Ψ−(u)) if u ∈ U−;

u if u ∈ U0.
(3.9)

Then the measure QIT (du,dv) = 1
Ψ+(1)dΨ+(u)1{0<ϕ(u)<1} δϕ(u)(dv) belongs to Q. The martingale coupling

M IT = MQIT is the so called inverse transform martingale coupling, associated to the probability kernel m̃IT =
m̃QIT which satisfies for du-almost all u ∈ (0, 1)

m̃IT (u,dy) = p(u) δF−1
ν (ϕ(u))(dy) + (1− p(u)) δF−1

ν (u)(dy), (3.10)

where p(u) = 1{F−1
µ (u) 6=F−1

ν (u)}
F−1
µ (u)−F−1

ν (u)
F−1
ν (ϕ(u))−F−1

ν (u) .

3.2. The Hoeffding-Fréchet coupling
Let µ and ν be two probability measures on the real line with finite first moment. We recall that the Hoeffding-

Fréchet coupling between µ and ν, denoted πHF , is by definition the comonotonic coupling between µ and ν,
that is the image of the Lebesgue measure on (0, 1) by the map u 7→ (F−1

µ (u), F−1
ν (u)). Equivalently, we can

write

πHF (dx, dy) =
∫

(0,1)
δ(F−1

µ (u),F−1
ν (u))(dx, dy) du.

This coupling is of paramount importance in the classical optimal transport theory in dimension 1 since it
attains the infimum in the minimisation problem

inf
P∈Π(µ,ν)

∫
R×R

c(x, y)P (dx, dy)

as soon as c satisfies the so called Monge condition, see Theorem 3.1.2 of [35]. The latter condition being satisfied
for any function (x, y) 7→ h(|y − x|) where h : R+ → R is convex and non-decreasing, we deduce that πHF is
optimal for Wρ(µ, ν) for all ρ ≥ 1. By strict convexity, it is even the only coupling optimal for Wρ(µ, ν) for
ρ > 1. Reasoning like in (2.9), we get that for µ(dx)-almost all x ∈ R,

πHFx (dy) =
∫

(0,1)
δF−1

ν (θ(x,v))(dy) dv. (3.11)

By (3.11) and monotonicity and left continuity of F−1
ν we recover the well known fact that πHF is given by

a measurable map, i.e. is the image of µ by x 7→ (x, T (x)) where T : R→ R is measurable, iff for all x ∈ R such
that µ({x}) > 0, F−1

ν is constant on (Fµ(x−), Fµ(x)]. In that case, we have T = F−1
ν ◦ Fµ, referred to as the

Monge transport map.

3.3. Martingale rearrangement couplings
Our family (MQ)Q∈Q of martingale couplings mentioned above was meant to contain the closest martingale

couplings from the Hoeffding-Fréchet coupling, the latter being well known for minimising the Wasserstein
distance. Thanks to Wiesel’s definition of martingale rearrangement couplings we can now rephrase the latter
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sentence in a more formal way. Let πHF be the Hoeffding-Fréchet coupling between µ and ν. We will consider
the following lifted coupling of πHF :

π̂HF (du,dx,dy) = λ(0,1)(du) δF−1
µ (u)(dx) δF−1

ν (u)(dy). (3.12)

Recall the embedding ι defined by (2.7) and the definition of the map θ given by (1.14). Then

ι(πHF )(du,dx, dy) = λ(0,1)(du) δF−1
µ (u)(dx)

∫ 1

0
δF−1

ν (θ(F−1
µ (u),v))(dy) dv,

which is different from π̂HF when F−1
ν is not constant on the jumps of Fµ. We can actually see that π̂HF =

ι′(πHF ), where ι′ is another embedding Π(µ, ν) to Π̂(µ, ν), such that for all π ∈ Π(µ, ν), ι′(π) is defined by

λ(0,1)(du) δF−1
µ (u)(dx)

1{µ({F−1
µ (u)})>0}δ

(
Fπ
F
−1
µ (u)

)−1(
u−Fµ(F−1

µ (u)−)

µ({F−1
µ (u)})

)(dy) + 1{µ({F−1
µ (u)})=0}πF−1

µ (u)(dy)

 .

Although π̂HF is a very natural lifted coupling of πHF , the embedding ι used in Section 2.1 appears to be
in general simpler than ι′.

Proposition 3.1. Let µ, ν ∈ P1(R) be such that µ ≤cx ν. Then for all Q ∈ Q, the lifted martingale coupling
M̂Q defined by (3.4) is a lifted martingale rearrangement coupling of the lifted Hoeffding-Fréchet coupling π̂HF
defined by (3.12):

∀Q ∈ Q, ÂW1(π̂HF , M̂Q) = inf
M̂∈Π̂M(µ,ν)

ÂW1(π̂HF , M̂).

Proof. Let Q ∈ Q. The fact that M̂Q ∈ Π̂M(µ, ν) is clear. By (3.5) we have

ÂW1(π̂HF , M̂Q) ≤
∫

(0,1)
W1(δF−1

ν (u), m̃
Q
u ) du =

∫
(0,1)

∫
R
|y − F−1

ν (u)| m̃Q
u (dy)du =

∫
(0,1)
|F−1
µ (u)− F−1

ν (u)|du,

which proves the claim by Lemma 2.2.

We can also easily show that any lifted martingale coupling is a lifted quadratic martingale rearrangement
coupling of the lifted Hoeffding-Fréchet coupling.

Proposition 3.2. Let µ, ν ∈ P2(R) be such that µ ≤cx ν. Then any lifted martingale coupling between µ and ν
is a ÂW2-minimal lifted martingale rearrangement coupling of the lifted Hoeffding-Fréchet coupling π̂HF defined
by (3.12):

∀M,M ′ ∈ Π̂M(µ, ν), ÂW2(M̂, π̂HF ) = ÂW2(M̂ ′, π̂HF ).

Proof. Let M̂ = λ(0,1) × δF−1
µ (u) ×mu ∈ Π̂M(µ, ν) and χ ∈ Π(λ(0,1), λ(0,1)) be optimal for ÂW2(M̂, π̂HF ), so

that

ÂW
2
2(M̂, π̂HF ) =

∫
(0,1)×(0,1)

(
|u− u′|2 + |F−1

µ (u)− F−1
µ (u′)|2 +W2

2 (mu, δF−1
ν (u′))

)
χ(du,du′)

≥
∫

(0,1)×(0,1)
W2

2 (mu, δF−1
ν (u′))χ(du,du′).
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By bias-variance decomposition for the first equality, the fact that the image of λ(0,1) by u 7→
(F−1
µ (u), F−1

ν (u)) is optimal for W2
2 (µ, ν) for the inequality, and by bias-variance decomposition again for the

second equality, we have that

∫
(0,1)×(0,1)

W2
2 (mu, δF−1

ν (u′))χ(du,du′)

=
∫

(0,1)×(0,1)

(
|F−1
ν (u′)− F−1

µ (u)|2 +
∫
R
|F−1
µ (u)− y|2mu(dy)

)
χ(du,du′)

≥
∫

(0,1)

(
|F−1
ν (u)− F−1

µ (u)|2 +
∫
R
|F−1
µ (u)− y|2mu(dy)

)
du

=
∫

(0,1)

∫
R
|F−1
ν (u)− y|2mu(dy) du

=
∫

(0,1)
W2

2 (mu, δF−1
ν (u)) du ≥ ÂW

2
2(M̂, π̂HF ).

(3.13)

Using the fact that
∫

(0,1)
∫
R |F

−1
µ (u)− y|2mu(dy) du =

∫
R |y|

2 ν(dy)−
∫
R |x|

2 µ(dx), we deduce that

ÂW
2
2(M̂, π̂HF ) =

∫
(0,1)
W2

2 (mu, δF−1
ν (u)) du =W2

2 (µ, ν) +
∫
R
|y|2 ν(dy)−

∫
R
|x|2 µ(dx),

hence ÂW
2
2(M̂, π̂HF ) does not depend on the choice of M .

A similar conclusion holds for regular couplings. Just this once, we provide a proof valid in any dimension. In
the following statement, d ∈ N∗. The definitions (1.1), (1.3), (1.5) (1.7) given in R have straightfoward extensions
to Rd endowed with the Euclidean norm | · |.

Proposition 3.3. Let µ, ν ∈ P2(Rd) be such that µ ≤cx ν and π ∈ Π(µ, ν) be optimal for W2(µ, ν) and concen-
trated on the graph of a measurable map T : Rd → Rd. Then any M ∈ ΠM (µ, ν) is an AW2-minimal martingale
rearrangement coupling of π.

Proof. Let M ∈ ΠM(µ, ν) and χ ∈ Π(µ, µ) be optimal for AW2(M,π), so that

AW2
2(M,π) =

∫
Rd×Rd

(
|x− x′|2 +W2

2 (Mx, δT (x′))
)
χ(dx, dx′) ≥

∫
Rd×Rd

W2
2 (Mx, δT (x′))χ(dx, dx′).

By bias-variance decomposition for the first equality and the fact that the image of χ by (x, x′) 7→ (x, T (x′))
is a coupling between µ and ν for the first inequality, and by bias-variance decomposition again for the second
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equality, we have that∫
Rd×Rd

W2
2 (Mx, δT (x′))χ(dx, dx′) =

∫
Rd×Rd

(
|T (x′)− x|2 +

∫
Rd
|x− y|2Mx(dy)

)
χ(dx, dx′)

≥ W2
2 (µ, ν) +

∫
Rd×Rd

|x− y|2M(dx,dy)

=
∫
Rd

(
|x− T (x)|2 +

∫
Rd
|x− y|2Mx(dy)

)
µ(dx)

=
∫
Rd×Rd

|y − T (x)|2M(dx, dy)

=
∫
Rd
W2

2 (Mx, δT (x))µ(dx) ≥ AW2
2(M,π).

(3.14)

Using the fact that
∫
Rd×Rd |x− y|

2M(dx,dy) =
∫
Rd |y|

2 ν(dy)−
∫
Rd |x|

2 µ(dx), we deduce that

AW2
2(M,π) =

∫
Rd
W2

2 (Mx, δT (x))µ(dx) =W2
2 (µ, ν) +

∫
Rd
|y|2 ν(dy)−

∫
Rd
|x|2 µ(dx),

hence any martingale coupling M ∈ ΠM(µ, ν) is an AW2-minimal martingale rearrrangement coupling of π.

The use of Lemma 2.1 allows us to easily prove that the analogue of Proposition 3.1 holds for regular couplings
as soon as on each interval (Fµ(x−), Fµ(x)], where x ∈ R, the sign of u 7→ F−1

µ (u) − F−1
ν (u) is constant. Of

course this includes the case where F−1
ν is constant on the intervals of the form (Fµ(x−), Fµ(x)] for x ∈ R, or

equivalently the Hoeffding-Fréchet coupling πHF between µ and ν is concentrated on the graph of the Monge
transport map T = F−1

ν ◦ Fµ. In the latter case, the conclusion of Proposition 3.4 below can also be seen as an
immediate consequence of Proposition 2.3 and the proof of Proposition 3.1.

Proposition 3.4. Let µ, ν ∈ P1(R) be such that µ ≤cx ν and on each interval (Fµ(x−), Fµ(x)], where x ∈ R,
the sign of u 7→ F−1

µ (u)−F−1
ν (u) is constant. Then for all Q ∈ Q, the martingale coupling MQ defined by (3.6)

is a martingale rearrangement coupling of the Hoeffding-Fréchet coupling πHF :

∀Q ∈ Q, AW1(πHF ,MQ) = inf
M∈ΠM(µ,ν)

AW1(πHF ,M).

Proof. By Lemma 2.1 applied with χ = (x 7→ (x, x))]µ, it suffices to show that µ(dx)-almost everywhere,

πHFx ≤st MQ
x or πHFx ≥st MQ

x . (3.15)

Reasoning like in (2.9) we get that µ(dx)-almost everywhere,

πHFx (dy) =
∫

(0,1)
δF−1

ν (θ(x,v))(dy) dv and MQ
x (dy) =

∫
(0,1)

m̃Q
θ(x,v)(dy) dv.

We deduce from Lemma 2.5 of [26] that for du-almost all u ∈ (0, 1) such that F−1
µ (u) ≥ F−1

ν (u) (resp
F−1
µ (u) ≤ F−1

ν (u)), δF−1
ν (u) ≤st m̃Q

u (resp. δF−1
ν (u) ≥st m̃Q

u ). This implies that for du-almost all u ∈ (0, 1)
such that µ({F−1

µ (u)}) = 0, πHF
F−1
µ (u) = δF−1

ν (u) and MQ

F−1
µ (u) = m̃Q

u are comparable under the stochastic order.
Moreover, the assumption made on the sign of the map F−1

µ −F−1
ν on the jumps of Fµ implies that for du-almost
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all u ∈ (0, 1) such that µ({F−1
µ (u)}) > 0, we have either (θ(F−1

µ (u), 0), θ(F−1
µ (u), 1)] ⊂ {F−1

µ ≥ F−1
ν } so that,

using the characterization of the stochastic order in terms of the cumulative disribution functions,

πHF
F−1
µ (u)(dy) =

∫
(0,1)

δF−1
ν (θ(F−1

µ (u),v))(dy) dv ≤st
∫

(0,1)
m̃Q

θ(F−1
µ (u),v)(dy) dv = MQ

F−1
µ (u)(dy),

or (θ(F−1
µ (u), 0), θ(F−1

µ (u), 1)] ⊂ {F−1
µ ≤ F−1

ν } so that πHF
F−1
µ (u) ≥st M

Q

F−1
µ (u). By the inverse transform sampling,

this shows (3.15) and completes the proof.

In the next example where the above constant sign condition fails, the inverse transform martingale coupling
between µ and ν is not a martingale rearrangement coupling of πHF . Therefore, in general, we cannot say that
every element of our family (MQ)Q∈Q is a martingale rearrangement coupling of the Hoeffding-Fréchet coupling.
However, we can always find a specific parameter Q ∈ Q such that the martingale coupling MQ is a martingale
rearrangement coupling of πHF (see [27], Prop. 3.6).

Example 3.5. Let µ = 1
4 (δ−1 + 2δ0 + δ1) and ν = 1

4 (δ−2 + δ−1 + δ1 + δ2). The Hoeffding-Fréchet coupling πHF
between µ and ν is given by

πHF = 1
4
(
δ(−1,−2) + δ(0,−1) + δ(0,1) + δ(1,2)

)
.

To see that the inverse transform martingale coupling

M IT = 1
6δ(−1,−2) + 1

12δ(−1,1) + 1
12δ(0,−2) + 1

6δ(0,−1) + 1
6δ(0,1) + 1

12δ(0,2) + 1
12δ(1,−1) + 1

6δ(1,2)

is not a martingale rearrangement coupling of πHF , we rely on the equivalent condition provided by Lemma 2.1.
One can readily compute M IT

0 = 1
6δ−2 + 1

3δ−1 + 1
3δ1 + 1

6δ2, πHF−1 = δ−2, πHF0 = 1
2 (δ−1 + δ1) and πHF1 = δ2. Then

−1 < 0, 1 > 0 and 0 = 0, but we have neither πHF−1 ≥st M IT
0 , πHF1 ≤st M IT

0 , πHF0 ≤st M IT
0 nor πHF0 ≥st M IT

0 .
We deduce by Lemma 2.1 that M IT is not a martingale rearrangement coupling of πHF .

Note that the martingale rearrangement constructed in Section 2.2 is

3
16δ(−1,−2) + 1

16δ(−1,2) + 1
4δ(0,−1) + 1

4δ(0,1) + 1
16δ(1,−2) + 3

16δ(1,2).

3.4. An example of AWρ-minimal martingale rearrangement for ρ > 2
Let f : R→ R and q : R→ [0, 1] be defined for all y ∈ R by

f(y) = 1 + e
6

(
e−|y|1{|y|≥1} + e−|y| + 1

1 + e 1{|y|<1}

)
;

q(y) = e
1 + e1{y≤−1} + 1

1 + ey 1{−1<y<1} + 1
1 + e1{y≥1}.

Let T : R → R be the inverse of the continuous increasing map y 7→ y + 2q(y) − 1, so that for all y ∈ R,
q(y) = 1+T−1(y)−y

2 . Let ν(dy) = f(y) dy and µ = (T−1)]ν. We can easily compute

sup
x∈R
|x− T (x)| = sup

y∈R
|T−1(y)− y| = sup

y∈R
|2q(y)− 1| = e−1

e +1 < 1.
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By considering the cases y ≤ −2, −2 < y ≤ −1, −1 < y ≤ 0, 0 < y ≤ 1, 1 < y ≤ 2 and 2 ≤ y, it is easy to
check that

∀y ∈ R, q(y − 1)f(y − 1) + (1− q(y + 1))f(y + 1) = f(y). (3.16)

Let

m0
u = q(F−1

ν (u)) δF−1
ν (u)+1 + (1− q(F−1

ν (u))) δF−1
ν (u)−1 (3.17)

and h : R→ R be measurable and bounded. Then∫
(0,1)×R

h(y) dum0
u(dy) =

∫
(0,1)

(
q(F−1

ν (u))h(F−1
ν (u) + 1) + (1− q(F−1

ν (u)))h(F−1
ν (u)− 1)

)
du

=
∫
R

(q(y)h(y + 1) + (1− q(y))h(y − 1)) ν(dy)

=
∫
R
q(y)h(y + 1)f(y) dy +

∫
R

(1− q(y))h(y − 1)f(y) dy

=
∫
R

(q(y − 1)f(y − 1) + (1− q(y + 1))f(y + 1))h(y) dy

=
∫
R
f(y)h(y) dy,

where we used (3.16) for the last equality. We deduce that
∫
u∈(0,1)m

0
u(dy) du = ν(dy). Hence M̂0 = λ(0,1) ×

δF−1
µ (u) ×m0

u ∈ Π̂M(µ, ν).
Let us now show that M̂0 is the only ÂWρ-minimal martingale rearrangement coupling of π̂HF for ρ > 2.

Since |y − F−1
ν (u)| is dum0

u(dy)-almost everywhere constant, we have

(∫
(0,1)
W2

2 (m0
u, δF−1

ν (u)) du
)ρ/2

=
(∫

(0,1)

∫
R
|F−1
ν (u)− y|2m0

u(dy) du
)ρ/2

=
∫

(0,1)

∫
R
|F−1
ν (u)− y|ρm0

u(dy) du ≥ ÂW
ρ

ρ(M̂0, π̂HF ).

(3.18)

Since by Proposition 3.2 and its proof,
∫

(0,1)W
2
2 (mu, δF−1

ν (u)) du does not depend on M̂ = λ(0,1) × δF−1
µ (u) ×

mu ∈ Π̂M(µ, ν), to conclude it is enough to show that for M̂ 6= M̂0,

ÂW
ρ

ρ(M̂, π̂HF ) >
(∫

(0,1)
W2

2 (mu, δF−1
ν (u)) du

)ρ/2
. (3.19)

Let χ ∈ Π(λ(0,1), λ(0,1)) be optimal for ÂWρ(M̂, π̂HF ). Suppose first that χ(du,du′) = λ(0,1)(du) δu(du′).
Since ∫

(0,1)

∫
R
|y − F−1

ν (u)|2mu(dy) du =
∫

(0,1)
W2

2 (mu, δF−1
ν (u)) du =

∫
(0,1)
W2

2 (m0
u, δF−1

ν (u)) du = 1,
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and M̂ 6= M̂0, |y − F−1
ν (u)| is not dumu(dy)-almost everywhere constant, so by Jensen’s strict inequality we

have

ÂW
ρ

ρ(M̂, π̂HF ) =
∫

(0,1)
Wρ
ρ (mu, δF−1

ν (u)) du =
∫
R×(0,1)

|y − F−1
ν (u)|ρmu(dy) du

>

(∫
R×(0,1)

|y − F−1
ν (u)|2mu(dy) du

)ρ/2
=
(∫

(0,1)
W2

2 (mu, δF−1
ν (u)) du

)ρ/2
.

Else if χ(du,du′) 6= λ(0,1)(du) δu(du′), then using Jensen’s inequality for the third inequality and (3.13) for
the fourth, we have

ÂW
ρ

ρ(M̂, π̂HF ) >
∫

(0,1)×(0,1)
Wρ
ρ (mu, δF−1

ν (u′))χ(du,du′) ≥
∫

(0,1)×(0,1)
Wρ

2 (mu, δF−1
ν (u′))χ(du,du′)

≥

(∫
(0,1)×(0,1)

W2
2 (mu, δF−1

ν (u′))χ(du,du′)
)ρ/2

≥

(∫
(0,1)
W2

2 (mu, δF−1
ν (u)) du

)ρ/2
,

(3.20)

which proves (3.19) and therefore that M̂0 is the only ÂWρ-minimal martingale rearrangement coupling of
π̂HF . Note that (3.20) is valid for M̂ = M̂0, which in view of (3.18) shows that λ(0,1)(du) δu(du′) is the only
coupling between λ(0,1) and λ(0,1) optimal for ÂWρ(M̂0, π̂HF ). With similar arguments we prove that

M0(dx, dy) = µ(dx)
(
q(T (x)) δT (x)+1(dy) + (1− q(T (x))) δT (x)−1(dy)

)
is the only AWρ-minimal martingale rearrangement coupling of πHF , and µ(dx) δx(dx′) is the only coupling
between µ and µ optimal for AWρ(M0, πHF ).

Remark 3.6. Since Fµ is continuous, by Proposition 3.4, for each Q ∈ Q, MQ defined by (3.6) is a martingale
rearrangement coupling of πHF : AW1(πHF ,MQ) = infM∈ΠM(µ,ν)AW1(πHF ,M). A related but slightly differ-
ent minimisation problem is considered in [26], where, according to Proposition 2.11, any element of the family
(MQ)Q∈Q of martingale couplings minimises∫

R×R
|y − T (x)|M(dx, dy) =

∫
R
W1(δT (x),Mx)µ(dx) =

∫
R
W1(πHFx ,Mx)µ(dx)

among all martingale couplings M between µ and ν and satisfies
∫
R×R |y − T (x)|MQ(dx, dy) = W1(µ, ν).

According to Proposition 3.5 of [26], since ρ > 2, the inverse transform martingale coupling M IT minimises∫
R×R |y − T (x)|ρMQ(dx, dy) among all martingale couplings MQ parametrised by Q ∈ Q. Yet the minimiser

over the whole set of martingale couplings between µ and ν is not M IT but M0.
Indeed, by construction we have M IT

x ({T (x)}) > 0, µ(dx)-almost everywhere, hence M IT 6= M0 and |y −
T (x)| is not M IT (dx, dy)-almost everywhere constant. Then by Jensen’s strict inequality and the fact that∫
R×R |y − T (x)|2M(dx, dy) does not depend on the choice of M ∈ ΠM(µ, ν), we get

(∫
R×R
|y − T (x)|ρM IT (dx, dy)

)1/ρ
>

(∫
R×R
|y − T (x)|2M0(dx,dy)

)1/2

=
(∫

R×R
|y − T (x)|ρM0(dx, dy)

)1/ρ
.

(3.21)
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Note that in Proposition 3.5 of [26] (resp. [26], Prop. 5.9), (3.11) and (3.12) (resp. (5.22)) are only valid in
the case ρ ∈ {1} ∪ [2,+∞) since the function cε defined in the proof lacks the claimed convexity property when
ρ < 2 (resp. since (5.25) is only valid for ρ ∈ {1} ∪ [2,+∞)).

4. Stability of the inverse transform martingale coupling
In the next proposition we prove the stability in ÂWρ, for ρ ≥ 1, of the lifted inverse transform martingale

coupling, defined for all µ, ν ∈ P1(R) in the convex order by

M̂ IT (du,dx, dy) = λ(0,1)(du) δF−1
µ (u)(dx) m̃IT

u (dy),

where (m̃IT
u )u∈(0,1) is defined by (3.10). In another proposition, we give a condition on the first marginals

ensuring that the inverse transform martingale coupling is stable in AWρ.

Proposition 4.1. Let ρ ≥ 1 and µn, νn ∈ Pρ(R), n ∈ N, be in convex order and respectively converge to µ and
ν in Wρ as n→ +∞. Then

ÂW
ρ

ρ(M̂ IT
n , M̂ IT ) ≤

∫
(0,1)
Wρ
ρ ((m̃IT

n )u, m̃IT
u ) du −→

n→+∞
0, (4.1)

where M̂ IT
n = λ(0,1)×δF−1

µn (u)× (m̃IT
n )u, resp. M IT = λ(0,1)×δF−1

µ (u)×m̃IT
u , denotes the lifted inverse transform

martingale coupling between µn and νn, resp. µ and ν.

Proof. By Remark A.4, it is enough to prove that ÂW1(M̂ IT
n , M̂ IT ) goes to 0 as n→∞. Since

ÂW1(M̂ IT
n , M̂ IT ) ≤

∫
(0,1)
W1((m̃IT

n )u, m̃IT
u ) du,

it suffices to show that the right-hand side vanishes as n goes to +∞. This is achieved in two steps. First, we
prove that, on the probability space (0, 1) endowed with the Lebesgue measure, the family of random variables(
Wρ
ρ

(
(m̃IT

n )u, m̃IT
u

))
n∈N is uniformly integrable, which, with the inequality Wρ ≥ W1, implies the uniform

integrability of
(
W1

(
(m̃IT

n )u, m̃IT
u

))
n∈N. Second we show for du-almost all u ∈ (0, 1) that

W1
(
(m̃IT

n )u, m̃IT
u

)
−→

n→+∞
0 (4.2)

Let us begin with the uniform integrability. For u ∈ (0, 1), we can estimate

Wρ
ρ

(
(m̃IT

n )u, m̃IT
u

)
≤ 2ρ−1

∫
R
|y|ρ

(
(m̃IT

n )u(dy) + m̃IT
u (dy)

)
. (4.3)

According to Lemma 2.6 of [26], M IT is the image of 1(0,1)(u) du m̃IT
u (dy) by (u, y) 7→ (F−1

µ (u), y) so that
the second marginal of this measure is ν(dy). Therefore∫

(0,1)

∫
R
|y|ρ m̃IT

u (dy) du =
∫
R
|y|ρ ν(dy) < +∞.

Hence it is enough to check the uniform integrability of
(∫

R |y|
ρ (m̃IT

n )u(dy)
)
n∈N to ensure that of(

Wρ
ρ

(
(m̃IT

n )u, m̃IT
u

))
n∈N. Since the second marginal of the measure 1(0,1)(u) du (m̃IT

n )u(dy) is νn(dy), this mea-
sure also writes νn(dy)kny (du) for some probability kernel kn on R × (0, 1). Let ε > 0 and A be a measurable
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subset of (0, 1) such that λ(A) < ε. For all n ∈ N, we have

Jn(A) :=
∫
A

∫
R
|y|ρ (m̃IT

n )u(dy) du =
∫
R
|y|ρ τn(dy),

where τn(dy) =
∫ 1
u=0 1A(u) kny (du) νn(dy) is such that τn ≤ νn and τn(R) = λ(A). Hence

sup
A∈B((0,1)), λ(A)≤ε

Jn(A) ≤ Iρε (νn),

where Iρε (ζ) is defined for all ζ ∈ Pρ(R) as the supremum of
∫
R |y|

ρ τ(dy) over all finite measures τ on R such
that τ ≤ ζ and τ(R) ≤ ε. Let η > 0. By Lemma 3.1 (b) of [9], since ν ∈ Pρ(R), there exists ε′ > 0 such that
Iρε′(ν) < η. Let then N ∈ N be such that for all n > N , Wρ

ρ (νn, ν) < η, so that by Lemma 3.1 (c) of [9],
Iρε′(νn) ≤ 2ρ−1(Wρ

ρ (νn, ν) + Iρε′(ν)) < 2ρη. By Lemma 3.1 (b) of [9] again there exists ε′′ > 0 such that for all
n ≤ N , Iρε′′(νn) < 2ρη. We deduce that for all ε ∈ (0, ε′ ∧ ε′′),

sup
n∈N

sup
A∈B((0,1)), λ(A)≤ε

Jn(A) ≤ 2ρη,

which yields uniform integrability of
(∫

R |y|
ρ (m̃IT

n )u(dy)
)
n∈N.

Next, we show the du-almost everywhere pointwise convergence of (4.2). Since, by monotonicity, u 7→
(F−1
µ (u), F−1

ν (u)) is continuous du-almost everywhere on (0, 1) and, then, the weak convergence implies that

(F−1
µn (u), F−1

νn (u)) −→
n→+∞

(F−1
µ (u), F−1

ν (u)), (4.4)

we suppose without loss of generality that this convergence holds. Let n ∈ N. Let Ψn+, resp. Ψn−, be the map
defined by the left-hand, resp. right-hand side of (3.1), with (µn, νn) replacing (µ, ν). By (3.10),

(m̃IT
n )u = pn(u)δF−1

νn (ϕn(u)) +(1−pn(u))δF−1
νn (u) with pn(u) = 1{F−1

µn (u)6=F−1
νn (u)}

F−1
µn (u)− F−1

νn (u)
F−1
νn (ϕn(u))− F−1

νn (u)
∈ [0, 1]

and ϕn(u) = Ψ−1
n−(Ψn+(u)).

Suppose first that u ∈ U0 i.e. F−1
µ (u) = F−1

ν (u), so that m̃IT
u = δF−1

ν (u). We have

W1((m̃IT
n )u, m̃IT

u ) = pn(u)|F−1
νn (ϕn(u))− F−1

ν (u)|+ (1− pn(u))|F−1
νn (u)− F−1

ν (u)|
≤ pn(u)|F−1

νn (ϕn(u))− F−1
νn (u)|+ |F−1

νn (u)− F−1
ν (u)|

= |F−1
µn (u)− F−1

νn (u)|+ |F−1
νn (u)− F−1

ν (u)|
≤ |F−1

µn (u)− F−1
µ (u)|+ 2|F−1

νn (u)− F−1
ν (u)|,

(4.5)

where the right-hand side goes to 0 as n→∞ by (4.4).
Suppose next that u ∈ U+ i.e. F−1

µ (u) > F−1
ν (u), the case u ∈ U− being treated in a similar way. Then

without loss of generality

m̃IT
u = p(u)δF−1

ν (ϕ(u)) + (1− p(u))δF−1
ν (u) with p(u) =

F−1
µ (u)− F−1

ν (u)
F−1
ν (ϕ(u))− F−1

ν (u)
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and ϕ(u) = Ψ−1
− (Ψ+(u)). By (4.4), for n large enough, u ∈ Un+ so that without loss of generality, pn(u) =

F−1
µn

(u)−F−1
νn

(u)
F−1
νn (ϕn(u))−F−1

νn (u) and checking (4.2) amounts to show that

F−1
νn (ϕn(u)) −→

n→+∞
F−1
ν (ϕ(u)). (4.6)

It was shown in the proof of Proposition 5.10 in [26] that Ψn+ converges uniformly to Ψ+ on [0, 1] and for
dv-almost every v ∈ (0, 1),

F−1
νn (Ψ−1

n−(Ψn+(1)v)) −→
n→+∞

F−1
ν (Ψ−1

− (Ψ+(1)v)). (4.7)

Let D be the set of discontinuities of F−1
ν ◦Ψ−1

− , which is at most countable by monotonicity. Then Proposition
4.10, Chapter 0 of [36] yields

0 =
∫ Ψ+(1)

Ψ+(0)
1D(v) dv =

∫ 1

0
1{Ψ+(u)∈D} dΨ+(u).

We deduce that for du-almost all u ∈ U+, F−1
ν ◦Ψ−1

− is continuous at Ψ+(u), which we suppose from now.
According to (4.7), there exists ε > 0 arbitrarily small such that

F−1
νn

(
Ψ−1
n−

(
Ψn+(1)Ψ+(u)− ε

Ψ+(1)

))
−→

n→+∞
F−1
ν

(
Ψ−1
− (Ψ+(u)− ε)

)
and F−1

νn

(
Ψ−1
n−

(
Ψn+(1)Ψ+(u) + ε

Ψ+(1)

))
−→

n→+∞
F−1
ν

(
Ψ−1
− (Ψ+(u) + ε)

)
.

For n large enough, we have Ψ+(u) ∈
[
Ψn+(1)Ψ+(u)−ε

Ψ+(1) ,Ψn+(1)Ψ+(u)+ε
Ψ+(1)

]
. Therefore, by monotonicity, we have

F−1
ν

(
Ψ−1
− (Ψ+(u)− ε)

)
= lim inf

n→+∞
F−1
νn

(
Ψ−1
n−

(
Ψn+(1)Ψ+(u)− ε

Ψ+(1)

))
≤ lim inf

n→+∞
F−1
νn (Ψ−1

n−(Ψn+(u)))

≤ lim sup
n→+∞

F−1
νn (Ψ−1

n−(Ψn+(u)))

≤ lim sup
n→+∞

F−1
νn

(
Ψ−1
n−

(
Ψn+(1)Ψ+(u) + ε

Ψ+(1)

))
= F−1

ν

(
Ψ−1
− (Ψ+(u) + ε)

)
.

Since F−1
ν ◦Ψ−1

− is continuous at Ψ+(u), we get when ε vanishes the convergence (4.6), which concludes the
proof of (4.2) and therefore (4.1)

Proposition 4.2. Let ρ ≥ 1 and µn, νn ∈ Pρ(R), n ∈ N, be in convex order and respectively converge to µ and
ν in Wρ as n→ +∞. Suppose that asymptotically, any jump of Fµ is included in a jump of Fµn , that is

∀x ∈ R, µ({x}) > 0 =⇒ ∃(xn)n∈N ∈ RN, Fµn(xn) ∧ Fµ(x)− Fµn(xn−) ∨ Fµ(x−) −→
n→+∞

µ({x}), (4.8)
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which is for instance satisfied if µ is non-atomic. Then

AWρ(M IT
n ,M IT ) −→

n→+∞
0, (4.9)

where M IT
n , resp. M IT , denotes the inverse transform martingale coupling between µn and νn, resp. µ and ν.

Remark 4.3. If (4.8) is not satisfied, then (4.9) may not hold. Indeed, for n ∈ N∗, let µn = U((−1/n, 1/n)),
µ = δ0 and νn = ν = U((−1, 1)). We trivially have M IT (dx, dy) = µ(dx) ν(dy), so AW1(M IT

n ,M IT ) ≥∫
x∈RW1((M IT

n )x, ν)µn(dx). However, for n ∈ N∗, since Fµn is continuous, we have that for all x ∈ R,
(M IT

n )x = (m̃IT
n )Fµ(x), where according to (3.10), ((m̃IT

n )u(dy))u∈(0,1) is a probability kernel such that for
all u ∈ (0, 1), there exist a, b ∈ [−1, 1] and p ∈ [0, 1] which satisfy m̃IT

n (u,dy) = pδa + (1− p)δb. Using the fact
that the comonotonic coupling is optimal for the W1-distance, we get

W1(pδa + (1− p)δb, ν) =
∫ p

0
|a+ 1− 2u|du+

∫ 1

p

|b+ 1− 2u|du.

It is easy to show that
∫ p

0 |a + 1 − 2u|du is equal to p(a + 1 − p) ≥ p2 if (a + 1)/2 > p, and equal to
(a+ 1)2/2− p(a+ 1) + p2 ≤ p2 if (a+ 1)/2 ≤ p. Therefore, one can readily show that

∫ p
0 |a+ 1− 2u|du ≥ p2/2,

attained for a = p − 1. Similarly, we have
∫ 1
p
|b + 1 − 2u|du ≥ (1 − p)2/2, attained for b = p. We deduce that

for all (a, b, p) ∈ R2 × [0, 1], W1(pδa + (1 − p)δb, ν) ≥ (p2 + (1 − p)2)/2 ≥ 1/4, attained for p = 1/2, hence∫
x∈RW1((M IT

n )x, ν)µn(dx) ≥ 1/4, which proves that (4.9) is not satisfied.

Proof of Proposition 4.2. By Lemma A.3 below we may suppose without loss of generality that ρ = 1. We have

AW1(M IT
n ,M IT ) ≤

∫ 1

0

(
|F−1
µn (u)− F−1

µ (u)|+W1

(
(M IT

n )F−1
µn (u),M

IT
F−1
µ (u)

))
du

=W1(µn, µ) +
∫ 1

0
W1

(
(M IT

n )F−1
µn (u),M

IT
F−1
µ (u)

)
du.

For (x, v) ∈ R× [0, 1] and n ∈ N, let θ(x, v) = Fµ(x−) + vµ({x}), θn(x, v) = Fµn(x−) + vµn({x}) and

(Mn)x(dy) =
∫ 1

v=0
m̃IT
θn(x,v)(dy) dv.

Then (1.15) and the triangle inequality yield∫
(0,1)
W1

(
(M IT

n )F−1
µn (u),M

IT
F−1
µ (u)

)
du

≤
∫

(0,1)

(
W1

(
(M IT

n )F−1
µn (u), (Mn)F−1

µn (u)

)
+W1

(
(Mn)F−1

µn (u),M
IT
F−1
µ (u)

))
du

≤
∫

(0,1)2

(
W1

(
(m̃IT

n )θn(F−1
µn (u),v), m̃

IT
θn(F−1

µn (u),v)

)
+W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

))
dudv

=
∫

(0,1)
W1

(
(m̃IT

n )u, m̃IT
u

)
du+

∫
(0,1)2

W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

)
dudv.

In order to show (4.9), it is therefore sufficient by (4.1) to prove that the second summand in right-hand side
vanishes when n goes to +∞. This is achieved in two steps. First, we prove that, on the probability space (0, 1)2

521



B. JOURDAIN AND W. MARGHERITI

endowed with the Lebesgue measure, the family of random variables
(
W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

))
n∈N

is
uniformly integrable. Second, we show for dudv-almost every (u, v) ∈ (0, 1)2 that

W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

)
−→

n→+∞
0. (4.10)

Let us begin with the uniform integrability. For (u, v) ∈ (0, 1)2, we can estimate

W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

)
≤
∫
R
|y|
(
m̃IT
θn(F−1

µn (u),v)(dy) + m̃IT
θ(F−1

µ (u),v)(dy)
)
.

For each nonnegative measurable function f : R→ R, we have by (1.15)∫
(0,1)2

f

(∫
R
|y| m̃IT

θn(F−1
µn (u),v)(dy)

)
dudv =

∫
(0,1)2

f

(∫
R
|y| m̃IT

θ(F−1
µ (u),v)(dy)

)
dudv

=
∫

(0,1)
f

(∫
R
|y| m̃IT

u (dy)
)

du.

According to Lemma 2.6 of [26], M IT is the image of 1(0,1)(u) du m̃IT
u (dy) by (u, y) 7→ (F−1

µ (u), y) so that the
second marginal of this measure is ν(dy), hence the random variables

(
W1

(
m̃IT
θn(F−1

µn (u),v), m̃
IT
θ(F−1

µ (u),v)

))
n∈N

are uniformly integrable.
Next, we show the dudv-almost everywhere pointwise convergence of (4.10). Let w ∈ (0, 1) be in the set of

continuity points of F−1
µ , F−1

ν , F−1
ν ◦Ψ−1

− ◦Ψ+ and F−1
ν ◦Ψ−1

+ ◦Ψ−. Recall that we have

m̃IT
w = p(w)δF−1

ν (ϕ(w)) + (1− p(w))δF−1
ν (w) with p(w) = 1{F−1

µ (w)6=F−1
ν (w)}

F−1
µ (w)− F−1

ν (w)
F−1
ν (ϕ(w))− F−1

ν (w)
∈ [0, 1].

Let (wn)n∈N be a sequence with values in (0, 1) converging to w and let us show that

W1(m̃IT
wn , m̃

IT
w ) −→

n→+∞
0. (4.11)

Suppose first that w ∈ U0 i.e. F−1
µ (w) = F−1

ν (w). Then a computation similar to (4.5) yields

W1(m̃IT
wn , m̃

IT
w ) ≤ |F−1

µ (wn)− F−1
µ (w)|+ 2|F−1

ν (wn)− F−1
ν (w)|,

where the right-hand side goes to 0 as n→ +∞ by continuity of F−1
µ and F−1

ν at w.
Suppose next that w ∈ U+ i.e. F−1

µ (w) > F−1
ν (w), the case w ∈ U− being treated in a similar way. Then by

continuity of F−1
µ and F−1

ν at w, wn ∈ U+ for n large enough so that without loss of generality

p(w) =
F−1
µ (w)− F−1

ν (w)
F−1
ν (ϕ(w))− F−1

ν (w)
, p(wn) =

F−1
µ (wn)− F−1

ν (wn)
F−1
ν (ϕ(wn))− F−1

ν (wn)
,

ϕ(w) = Ψ−1
− (Ψ+(w)), and ϕ(wn) = Ψ−1

− (Ψ+(wn)), hence (4.11) follows from the continuity at w of F−1
µ , F−1

ν and
F−1
ν ◦Ψ−1

− ◦Ψ+. Since the set of discontinuity points of the non-decreasing functions F−1
µ , F−1

ν , F−1
ν ◦Ψ−1

− ◦Ψ+

and F−1
ν ◦ Ψ−1

+ ◦ Ψ− are at most countable, we deduce by (1.15) and (4.11) that it is sufficient to show for
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dudv-almost every (u, v) ∈ (0, 1)2

θn(F−1
µn (u), v) −→

n→+∞
θ(F−1

µ (u), v),

or equivalently

(Fµn(xnu−), Fµn(xnu)) −→
n→+∞

(Fµ(xu−), Fµ(xu)) (4.12)

for du-almost every u ∈ (0, 1), where xu := F−1
µ (u) and xnu := F−1

µn (u).
Let then u ∈ (0, 1). Since, by monotonicity, u 7→ (F−1

µ (u), F−1
ν (u)) is continuous du-almost everywhere on

(0, 1) and, then, the weak convergence implies that

(F−1
µn (u), F−1

νn (u)) −→
n→+∞

(F−1
µ (u), F−1

ν (u)), (4.13)

we suppose without loss of generality that this convergence holds. For n ∈ N, define ln = infk≥n xku and rn =
supk≥n xku. Since (4.13) holds, we find that (ln)n∈N, resp. (rn)n∈N, is a nondecreasing, resp. nonincreasing,
sequence converging to xu. Due to right continuity of Fµ and left continuity of x 7→ Fµ(x−) we have

Fµ(xu−) = lim
p→+∞

Fµ(lp−) and lim
p→+∞

Fµ(rp) = Fµ(xu).

By Portmanteau’s theorem and monotonicity of cumulative distribution functions we have

Fµ(lp−) ≤ lim inf
n→+∞

Fµn(lp−) ≤ lim inf
n→+∞

Fµn(xnu−) ≤ lim sup
n→+∞

Fµn(xnu) ≤ lim sup
n→+∞

Fµn(rp) ≤ Fµ(rp).

By taking the limit p→ +∞, we find

Fµ(xu−) ≤ lim inf
n→+∞

Fµn(xnu−) ≤ lim sup
n→+∞

Fµn(xnu) ≤ Fµ(xu).

This implies (4.12) as soon as Fµ is continuous at xu. Suppose now that Fµ is discontinuous at xu. Since µ has
countably many atoms, we may suppose without loss of generality that u ∈ (Fµ(xu−), Fµ(xu)). Let (xn)n∈N ∈ RN

be the sequence associated to x = xu by (4.8). For n large enough, we have u ∈ (Fµn(xn−), Fµn(xn)), hence
xn = xnu. Using the assumption made in (4.8), we get

lim inf
n→+∞

Fµn(xnu) = lim inf
n→+∞

(Fµn(xnu) ∧ Fµ(xu))

= lim inf
n→+∞

(Fµn(xnu) ∧ Fµ(xu)− Fµn(xnu−) ∨ Fµ(xu−) + Fµn(xnu−) ∨ Fµ(xu−))

= µ({xu}) + lim inf
n→+∞

(Fµn(xnu−) ∨ Fµ(xu−)) ≥ Fµ(xu),

hence Fµn(xnu) −→
n→+∞

Fµ(xu). Similarly, Fµn(xnu−) −→
n→+∞

Fµ(xu−), which shows (4.12) and concludes the proof.

Appendix A. Adapted Wasserstein distances
A useful point of view is the following: for all µ, ν ∈ Pρ(R) and π ∈ Π(µ, ν), let J(π) be the probability

measure on R× Pρ(R) defined by

J(π)(dx, dp) = µ(dx) δπx(dp). (A.1)
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Then one can readily show that for any µ′, ν′ ∈ Pρ(R) and π′ ∈ Π(µ, ν),

AWρ(π, π′) =Wρ(J(π), J(π′)), (A.2)

where R × Pρ(R) is of course endowed with the product metric ((x, p), (x′, p′)) 7→ (|x − x′|ρ +Wρ
ρ (p, p′))1/ρ.

Therefore, the topology induced by AWρ coincides with the initial topology with respect to J . This allows us
to easily derive the two following lemmas.

Lemma A.1. Let ρ ≥ 1, µ, ν, µ′, ν′ ∈ Pρ(R) and π ∈ Π(µ, ν), π′ ∈ Π(µ′, ν′). Then there exists a coupling
χ ∈ Π(µ, µ′) optimal for AWρ(π, π′), i.e. such that

AWρ
ρ(π, π′) =

∫
R×R

(
|x− x′|ρ +Wρ

ρ (πx, π′x′)
)
χ(dx, dx′).

Remark A.2. A similar statement holds when π, π′ have three marginals. In that case, writing π(dx, dy, dz) =
µ(dx)πx(dy, dz) and π′(dx′,dy′, dz′) = µ′(dx′)π′x′(dy′, dz′) we define

AWρ
ρ(π, π′) = inf

χ∈Π(µ,µ′)

∫
R×R

(
|x− x′|ρ +AWρ

ρ(πx, π′x′)
)
χ(dx, dx′).

Let K(π) be the probability measure on R× Pρ(R× Pρ(R)) defined by

K(π)(dx, dp) = µ(dx) δJ(πx)(dp).

Then one can readily show that

AWρ(π, π′) =Wρ(K(π),K(π′)),

where R×Pρ(R×Pρ(R)) is of course endowed with the product metric ((x, p), (x, p′)) 7→
(
|x− x′|ρ +Wρ

ρ (p, p′)
)1/ρ.

Similarly to Lemma A.1, the latter characterisation allows us to easily see that there exists a coupling
χ ∈ Π(µ, µ′) optimal for AWρ(π, π′).

Proof of Lemma A.1. Since R is Polish, so are the set Pρ(R) and the set of probability measures on R×Pρ(R).
Hence there exists a coupling P ∈ Π(J(π), J(π′)) optimal for Wρ(J(π), J(π′)), i.e.

Wρ
ρ (J(π), J(π′)) =

∫
R×Pρ(R)×R×Pρ(R)

|(x, p)− (x′, p′)|ρ P (dx,dp,dx′,dp′).

Since the J(π) and J(π′) are concentrated on graphs of measurable maps, it is clear that P (dx, dp,dx′,dp′) =
χ(dx, dx′) δπx(dp) δπ′

x′
(dp′) for χ(dx, dx′) =

∫
(p,p′)∈Pρ(R)×Pρ(R) P (dx, dp, dx′,dp′) ∈ Π(µ, µ′). Then

AWρ
ρ(π, π′) =Wρ

ρ (J(π), J(π′))

=
∫
R×Pρ(R)×R×Pρ(R)

(
|x− x′|ρ +Wρ

ρ (p, p′)
)
χ(dx,dx′) δπx(dp) δπ′

x′
(dp′)

=
∫
R×R

(
|x− x′|ρ +Wρ

ρ (πx, π′x′)
)
χ(dx, dx′),

hence χ is optimal for AWρ(π, π′).
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Lemma A.3. Let ρ ≥ 1, µ, ν ∈ Pρ(R), (µn)n∈N, (νn)n∈N ∈ Pρ(R)N, π ∈ Π(µ, ν) and (πn)n∈N ∈
∏
n∈N Π(µn, νn).

Then

AWρ(πn, π) −→
n→+∞

0 ⇐⇒ AW1(πn, π) +Wρ(µn, µ) +Wρ(νn, ν) −→
n→+∞

0. (A.3)

Proof. Clearly,

∫
R×Pρ(R)

(
|x|ρ +Wρ

ρ (p, δ0)
)
J(π)(dx, dp) =

∫
R

(
|x|ρ +

∫
R
|y|ρ πx(dy)

)
µ(dx)

=
∫
R
|x|ρ µ(dx) +

∫
R
|y|ρ ν(dy)

so that π and J(π) have equal ρ-th moments. Since convergence in Wρ is equivalent to convergence in W1
coupled with convergence of the ρ-th moments, we deduce from (A.2) that

AWρ(πn, π) −→
n→+∞

0

⇐⇒ AW1(πn, π) +
∣∣∣∣∫

R
|x|ρ µn(dx) +

∫
R
|y|ρ νn(dy)−

∫
R
|x|ρ µ(dx)−

∫
R
|y|ρ ν(dy)

∣∣∣∣ −→n→+∞
0.

Since W1 ≤ AW1 and W1-convergence of the couplings implies that of their respective marginals and
lim infn→∞

∫
R |x|

ρ µn(dx) ≥
∫
R |x|

ρ µ(dx), lim infn→∞
∫
R |y|

ρ νn(dy) ≥
∫
R |y|

ρ ν(dy), using the fact that con-
vergence in Wρ is equivalent to convergence in W1 coupled with convergence of the ρ-th moments again, we
conclude that the right-hand side is clearly equivalent to

AW1(πn, π) +Wρ(µn, µ) +Wρ(νn, ν) −→
n→+∞

0,

which proves (A.4).

Remark A.4. For ρ ≥ 1, let λ, µ, ν ∈ Pρ(R), (λn)n∈N, (µn)n∈N, (νn)n∈N ∈ Pρ(R)N, π ∈ P(R × R × R) with
marginals λ, µ, ν and πn ∈ P(R× R× R) with marginals λn, µn, νn for n ∈ N. Then

AWρ(πn, π) −→
n→+∞

0 ⇐⇒ AW1(πn, π) +Wρ(λn, λ) +Wρ(µn, µ) +Wρ(νn, ν) −→
n→+∞

0. (A.4)

This can be proved by the same argument as in the previous proof since, for the mapping K introduced in
Remark A.2, one has

∫
R×Pρ(R×Pρ(R))

(
|x|ρ +Wρ

ρ (p, δ(0,δ0))
)
K(π)(dx,dp) =

∫
R

(
|x|ρ +Wρ

ρ (J(πx), δ(0,δ0))
)
λ(dx)

=
∫
R
|x|ρλ(dx) +

∫
R×R

(
|y|ρ +Wρ

ρ (πx,y, δ0)
)
πx(dy,R)λ(dx)

=
∫
R
|x|ρλ(dx) +

∫
R
|y|ρµ(dy) +

∫
R
|z|ρν(dz).
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[21] S. Gerhold and I.C. Gülüm, Consistency of option prices under bid–ask spreads. Math. Finance 30 (2020) 377–402.
[22] N. Ghoussoub, Y.-H. Kim and T. Lim, Structure of optimal martingale transport plans in general dimensions. Ann. Probab.

47 (2019) 109–164.
[23] M.F. Hellwig, Sequential decisions under uncertainty and the maximum theorem. J. Math. Econ. 25 (1996) 443–464.
[24] P. Henry-Labordère, X. Tan and N. Touzi, An explicit version of the one-dimensional Brenier’s theorem with full marginals

constraint. Stoch. Process. Appl. 126 (2016) 2800–2834.
[25] P. Henry-Labordère and N. Touzi, An explicit martingale version of the one-dimensional Brenier theorem. Finance Stoch. 20

(2016) 635–668.
[26] B. Jourdain and W. Margheriti, A new family of one dimensional martingale Couplings. Electr. J. Probab. 25 (2020).
[27] B. Jourdain and W. Margheriti, One dimensional martingale rearrangement couplings. arXiv:2101.12651 (2021).
[28] L.V. Kantorovich, On the translocation of masses. Doklady Akademii Nauk SSSR 37 (1942) 199–201.
[29] R. Lassalle, Causal transference plans and their Monge-Kantorovich problems. Stoch. Anal. Appl. 36 (2018) 452–484.
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