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ONE DIMENSIONAL MARTINGALE REARRANGEMENT
COUPLINGS*

B. JOURDAIN AND W. MARGHERITI**

Abstract. We are interested in martingale rearrangement couplings. As introduced by Wiesel in order
to prove the stability of Martingale Optimal Transport problems, these are projections in adapted
Wasserstein distance of couplings between two probability measures on the real line in the convex
order onto the set of martingale couplings between these two marginals. In reason of the lack of rela-
tive compactness of the set of couplings with given marginals for the adapted Wasserstein topology, the
existence of such a projection is not clear at all. Under a barycentre dispersion assumption on the orig-
inal coupling which is in particular satisfied by the Hoeffding-Fréchet or comonotone coupling, Wiesel
gives a clear algorithmic construction of a martingale rearrangement when the marginals are finitely
supported and then gets rid of the finite support assumption by relying on a rather messy limiting
procedure to overcome the lack of relative compactness. Here, we give a direct general construction
of a martingale rearrangement coupling under the barycentre dispersion assumption. This martingale
rearrangement is obtained from the original coupling by an approach similar to the construction we
gave in Jourdain and Margheriti [Electr. J. Probab. (2020)] of the inverse transform martingale cou-
pling, a member of a family of martingale couplings close to the Hoeffding-Fréchet coupling, but for
a slightly different injection in the set of extended couplings introduced by Beiglbéck and Juillet and
which involve the uniform distribution on [0, 1] in addition to the two marginals. We last discuss the
stability in adapted Wassertein distance of the inverse transform martingale coupling with respect to
the marginal distributions.
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1. INTRODUCTION

Let p > 1 and p, v be in the set P,(R) of probability measures on the real line with finite order p moment.
We denote by II(p, v) the set of couplings between p and v, that is 7w € II(, v) iff 7 is a measure on R x R with
first marginal ;4 and second marginal v. We denote by ITM(u, v) the set of martingale couplings between y and
v

M = 12 X )-a.e. =T .
1140.) = {1 € M) | a0, () =} (L1)
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where for any coupling 7 € TI(u, v) we denote by (7;).cr its disintegration with respect to its first marginal, that
is 7(dx,dy) = p(dz) 7, (dy), or with a slight abuse of notation m = p x m,. The celebrated Strassen theorem
[38] ensures that TIM(u,v) # 0 iff 4 and v are in the convex order, which we denote u <., v, that is iff
Jg f(x) p(dz) < [ f(y) v(dy) for any convex function f: R — R, which implies that [, zu(dz) = [ yv(dy).

Fix m € I(p,v) with p <., v. We are interested in finding a projection of m on the set IM(u,v) for the
adapted Wasserstein distance AW, (defined in (1.5) below), that is finding a martingale coupling M between
w1 and v such that

M) = inf M. 1.2
AW M) = Jaf ) AVl M) 2

This problem arose our interest when Wiesel [39] highlighted its connection for p = 1 with the stability of
the Martingale Optimal Transport (MOT) problem. The MOT problem was introduced in discrete time by
Beiglbock, Henry-Labordére and Penkner [7] and in continuous time by Galichon, Henry- Labordeére and Touzi
[19] in order to get model-free bounds of an option price. It consists in the classical Optimal Transport problem,
which was formulated by Gaspard Monge [30] in 1781 and modernised by Kantorovich [28] in 1942, to which an
additional martingale constraint is added in order to reflect the arbitrage-free condition of the market. In our
setting the MOT problem consists in the minimisation

MOT = inf C(x,y) M(dz,d MOT
(k,v) O (z,y) M(dz,dy), (MOT)

where C': R x R — R, is a nonnegative measurable payoff function. The study of its stability, that is the con-
tinuity of the map (i, v) — MOT(u, v), represents a major stake, since it confirms the robustness of model-free
bounds of an option price. Backhoff-Veraguas and Pammer [6] gave a positive answer under mild regularity
assumptions by showing the stability of the so called martingale C-monotonicity property, which is proved
sufficient for optimality. Independently, Wiesel [39] also gave a positive answer. More recently, Beiglbock, Pam-
mer and the two authors generalised those stability results to the weak MOT problem [8]. For adaptations of
celebrated results on classical optimal transport theory to the MOT problem, we refer to Beiglbock and Juillet
[10], Henry-Labordere, Tan and Touzi [24] and Henry- Labordére and Touzi [25]. On duality, we refer to Bei-
glbock, Nutz and Touzi [13], Beiglbock, Lim and Obldj [12] and De March [17]. We also refer to Ghoussoub,
Kim and Lim [22], De March [16] and De March and Touzi [18] for the multi-dimensional case, where stability
fails according to a nice counter-example by Briickerhoff and Juillet [15].
We recall that the Wasserstein distance with index p between p and v is defined by

W(iv) =  inf (/RR x—y|p7r(da:,dy)>1/p. (1.3)

€M (p,v)

The infimum is attained by the comonotonic or Hoeffding-Fréchet coupling 7% between p and v, that is the
image of the Lebesgue measure on (0, 1) by u — (F,*(u), ;" (u)), where F; ! (u) = inf{z € R : n((—o0, z]) > u}
denotes the quantile function of a probability measure  on R. As a consequence,

1/p
W, (1, v) = </(0 ., [F, (u) —F;l(u)”du> : (1.4)

The topology induced by the Wasserstein distance is not always well suited for any setting, especially in
mathematical finance. Indeed, the symmetry of this distance does not take into account the temporal structure
of martingales. One can easily get convinced that two stochastic processes very close in Wasserstein distance can
yield radically unalike information, as Figure 1 of [3] illustrates very well. Therefore, one needs to strengthen,
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or adapt this usual topology. This can be done in many different ways, such as the adapted weak topology
(see below), Hellwig’s information topology [23], Aldous’s extended weak topology [1] or the optimal stopping
topology [4]. Strikingly, all those apparently independent topologies are actually equal, at least in discrete time
([4], Thm. 1.1).

Hence it induces no loss of generality to focus on the so called adapted Wasserstein distance. For an extensive
background, we refer to [14, 29, 31-34]. For all p/,v" € P,(R) and n" € II(y',v'), the adapted Wasserstein
distance with index p between m and 7’ is defined by

1/p
AW, (m,7') = inf (/ (Jo = 2'|” + WE(7g, 70 ) X(dx,dx')) . (1.5)
RxR

X€E(p,p')

Note that by Lemma A.1 below there always exists a coupling x € II(u, ) optimal for AW, (m,n"). Moreover
it is easy to check that W, < AW,, so that AW, induces a finer topology than W,. For = € II(u,v) with
p <cx v, Wiesel [39] studies Problem (1.2) for p = 1 and introduces the notion of martingale rearrangement: a
martingale coupling M & ITM(y, v) is called a martingale rearrangement coupling of 7 if

AW4 (m, M) = inf AW (7, M"). (1.6)
M’elIM (p,v)

Actually, he works with the nested Wasserstein distance, which according to (1.3) of [5] is equal to the adapted
Wasserstein distance. In the present paper, even if we mainly concentrate on martingale rearrangements, we
will also consider a slight extension of the latter definition: a martingale coupling M € ITM(u,v) is called an
AW ,-minimal martingale rearrangement coupling of 7 if

AW, (m, M) = M/EIiTrllwf(” » AW, (m, M'). (1.7)

Note that the existence of an AW ,-minimal martingale rearrangement coupling is not clear in the general
case. Indeed, let (M,)nen be a sequence of martingale couplings between p and v such that (AW, (7, My,))nen
converges to AW, (m, M). The tightness of the marginals p and v guarantees tightness and therefore relative
compactness of (M,,),en for the W,-distance, but not necessarily for the AW ,-distance. In order to compensate
this lack of relative compactness, Wiesel [39] introduces a new assumption: the coupling = € II(u, v) is said to
satisfy the barycentre dispersion assumption iff

Va € R, /Rn[a,m)(x) (m—/Rym(dy)> 1(de) < 0. (1.8)

The latter assumption is important in this context since it provides a sufficient condition for a coupling m
between p and v to admit a martingale rearrangement coupling. More precisely, Wiesel shows Lemma 2.1 of
[39] that in the general case,

inf AW (r, M) > / u(dz), (1.9)

M/ eI (j1,0) R

Aymwm—x

and there exists M € IM(u,v) such that AWy(m, M) = [; | [z yms(dy) — x| p(dz) when 7 satisfies the
barycentre dispersion assumption (1.8) ([39], Prop. 2.4).

The problem (1.2) was in a certain way already considered by Riischendorf [37], who looked for a projection
of a probability measure on a set of probability measures with given linear constraints. Since the martingale
constraint is linear, his study encompasses our problem. Yet he considered the projection with respect to the
Kullback-Leibler distance, also known as relative entropy, in place of AW, and this does not suit our purpose.
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More recently, Gerhold and Giiliim looked at a very similar problem ([20], Prob. 2.4) for the infinity Wasserstein
distance, the Prokhorov distance, the stop-loss distance, the Lévy distance or modified versions of them. Once
again, despite being of great interest in their setting, in particular for their application to the existence of a
market model which is consistent with a finite set of European call options prices on a single underlying asset
[21], their choice of distance is still inadequate for a connection with the stability of (MOT).

In Section 2 we briefly recall Wiesel’s construction [39] of a martingale rearrangement coupling of any cou-
pling 7 which satisfies the barycentre dispersion assumption (1.8). Then we design our own construction of
a martingale rearrangement coupling of 7. This construction is actually done through lifted couplings, in the
sense of Beiglbock and Juillet [11], that is probability measures on the enlarged space (0,1) x R x R in which
the spatial domain R x R of regular couplings is embedded.

Our construction in Section 2 is highly inspired of the one we did in [26], where we designed the martingale
inverse transform coupling M'T between p and v as a special element of a family (M@)geo of martingale
couplings between u and v such that p <., v parametrised by a set Q of probability measures on (0,1)2. This
family was meant to be as close as possible to the Hoeffding-Fréchet coupling 77 between p and v. As proved
by Wiesel ([39], Lem. 2.3), 7H ¥ satisfies the barycentre dispersion assumption (1.8). Section 3 is specialised to
martingale rearrangements of the Hoeffding-Fréchet coupling 7. After presenting the family (M Q)QEQ and
the martingale inverse transform coupling M!7, we show that the lifted coupling associated with any element
of (M Q)QEQ is, in a very natural sense, a lifted martingale rearrangement coupling of a lift of 77", At the level
of regular couplings on R x R, we can conclude the same as soon as the sign of F, 1 — F; is constant on the
jumps of F),, which holds when F,~ L F 1 i constant on these jumps and 77 is concentrated on the graph
of the Monge transport map T = F, ' o F, - When this condition is not met, the inverse transform martingale
coupling M'T may fail to be a martingale rearrangement of 77 as we show in Example 3.5.

We finally show in Section 4 the stability of the inverse transform martingale coupling for the AW ,-distance
with respect to its marginals. The latter stability holds in full generality at the lifted level but a condition on
the first marginals is needed at the level of regular couplings.

Let us now recall some standard results about cumulative distribution functions and quantile functions since
they will prove very handy one-dimensional tools. Proofs can be found for instance in Appendix of [26]. For
any probability measure 1 on R, denoting by F,(z) = n((—oc,]) and F,*(u) = inf{z € R : F,(z) > u} the
cumulative distribution function and the quantile function of 7, we have

1. Fy, resp. F,~ 1 is right continuous, resp. left continuous, and nondecreasing;
2. For all (z,u) € R x (0,1),

F{l(u) <z <= u<Fy(z), (1.10)
which implies
Fy(z—) <u < Fy(z) = o =F,'(u), (1.11)
and  F,(F, ' (u)—) < u < Fy(F,  (u); (1.12)
3. For n(dx)-almost every = € R,
0< Fy(z), Fy(z—)<1 and F,'(Fy(z)) =z (1.13)

4. The image of the Lebesgue measure on (0, 1) by Fr 1 is 5. This property is referred to as inverse transform
sampling.
5. Denoting by A(g,1), resp. A,1)2, the Lebesgue measure on (0, 1), resp. (0, 1)? and setting

0(z,v) = F(z—) +opu({z}) for (z,v) € Rx0,1], (1.14)
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we have
((u,v) — Q(F;fl(u)a U))ﬁ A0,1)2 = A0,1)5 (1.15)

where § denotes the pushforward operation. Coupled with the inverse transform sampling we also have
the equivalent formulation

05(1 X Ao,1)) = A0,1)- (1.16)

2. MARTINGALE REARRANGEMENTS OF COUPLINGS WHICH SATISFY THE
BARYCENTRE DISPERSION ASSUMPTION

2.1. Regular and lifted martingale rearrangement couplings

By (1.4) for the first equality and the inverse transform sampling for the second one, we have for 7,7’ € Py (R),

[ ontaa) = [ ay(an

(2.1)

Wi(n,n') = / ’F{l(u) — FnTl(u)‘ du > / F,;l(u)du —/ F{,l(u)du
(0,1) (0,1) (0,1)

The inequality is an equality iff either Vu € (0,1), Fn_l(u) < F{,l(u) i.e. 7 is smaller than 7’ for the stochastic
order which we denote n <, 1’ or Vu € (0, 1), F{l(u) > Fn_/l(u) ie.n>an.

Let u,v € P1(R) such that u <., v. We are now ready to reproduce the proof of Lemma 2.1 of [39] to check
(1.9). For M € I (1, v) and x € (i, i) we have, using (2.1) then the triangle inequality,

/RX]R (|lz — 2’| + Wi (e, M) x(dz,da’) > /RXR <|x — |+ ’/Rym(dy) o

Z/R /Rym(dy)—fv

When 7 satisfies the barycentre dispersion assumption (1.8), finding a martingale rearrangement coupling of 7
amounts to find a martingale coupling such that the inequalities in (2.2) are equalities. This observation leads
to the following lemma.

) x(dz,dz")
(2.2)

p(dz).

Lemma 2.1. Let p,v € P1(R) be such that p <. v and w € I(u, v) satisfy the barycentre dispersion assumption
(1.8). Then M € IIM(u,v) is a martingale rearrangement coupling of 7 iff there exists x € II(u,u) such that
x(dz, da’)-almost everywhere,

<t = 1, >a My, >3 = 1, <g My and z=2 = m, <4 M, or my > M,, (2.3)

in which case x is optimal for AW;(m, M).

Proof. Suppose that M is a martingale rearrangement coupling of 7 and x is optimal for AW (m, M). Since
7 satisfies the barycentre dispersion assumption, we know by Proposition 2.4 of [39] that AW;(M,w) =
Je |z 7o (dy) — 2| p(dz). Then the first inequality in (2.2) is an equality, hence x(dz, dz’)-almost everywhere,
Wi (3, M) = ’ fR y 7z (dy) — 2’|, or equivalently 7, and M, are comparable in the stochastic order. Morever
the second inequality in (2.2) is an equality as well, hence x(dx, da’)-almost everywhere, 2’ lies between z and
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Jg v 72(dy). We deduce that x(dz,dz’)-almost everywhere,

@) («' = [malan) 0. (2.4

and 7, <g My or my > M. Then (2.3) is easily deduced from the fact that the map n — fRzn(dz) is
increasing for the stochastic order.

Conversely, suppose that (2.3) and therefore (2.4) holds for some x € II(u, ). Then the inequalities in (2.2)
are equalities, hence x is optimal for AW, (w, M) and M is a martingale rearrangement coupling of 7. O

To construct a martingale rearrangement coupling of 7 satisfying the barycenter dispersion assumption
(1.8), we will define a probability kernel (1my)qe(0,1) such that [, ym.,(dy) = F;*(u) du-a.e. and deduce that
the probability measure

M(dz, dy) = /O 1,1y (d2) M (dy) du (2.5)

is a martingale coupling between ;1 and v. Yet the probability kernel (my)ye(0,1) is not uniquely determined from
the knowledge of M. Hence the definition (2.5) induces a loss of information. In order to keep this information,
one can consider like Beiglbock and Juillet [11] instead of M its lifted martingale coupling

—~

M (du,dz,dy) = A1) (du) 5F;1(u)(dw) my(dy) € TN 1), i, ), (2.6)

where \(g1) denotes the Lebesgue measure on (0,1). In the present paper, we only use the quantile coupling
A,1)(du) 61, (dz) between A(g1)(du) and p(dz) whereas other couplings and in particular the independent

one are also considered in [11]. More generally, for any 7 € II(u, v), we call lifted coupling of 7 any coupling
7 € I(A,1), 4, ) such that there exists a probability kernel (py)ye(0,1) Which satisfies

7(du, dz, dy) = Ao,1)(du) 61y (dz) pu(dy) and / . 7(du, dz, dy) = 7(dz, dy).

We denote by ﬁ(u,y) the set of all lifted couplings between p and v. Notice that there exists an easy
embedding

~

v (p,v) — (p,v), 7= Ao,1)(du) 5F;1(u) (dx) WFgl(u)(dy). (2.7)

For 77 = /\(071) X 7?u = )\(071) X 5F71(u) X Du and 7 = )\(071) X %L = )\(071) X 5F71(u) X p;L two lifted Couplings
7 W
of m € I(u,v) and «’ € II(1/, V'), we define their lifted adapted Wasserstein distance of order p by

1/p
AW ') = inf / u—u'l? + AW (T, 7)) x(du, du’
P( ) X€I(A0,1),A(0,1)) ( (0,1)%(0,1) (‘ | P( )) ( )

1/p
= inf / (u—u’p—i— F-Yu) — FHW)]? + WP (pa, ;,) du, du’ )
xen(No,l),A(o,l))( o) | 7+ [ (u) = F, - (uf)] 0 (Pus D) ) X( )

Note that by Remark A.2 below there always exists a coupling x € II(X(o,1), A(0,1)) optimal for .ZV\VP(%, 7).
We denote by ﬁM(u, v) the set of all lifted martingale couplings between p and v, that is the set of all lifted
couplings A(o,1) X 5F;1(u) x my, € I(p, v) such that [; ym.,(dy) = F,; " (u) for du-almost all u € (0,1). For p > 1,
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we then call lifted AW ,-minimal martingale rearrangement coupling (or simply lifted martingale rearrangement
coupling when p = 1) of 7 € II(u, ) any lifted martingale coupling M € IIM(u, v) such that

AW, 7 M) = inf AW, (R, M),
M’'ellM (p,v)

Ignoring the non-negative contribution of |u — u/| in the definition of AW, and reasoning like in (2.2), we
easily check the following lower bound analogous, at the lifted level, to (1.9).
Lemma 2.2. Let p,v € P1(R) be such that pn <cp v. Then for all T = \o,1) X 5F71(u) X Py € ﬁ(,u, v),

inf AW, (7, M) > /

MET™ (u,v) (0,1)

/ ypu(dy) — F74(u)| du.
R

The next proposition gives a sufficient condition for the collapse through (2.5) of a lifted martingale coupling
to be a martingale rearrangement.

Proposition 2.3. Let p,v € P1(R) be such that p <., v. Let T = X\o,1) X 5F71(u) X Py € ﬁ(u, v) be such that
u — py 1s constant on the jumps of F),, that is constant on the intervals (Fj,(x—), F,(z)], x € R, which is
trivially satisfied when p is atomless. Suppose that M = X 1) X 5F—1(u) X m,, € IM(u,v) is such that

Wi (P, M) du < / du.

(0,1)

/ ypu(dy) — Fl(w)
R

(0,1)

Then the martingale coupling M (dz,dy) = |, 01, (dx) my(dy)du is a martingale rearrangement

u€(0,1) “F (u)
coupling of m = qu(O,l) (5F,L_1(u) (dzx) pu(dy) du which satisfies

AW, (M) = / Wi (g, M) plde) = / u(da).

/Ryvrz(dy) —x

Of course, under the hypotheses, AW, (7, M) < f(0,1) Wi (pu, my,) du < f(o,l) | [z ypu(dy) — F7 (u)| du so

that, by Lemma 2.2, these inequalities are equalities and M is a lifted martingale rearrangement of 7.

Proof. By (1.9) it suffices to show that

[ Wit wao) < [ | [ ymtan -

For (z,v) € R x (0,1), let §(z,v) = F,,(x—) + vu({z}). Using (1.16) and the fact that F,*(6(z',v)) = 2’ for
all (z/,v) € R x (0,1) , we get

w(dz). (2.8)

m(dx,dy) = /

oy D502 Pl = / 5.0 (d2) poar vy (dy) p(da’) do
u€e (0,1

(z' w)ERX(0,1)

= / p(d) Pg(z,0) (dy) do.
ve(0,1)
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Hence we have p(dx)-almost everywhere m,(dy) = fol Po(z,0)(dy) dv, and similarly we find M, (dy) =
fol Mg(z,)(dy) dv. Using (1.16) for the first and last equality, we deduce that

/ Wi (e, My) p(da) < / Wi (Mo(a.)s Poe.ny) f(de) do
R Rx(0,1)

= Wl (muapu) du
(0,1)

< /() / ypu(dy) - F; (u)

B /]R{x(O,l)

For (z,v) € Rx(0,1), F;l((‘)(x, v)) = x, and since u > p, is constant on the jumps of F),, the map v — pg(,.)
is constant on (0, 1), hence

/(\071)

du

[ vpaeutan - F,ﬁ(ew,v))\ u(da) do,

dv =

/R Y Do(oy () — F1(0(x,))

/ Y Po(z,) (dy) dv —
Rx (0,1)

We deduce that

[ Wit e < | ute) = [ | [ ym(y) o

which proves (2.8) and concludes the proof. O

p(da),

/ yp&(m,v)(dy) dv—x
Rx(0,1)

2.2. Construction of an explicit martingale rearrangement coupling

We recall that a coupling 7 € II(u, ) between two probability measures u, v € P;(R) in the convex order
satisfies the barycentre dispersion assumption formulated by Wiesel [39] iff

Va € R, /R L o0y () (a:— /R yﬂx(dy)> 1(dz) < 0. (2.10)

First we briefly recall Wiesel’s construction [39] of a martingale rearrangement coupling of a coupling m
which satisfies (2.10), which is well perceivable as soon as 7 has finite support but becomes rather implicit in
the general case. Then we design our own construction of such a martingale rearrangement coupling, whose
intelligibility does not depend on the finiteness of the support of 7. Since the Hoeffding-Fréchet satisfies (2.10)
([39], Lem. 2.3), this construction extends the study made in Section 3.

Let u,v € P1(R) be such that u <., v and p # v and 7 € II(p,v) \ 1™ (1, v) be a coupling between p and v
which satisfies the barycentre dispersion assumption (2.10). Suppose first that 7 has finite support. As Wiesel
[39] points out, the barycentre dispersion assumption (2.10) and the convex order between distinct p and v
imply that

2~ = max {x  p({z}) > 0 and /Ryﬂw(dy) < x} < max {m p({e}) > 0 and /Rym(dy) > 33} =t
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He then switches as much as possible the mass at y~ := min{y : 7,- ({y}) > 0} and y* := max{y : 7+ {y}) >
0} of m,- and 7.+ in order to rectify the barycentres. More precisely, he defines for all z € S

A A
7T§:1) = ]l{zgg{r,;ﬁ}} Ty + ]l{:c:a:*} <7Tz + m(‘sgﬁ - 57;)) + ]l{x=m+} <7Tz+ + m(dy* - 5y+)) s

where A > 0 is taken as large as possible, so that
. - 1 1 1 -
either Wil,)({y H =0, Wg(ﬁ)({y'*'}) =0, /Ryﬂig (dy) =2 or /Ryﬁi,)(dy) =x .

Then the measure 7(Y) (dz, dy) = p(dx) wg(gl)(dy) is a coupling between p and v which satisfies the barycentre
dispersion assumption (2.10). After finitely many (in reason of the finite support of 7) repetitions of this process,
the obtained coupling is a martingale coupling and even a martingale rearrangement coupling of 7.

In the general case, there exists by Lemma 4.1 of [39] a sequence (7")nen+ of finitely supported measures
such that W4 (r™ ) < 1/n for all n € N*. The marginals p,, and v,, of 7 are not in the convex order, but a
mere adaptation of the previous reasoning yields the existence of a coupling 7]}, between pu,, and v, which is
almost a martingale rearrangement coupling of 7™, in the sense that

I

Then Wiesel shows the existence of a coupling m,,, between p and v such that AW, (% EZ:1 7r7kw,7rmr)
vanishes as n goes to +o00. By (2.11) taken to the limit n — +o00 and (1.9) he deduces that 7, is a martingale
rearrangement coupling of 7.

We now propose an alternate construction of a martingale rearrangement coupling of 7, regardless of the
finiteness of its support, deduced from a lifted martingale coupling. Let us first give an intuitive description of
the construction. For u € (0,1) we set G(u) = fR YTp=1 () (dy) so that, locally, the lack of martingale property
writes G(u) # F,, ! (u). We want for each u € (0,1) such that G(u) < F~'(u) to find a partner v € (u, 1) such
that G(v) > F;*(v) (and conversely for each v € (0,1) such that G(v) > F,'(v) to find a partner u € (0,v)
such that G(u) < F~!(u)) and to mix T () and Tpt(y) I order to construct probability measures m,,

and AW ()., ") g/

1
n R

-~ yws<dy>\ (). (211)

-~ y(wrmgﬁ(dm\ un(dz) <

and m, with respective means F,;"(u) and F,*(v) in order to restaure the martingale constraint. By taking
expectations, the only possible p € [0, 1] for the equality P10y T (1- p)Tf’F—l(v) = pmy, + (1 — p)m, to hold
. w w

is

G(v) — F Y (v)

n
Gv) - F;

= )+ B ) — G

According to Lemma 2.4 below, for this choice, it is possible to find m, and m, as desired with the additional

property mp—1 ) <st My and m, <4 Tp=1(y) which, in view of Lemma 2.1, is a desirable feature in order to
I n

obtain a martingale rearrangement coupling when replacing (7rF;1(u)7 7TF;1(U)) by (my, m,). Introducing

Ay (u) = /Ou(Fu1 -Gt (v)dv and A_(u) = /Ou(F#1 —G)” (v) dw, (2.12)

we will show that the barycenter dispersion assumption (2.10) is equivalent to

Yu € [0,1], Ai(u) > A_(u), (2.13)
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so that the choice AL (u) = A_(v) ensures both that u < v and (1 — p(u, v))du = p(u,v)dv. The latter equality
ensures that the “rates” of consumption of Tpt (u) of consumption of Tpot (o) of production of m, and of
production of m, through the above mixing procedure are equal which is the key reason why the second
marginal v is preserved.

To now make the construction precise, we first show that (2.10) is equivalent to (2.13). Using (1.10) we see
that for all w € (0,1) and a € R, u > F,(a—) = F,'(u) > a = u > F,(a—). By the latter implications
and the inverse transform sampling we deduce that (2.10) is equivalent to

1
Va € R, / (Fﬂ_l(u) — G(u))du <0.
Fu(a_)

Since A (1) = A_(1), consequence of the equality of the respective means of y and v, we deduce that it is
equivalent to

VaeR, Ap(Fu(a-)) > A_(Fu(a-)).

By right continuity of F),, for all @ € R we have F,(a) = limp_0 n>0 F.((a + h)—), so by continuity of Ay
and A_ we also have Ay (F,(a)) > A_(F,(a)) for all a € R. Moreover, for all a € R such that p({a}) > 0 and
u € (Fy(a—), F,(a)], we have by (1.11) that F,'(u) = a, so Ay and A_ are affine on (F,(a—), F(a)]. We
deduce that we also have AL > A_ on (F,(a—), F,,(a)], hence the equivalence with (2.13).

We define

UT ={ue(0,1) | F ' (u) > G}, U ={uec(0,1)]F,  (u) <G(u)},
and U’ ={ue (0,1)] F, " (u) = G(u)},

and thanks to the equality A4 (1) = A_(1) we can set for all u € [0, 1]

AN AL (w) if weldT;
pu)=¢ AT (A_(w) if ueld;
w if uel.

Applying ([26], Lem. 6.1) again with f; = (F,;' = G)*, fo = (F;' =G)", uo =1 and h : u —

]l{G(dJ(u))SF;l(qg(u))} yields
1

1
/0 1{G<¢<u>>SF;1<¢<u>>}dA+(“):/0 Lig(oy<ry o)y 48— (u) = 0.

Similarly, we get fol LG (o) Frt ()} dA_(u) = 0. We deduce that

é(u) €U, resp. ¢p(u) €U, for du-almost all u € UT, resp. U ™. (2.14)

This allows us to define for du-almost all v € Ut UU~

) G(6(w) — F(6(u)) |
P = BT () = Glu) + Glo(w) — B (9(w) (2.15)

Notice that (2.14) implies that for du-almost all u € U*, ¢(d(u)) = AT (A_(AZ' (AL (u)))). Since A_ is
continuous we have A_ (A~ (v)) = v for all v € [0, A_(1)], and using (1.13) after an appropriate normalisation
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we get AT (A4 (v)) = v for dv-almost all v € U+. We deduce that
u = ¢(¢(u)), du-almost everywhere on Y. (2.16)
Similarly, ¢(¢(u)) = u for all du-almost all u € Y ~. We deduce that
for du-almost all u e UTUU™,  ¢(p(u)) = u, (2.17)

and

G(u)— F,;  (u
for du-almost all w e Ut UU™, p(p(u)) = T (o() é(;ﬁ@f)&— (G()U) ) =1-—p(u). (2.18)

In order to define the appropriate martingale kernel, we rely on the following lemma which allows us to inject
some stochastic order in the construction, a convenient tool for the computation of Wasserstein distances. We
recall that two probability measures p and v on the real line are said to be in the stochastic order, denoted
o <se v, iff BN (w) < Fy ' (u) for all u € [0, 1]. Since the Hoeffding-Fréchet coupling between p and v is optimal
for Wi (p1, ), this implies by the inverse transform sampling that Wi (u,v) = [pyv(dy) — [z 2 p(dz).

Lemma 2.4. Let B be the set of all quadruples (y,y, u, 1) € R x R x P1(R) x P1(R) such that u and i have
respective means x and T and x <y < y < T. Endow P1(R) with the Borel o-algebra of the weak convergence
topology and B with the trace of the product o-algebra on R x R x P1(R) x Py (R).

Then there exist two measurable maps 5,8 : B — P1(R) such that for all (y,y,u,n), denoting v =

By, g, pu, 1), v = E(y, U,y 1) and p = w—figja where x and T are the respective means of u and i, we have

/wV(dw) =y, /wﬁ(dw) =Yy, w<av, V<ap and pr+(l—pw=pu+(1-pp  (2.19)
R R

In particular, pé,(dz) v(dw) + (1 —p) 65 (dz) v(dw) is a martingale coupling between pdy (dz) + (1 — p)dy (dz)
and pu(dw) + (1 — p)a(dw), and Wy (u,v) =y — x, Wi (i, V) = T — y. The proof, which consists in exhibiting

particular maps 8 and 3, is moved to the end of the present section.
In order to use Lemma 2.4 we need to compare ¢ to the identity function. The inequality (2.13) is equivalent
by appropriate normalisation of (1.10) to u > AL (A_(u)) for all u € [0, 1], hence
YuelUd™, o(u)<u. (2.20)

Moreover, by (2.17), Lemma 6.1 of [26] applied with f; = (F, " = G)¥, fo = (F,' = G)7, up = 1 and
h:uw 1{u<¢(u)} we have

1 1 1
/01{¢<u><u}dﬁ+<u)=/0 1{¢<u><¢<¢<u>>}dA+(“)=/0 Lfu<o(uy dA—(u).

By (2.20) the right-hand side is 0, hence
for du-almost all u € U,  ¢(u) > w. (2.21)
Let

AT ={uel” | F7 (¢(u) < G(g(u)), ¢(¢(u)) =u and p(é(u)) =1 - p(u)}
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and A” = {ueU | F, (9(u) > G(6(u), ¢(#(u) = u and p(¢(u)) = 1 — p(u)}.

For all u € AT, we have by definition

$u) €U™,  FH(d(d(w)) = Fi ' (u) > G(u) = G(d(d(u))),
P(p(p(w))) = dp(u) and  p(P(p(u))) = p(u) =1 - p(d(u)),
hence ¢(u) € A~. Similarly, for all u € A~, ¢(u) € AT. By (2.14), (2.17), (2.18), (2.21) and the monotonicity
of Fu_l7 we deduce that AT and A~ are two disjoint Borel sets such that the Lebesgue measure of (UT\AT)U
(U\A7) is 0 and
Vue AT, G(u) < F;l(u) < Fljl(qﬁ(u)) < G(¢p(u)). (2.22)

For all u € AT, T () and T (p(w)) have by definition respective means G(u) and G(¢(u)), so by (2.22)
we can apply Lemma 2.4 with

(yvﬂv My ﬁ) = (F;L_l(u)vFp_l((b(u))?7TF;L_1(U)77TF;L_1(¢(U,)))‘

Hence there exist two probability measures m,,, m,, € P1(R) with respective means F, ! (u), F,, ! (¢(u)) and
such that

Tngl(u) Sst My, My Sst 7TF;1(¢(u))7

and  p(a)ima + (1= Pt = P11+ (1= D) T (22
Since At = ¢(A™) and A~ = ¢(A™), for all u € A~ we can set m, = My(y), SO that
Yu e AT, T (u) <gm, and Yue A", m, <u T (u) (2.24)
and ,
Vu € AT U AT, plu)m -+ (o) M) = P)g s ) + PO0)Ta o0 (2.25)

Finally, for all u € U° U (UT\AT)U U\A7) set m,, = Tp=1(u)- By composition of the measurable map

u = (F ), 7 (o(u)), TE (u); 7TF;1(¢(U))) and the measurable map £ defined in Lemma 2.4, the map u — m,,

is measurable. By Theorem 19.12 of [2] it is equivalent to say that (my)ue(0,1) is a probability kernel, hence we
can define

M (du, dz, dy) = Ao, (du) .1, (da) ma (dy), (2.26)

and
1
M (dz, dy) :/ 051y (dx) my(dy) du. (2.27)
0 I

We now state that M is a lifted martingale rearrangement coupling of 7 = ().
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Proposition 2.5. Let u,v € P1(R) be such that p <. v and p # v and m € I(u,v) be a coupling between p

and v which satisfies the barycentre dispersion assumption (2.10). Then the measure M defined by (2.26) is a
lifted martingale rearrangement coupling of the lifted coupling @ = 1():

it WL(R AT = A (R, ) = Wl(wFfl(u),mu)du:/ G () — F (u)] du.
M'eIIM (u,v) (0,1) # (0,1)

Since u — Tp=1(y 1S constant on the jumps on F), by (1.11), we immediately deduce by Proposition 2.3 that
n
M is a martingale rearrangement coupling of .

Corollary 2.6. Let u,v € P1(R) be such that pp <., v and p # v and 7w € II(u,v) be a coupling between
and v which satisfies the barycentre dispersion assumption (2.10). Then the measure M defined by (2.27) is a
martingale rearrangement coupling of m:

inf AW (r, M) = AW, (m, M) = /R Wi (s, Ma) p(dz) = /R

M’ eI (p,v)

[ wman) = o (o).
R

Remark 2.7. As seen from the proof of Proposition 2.5 just below, for M defined by (2.26) to be a lifted
martingale rearrangement coupling of the lifted coupling 7 = ¢(7) and therefore M defined by (2.27) to be a
martingale rearrangement coupling of 7, it is enough that u — m,, is measurable, satisfies (2.24), (2.25) and
My =T, forall u e U U UNAT)U U \AT).

Proof of Proposition 2.5. Assume for a moment that M e ﬁM(u, v). Then we have by (2.24) that for all u €
(0,1), Tt (u) Sst M OF My Sst Tpo1(yy) hence Wl('ﬂ—Flrl(u),mu) = |G(u) — F,;*(u)| and

INEID < [ Wil pma)du= [ (G - F @l du
(0.1) : (0.1)

which proves the claim by Lemma 2.2.

Tt remains to show that M € ﬁM(u, v). By the inverse transform sampling and the fact that m, has mean
F. ' (u) for all w € (0,1), it is clear that M is a lifted martingale coupling between p and fue(O,l) M., (dy) du. To
conclude it is therefore sufficient to check that

/ my (dy) du = v. (2.28)
u€(0,1)

To this end, let H : [0,1] — R be measurable and bounded. Using (2.15), (2.17) and Lemma 6.1 of [26]

applied with fy = (F;' = G)F, fo = (B = G) " wo = Land h s u s oot for the

third equality, we get

_ [ (F' = G)t(u) .
/u+(1 —p(u))H (u) du = /0 Fil(u) — G(u) + G(o(u)) — F,Il(qb(u))H( )d
— [ hotw) da.w)
1
= /0 h(v) dA_(v)
_ [ (Ft = G)(v) .
a /0 F(o(v) — G(o(v)) + G(v) — F,L_l(v)H((b( ) d
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— [ pow)HGw)dv.
Similarly, we have [, (1 —p(u))H (u)du = [,,, p(¢(u))H (¢(u)) du. We deduce that

/ H(u)du = H(u)du +/ p(u)H (u) du +/ (1 —p(w)H (u)du
0 uo u+ u+
+ /_ p(u)H (u) du + /_ (1 —p(uw)H(u)du (2.29)
— [ H@dut [ e H) +p(6w)H(6w) du

uo Uu+tuu-

Let f: R — R be measurable and bounded. Using (2.29) applied with H : u — [, f(y) my(dy) for the first
equality, the fact that m, =« Fot(w) for all u € U° and (2.25) for the second equality, (2.29) again applied with

H:u— fR fy) mp— () (dy) for the third equality and the inverse transform sampling for the last equality, we

get
/0 1 / £ () mu(dy) du

- / / F(y) ma(dy) du + / / £(9) (p(w) ma(dy) + p((u)) Mg (dy)) du
uo JR Uutuu—- JR

B /uo /R F) 71 (dy) du
+/L{+UM_/Rf(y) (P(w) o1 () (dy) + P(A(U) T 4 (dy)) du

= [ [ 1) m @
= /Rf(y) v(dy),

which shows (2.28) and concludes the proof. O

Proof of Lemma 2.4. Let (y,y,p, 1) € B, x and T be the respective means of p and & and p = y_—f;g_—a First

we construct two measures v, € P;(R) which satisfy (2.19). Then we show that v and ¥ are measurable in

(Y, s s 1)
Let puV [i, resp. pu A i be the image of the Lebesgue measure on (0,1) by F; 'V Fﬁ_l, resp. F; 1A Fﬁ_l. Let

z, resp. z be the mean of p V 11, resp. p A i, that is
1 1
_ -1 -1 T _ -1 -1
z —/0 (F, \/Fﬂ J(u)du and Z —/0 (F, /\F,7 )(u) du.

With the inverse transform sampling in mind, we have

1 1
/Oﬂfl(u)du:x<y§§<f:/o Fﬁ_l(u)du,
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from which we readily deduce that z >y > z and Z < y < Z. Therefore we can set a = ~=% € (0,1), a = %:—g €
(0,1) and define the probability measures

v=ap+(1—a)(pVvp) and v=ap+ (1—a)(uApw).

Since v < p+ 1 and ¥ < p + 1, we have that v, v € P;(R).

We can easily check that ax + (1 —a)z = y and az + (1 — @)z = ¥, hence v and ¥ have respective means y
and 3.

By definition of the stochastic order, it is clear that pu < pV @ and p A g <g p, which directly implies that
1% <stV and v <st ﬁ

Since pu V i+ p A 1 = p+ i, by taking the means we have that z +z = x + , or equivalently z —xz = 2 — Z.
This helps us to see that

T—y y—x y—x T—y ~
1-— = — X = — X —— = (1-— 1— .
p(1—a) e -7 71—z 7121 -5 73 (1-p@—a)

Then we derive

pv+(L=p)v =pap+p(l —a)(pVi)+ (1 —plap+ (1 —p)(1—a)(pAmn)
=pap+ (1 —plajp+p(l —a)(pwV i+ pA i)
= pap+ (1 —p)ag + p(1 — a)(p + £)
= pap+p(l —a)p+ (1 —plap+ (1 - p)(1 - )
=pp+ (1 -p)p.

It remains to show that v and ¥ are measurable in (y, 9, i, t). From their definition it is clear that we must
show that a, @, VvV i and p A & are measurable in (y, 9, i, it). Since a and @ clearly are measurable functions of
y, ¥ and the means of p, i, p VvV ip and p A i, the only non-straightforward measurability properties to prove are
that of the maps

Pi(R) > nl—>/Rxn(dx) and P1(R) x P1(R) > (p, @) — (1 V 1, o A ).

First of all, the functions x + 2 and x — 2z~ being nonnegative and continuous, the maps P;(R) > n —
Jg " n(dz) and Pi(R) 35— [, 2~ n(dx) are lower semicontinuous and therefore measurable with respect to
the weak convergence topology. Hence their difference Pi(R) 3 — [, 2 n(dx) is measurable.

Second of all, let f : R — R be continuous and bounded, and (i, )nen, (fin)nen € P1(R)N converge weakly to

v and g respectively. Then for all u outside the at most countable sets of discontinuities of F}~ L and Fﬁ_l, the
sequences (F(u))nen and (Fﬁ_l(u))neN converge to F, ' (u) and Fﬁ_l(u) respectively. We then deduce by the
dominated convergence theorem that

Hn

/Rf(x) (tn V Jin)(dz) = /Olf (Fﬂ_nl(u) vF:l(u)) du
1
= [ (v B @) du= [ ) v i),

n—-+o0o

hence (pn V fin )nen converges weakly to pV fi. Similarly, (tin A fin )nen converges weakly to A fi. We deduce the
continuity and therefore the measurability of P;(R) x P1(R) 3 (u, 1) — (uV [, p A i), which ends the proof. O
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3. MARTINGALE REARRANGEMENT COUPLINGS OF THE
HOEFFDING-FRECHET COUPLING

3.1. The inverse transform martingale coupling

We come back on the inverse transform martingale coupling and the family parametrised by Q introduced
in [26] since they will have particular significance in the remaining of the present paper. We briefly recall the
construction and main properties and refer to [26] for an extensive study. Let u, v € P1(R) be such that p <., v
and p # v. For u € [0,1] we define

U, (u) = /Ou(Fﬂ_l ~FEhT(v)dv and U (u) = /Ou(Fﬂ_l — F;7 N7 (v) dv, (3.1)

with respective left continuous generalised inverses \Il;1 and UL VVe then define Q as the set of probability
measures on (0,1)? with first marginal 3 (1) d¥,, second marginal (1) d¥_ and such that u < v for Q(du, dv)-
almost every (u,v) € (0,1)2. Since d\I'+ and dV_ are concentrated on two disjoint Borel sets, there exists for
each Q € Q a probability kernel (7§),e(0,1) such that

Q(du, dv) = ———d¥, (u) 72(dv) = ——dV_(v) 72(du), (3.2)

1 1
V(1) V(1)

and we exhibit a probability kernel (m&),e(o,1) which satisfies for du-almost all u € (0,1) such that F,*(u) #
Frt(u)

v

Ft(u) = FH(u) FyH(v) = Fit(u)
m&(dy :/ K id 81, (dy) + =2 1 S (dy) | 79 (dw), 3.3
( ) Ue(o 1) F;l(v) _ F;l(u) F, (v)( ) Fu—l(v) _ F;l(u) F, (u)( ) ( ) ( )
and m (dy) = dp- (u)(dy) for all w € (0,1) such that F,; ' (u) = F,; " (u). Then the measure
M@ (du, dz, dy) = Ao,1)(du) -1, (dz) M (dy) (3.4)

is a lifted martingale coupling between p and v. Moreover it was shown by Proposition 2.18 of [26] and its proof
that for du-almost all u € (0, 1),

/R ly — F, (w)[ md (dy) = |F, (w) — F(u)], (3.5)
from which we deduce that the measure
M@ (dz,dy) = / Op 1 w(dz)m Q(dy) du (3.6)

is a martingale coupling between y and v which satisfies [, o [y — @] M9 (dz,dy) < 2Wi(u,v). Let also

Ut ={ue(0,1) | F N (w) > F N (w)}, U™ ={ue (0,1) | F ' (u) < F(w)}, (3.7)
and U’ ={ue (0,1) | F ' (u) = F, ' (u)}.
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Thanks to the equality U (1) = ¥_(1), consequence of the equality of the respective means of y and v, we
can set for all u € [0,1]

N U, (u) if weldt;
elu) =< UN(U_(uv) if weld; (3.9)
u if ueUd.

Then the measure C)IT(du,7 dv) = ﬁdqj+(u)ﬂ{0<g@(u)<l} 6¢(U) (dv) belongs to Q. The martingale coupling

MIT = MR is the so called inverse transform martingale coupling, associated to the probability kernel m!T =
~of . .
m®@"" which satisfies for du-almost all u € (0,1)

! (u, dy) = p(u) 01 oy (Ay) + (1= p(u)) 8p-1(,(dy), (3.10)

F N (w)—F, (v
where p(u) = 1yp1(,)2p1 (u)) ol (o)) o ()

3.2. The Hoeffding-Fréchet coupling

Let 1 and v be two probability measures on the real line with finite first moment. We recall that the Hoeffding-
Fréchet coupling between i and v, denoted 7% is by definition the comonotonic coupling between x and v,
that is the image of the Lebesgue measure on (0,1) by the map u — (F, ' (u), F, " (u)). Equivalently, we can
write

¥ (dz, dy) = / 5(F;1(u)7FV_1(u))(dx,dy) du.

(0,1)

This coupling is of paramount importance in the classical optimal transport theory in dimension 1 since it
attains the infimum in the minimisation problem

inf c(x,y) P(dz,d
ot / el P(da.dy)

as soon as ¢ satisfies the so called Monge condition, see Theorem 3.1.2 of [35]. The latter condition being satisfied
for any function (z,y) — h(|ly — z|) where h : R, — R is convex and non-decreasing, we deduce that 77 is
optimal for W,(p,v) for all p > 1. By strict convexity, it is even the only coupling optimal for W,(u,v) for
p > 1. Reasoning like in (2.9), we get that for u(dz)-almost all z € R,

oHE (dy) = /(O ., 051 (0(a,0y) (dY) dv. (3.11)

By (3.11) and monotonicity and left continuity of F;! we recover the well known fact that %" is given by
a measurable map, i.e. is the image of p by = — (z,T(x)) where T : R — R is measurable, iff for all © € R such
that u({z}) >0, F, ! is constant on (F,(x—), F,(x)]. In that case, we have T = F, ! o F,,, referred to as the
Monge transport map.

3.3. Martingale rearrangement couplings

Our family (M%)geo of martingale couplings mentioned above was meant to contain the closest martingale
couplings from the Hoeffding-Fréchet coupling, the latter being well known for minimising the Wasserstein
distance. Thanks to Wiesel’s definition of martingale rearrangement couplings we can now rephrase the latter
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sentence in a more formal way. Let 77" be the Hoeffding-Fréchet coupling between u and v. We will consider
the following lifted coupling of 7H "

7 (du, dz, dy) = A(o,1)(du) 5F‘L_1(u) (dw) 6 -1,y (dy)- (3.12)

Recall the embedding ¢ defined by (2.7) and the definition of the map 6 given by (1.14). Then

1
w17 ) (du, da, dy) = Ao 1) (du) 6,1, (da) /O it (o ) (9) 0.

which is different from 77 when F, ! is not constant on the jumps of F},. We can actually see that 7 =

(" F), where ¢/ is another embedding II(p, v) to II(u,v), such that for all € II(u, v), /() is defined by

Ao, (dw) 01y (A7) | Ly imt >0 ( )—1 (u—ma:1<u>->) (dy) + L u)y=0) Ty () (AY)

F —1
w({FL T

TE
Although 7HF is a very natural lifted coupling of 7HF the embedding ¢ used in Section 2.1 appears to be
in general simpler than /.

Proposition 3.1. Let p,v € P1(R) be such that u <., v. Then for oll Q € Q, the lifted martingale coupling

Me defined by (3.4) is a lifted martingale rearrangement coupling of the lifted Hoeffding-Fréchet coupling 78T
defined by (3.12):

VQeQ, AW (FTF M) = inf AW (FF,M).
MeTIM (p,v)

Proof. Let Q € Q. The fact that M@ € ﬁM(u,V) is clear. By (3.5) we have

IVEE ) < [ Wi iD= [ [y B @ e = [ ) - £ o
(0,1) (0,1) JR (0,1)

which proves the claim by Lemma 2.2. O

We can also easily show that any lifted martingale coupling is a lifted quadratic martingale rearrangement
coupling of the lifted Hoeffding-Fréchet coupling.

Proposition 3.2. Let p,v € Po(R) be such that p <. v. Then any lifted martingale coupling between p and v

s a .Z)?\/g—minimal lifted martingale rearrangement coupling of the lifted Hoeffding-Fréchet coupling 7T defined
by (3.12):

VM, M’ € M (u,v),  AWy(M,7IF) = AWy (M, 71F).

Proof. Let M= Ao,1) X (5F;1(u) X My, € ﬁM(u,u) and x € II(X(o,1), A(0,1)) be optimal for Z)/\VQ(M, 7HE) 5o
that

—_— 2 ~
AW (M, 71F) = /
(0,1)x(0,1)

> / Wg(mu,éF_l(u,))X(du, du’).
(0,1)x(0,1) v

<|u —u' P+ F (u) — F ()P + Wg(mu,éFV_1(u,))) X (du, du’)
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By bias-variance decomposition for the first equality, the fact that the image of A1) by u —
(F;Y(u), F;7 (u)) is optimal for W3 (p, v) for the inequality, and by bias-variance decomposition again for the
second equality, we have that

/ W%(mméF—l(u,)) x(du, du’)
(0,1)x(0,1) v

- /(Oyl)x(m) (|F;1(u’) — F; Y (u)? +/R|F;1(1U - yIZmu(dy)) x(du, du’)
> /() (|F;1<u> - B () + / | () —yzmuww) du (8:13)
- /() J 1 ) = o ) d

= Wi (M, 6p-1(,,)) du = AWQ(M i,

(0,1)
Using the fact that f(O,l) Je |1E () =yl my(dy) du = [, |yI? v(dy) — [ [z p(dz), we deduce that
BWALFT) = | W) du = Wi ) + [ o vidy) = [ Jof? n(ao),
©.1) ’
2
hence AW, (M, 7HE) does not depend on the choice of M. O

A similar conclusion holds for regular couplings. Just this once, we provide a proof valid in any dimension. In
the following statement, d € N*. The definitions (1.1), (1.3), (1.5) (1.7) given in R have straightfoward extensions
to R? endowed with the Euclidean norm | - |.

Proposition 3.3. Let u,v € Po(R?) be such that p <., v and ™ € U(u,v) be optimal for Wa(u, v) and concen-
trated on the graph of a measurable map T : R? — R, Then any M € IM (u,v) is an AWq-minimal martingale
rearrangement coupling of m.

Proof. Let M € TIM(u,v) and x € II(u, 1) be optimal for AW5(M, ), so that

AW3(M, ) = / (Jz — 2'|* + W3 (M, 67(2r))) x(dz,da’) > / W32 (Mg, 67,y x(dz, dz’).
Re x R4 Rd xRd

By bias-variance decomposition for the first equality and the fact that the image of x by (z,2’) — (z,T(2))
is a coupling between p and v for the first inequality, and by bias-variance decomposition again for the second
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equality, we have that

L it sreands) = [ (1@ =aP+ [ o= yPann) saoar)
Re xR4 R? xR R4

> W2y, >+/ @ — y? M(dz, dy)

~ [ (le=7@P+ [ o=y b)) utan) (3.14)

- / ly — T()|? M(de, dy)
Rd xR

= | W3 (M., 67()) p(dz) = AW3(M, ).
R4

Using the fact that [, e [z —y|*> M(dz,dy) = [pa |y|* v(dy) — [a [2|* p(dz), we deduce that

AWM 7) = [ WMz By (da) = Wi v / P vt~ [ la? n(ao)

hence any martingale coupling M € T (u, v) is an AW5-minimal martingale rearrrangement coupling of 7. []

The use of Lemma 2.1 allows us to easily prove that the analogue of Proposition 3.1 holds for regular couplings
as soon as on each interval (Fj,(z—), F,,(x)], where z € R, the sign of u — F, ' (u) — F;"(u) is constant. Of
course this includes the case where F, ! is constant on the intervals of the form (F,(z—), F,,(z)] for x € R, or
equivalently the Hoeffding-Fréchet coupling 77 between ;o and v is concentrated on the graph of the Monge
transport map T' = F, ' o F, - In the latter case, the conclusion of Proposition 3.4 below can also be seen as an
immediate consequence of Proposition 2.3 and the proof of Proposition 3.1.

Proposition 3.4. Let p,v € Pi(R) be such that p <., v and on each interval (F,(x—), F,(x)], where z € R,

the sign of u — F(u) — F; ' (u) is constant. Then for all Q € Q, the martingale coupling M@ defined by (3.6)

v
is a martingale rearrangement coupling of the Hoeffding-Fréchet coupling mH¥ :

VQ e Q, AW (nHF M®P)= inf AW (zTF M).

MelM(p,v)
Proof. By Lemma 2.1 applied with x = (x — (x,))sp, it suffices to show that p(dx)-almost everywhere,
oHE < M2 or 7HF >, MQ. (3.15)

Reasoning like in (2.9) we get that p(dx)-almost everywhere,

HE(dy) = /(O ! Ot (p(xy (dy) dv  and ME(dy) = /(0 , ﬁlg(z,v)(dy) dv.

We deduce from Lemma 2.5 of [26] that for du-almost all u € (0,1) such that F,'(u) > F,'(u) (resp
FoNu) < Frl(u)), Op1(u) Sst m& (resp. &, (w) Zst M Q). This implies that for du almost all u € (0,1)

such that p({F;*(u)}) =0, Wg“ﬂ(u) = 5F;1(u) and M F: ( )= = m& are comparable under the stochastic order.

Moreover, the assumption made on the sign of the map F,,~ — F,” ! on the jumps of F), implies that for du-almost



ONE DIMENSIONAL MARTINGALE REARRANGEMENT COUPLINGS 515

all u € (0,1) such that p({F,'(u)}) > 0, we have either (0(F;*(u),0),0(F, ' (u),1)] C {F,;* > F,; '} so that,

using the characterization of the stochastic order in terms of the cumulative disribution functions,

HF _ -Q — M@
Tp () (dy) = /(0 y 5F;1(9(Fﬂ_1(u)7v))(dy) dv <4 o) ma(Fgl(u),v)(dy) dv = MFgl(u) (dy),
or (6(F, " (u),0),0(F; ' (u),1)] C {F,* < F; '} so that 7 ( ) s Mg_l( ) By the inverse transform sampling,
;L TN

this shows (3.15) and completes the proof. O

In the next example where the above constant sign condition fails, the inverse transform martingale coupling
between p and v is not a martingale rearrangement coupling of w7 Therefore, in general, we cannot say that
every element of our family (M®)geg is a martingale rearrangement coupling of the Hoeffding-Fréchet coupling.
However, we can always find a specific parameter Q € Q such that the martingale coupling M is a martingale
rearrangement coupling of 7% (see [27], Prop. 3.6).

Example 3.5. Let u = i((S_l +25p+61) and v = i(6_2 +6_1 4 61 + 62). The Hoeffding-Fréchet coupling 7%
between p and v is given by

HE =~ (8(-1,-2) +0,-1) +6(01) +8(1.2)) -

,J;\H

To see that the inverse transform martingale coupling

1 1 1 1

1
IT _
M = 20-1,-2) + 125< 1y + 125(0 —2) + 50—1) + 500 T 5002 + 5901 + 5002

is not a martingale rearrangement coupling of 7#¥ we rely on the equivalent condition provided by Lemma 2.1.
One can readily compute M{7 = 16 2—1—16 1+1(51+152, HE —§_ 2, L 1 +61)and nf —(52 Then

—-1<0,1>0and0=0,but we have nelther aHE >, M({T7 HE < JE <y M({T nor mtF > MIT.
We deduce by Lemma 2.1 that M7 is not a martingale rearrangement couphng of
Note that the martingale rearrangement constructed in Section 2.2 is

3 3
R 5 Lo+ L6 8(1,—2) + ~=6(1,2)-
160-1-2 T 16012 T 790.-1) T 700.1) + 6(1, 2) T 7°01.2)

3.4. An example of AW, ,-minimal martingale rearrangement for p > 2
Let f : R — R and ¢ : R — [0, 1] be defined for all y € R by

—lyl
- e +1
(e My + o ]1{y<1}>é

€
q(y) = mﬂ{ygfl} +

_1+e

1
Trov Hotew<y + o Ty
Let T : R — R be the inverse of the continuous increasing map y — y + 2¢(y) — 1, so that for all y € R,
q(y) = % Let v(dy) = f(y)dy and u = (T1)4v. We can easily compute
-1

supla — T(x)| = sup [T~ (y) — y| = sup [2(y) — 1| = — < 1.
z€R y€eR yeR e+1
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By considering the cases y < -2, 2 <y < -1, -1<y<0,0<y<1,1<y<2and 2 <y, it is easy to
check that

VyeR, qy-Dfly—-D+0—-qly+1)f(y+1) = f(y). (3.16)
Let
my = q(F, (1) 011 + (1= a(F (1) 6104 (3.17)

and h : R — R be measurable and bounded. Then

/ h(y) dumy(dy) = / (a(F (@) A(F (u) + 1) + (1= q(F, () A(F (1) = 1)) du
(0,1)xR (0,1)

= [ Gtwhty+ 1)+ (1= gty = 1) v(ay)
— [ athty + D)y + [ (- )ty - D) dy
R R
= /R (qy—=Dfly =D+ A —qly+1)f(y+1) h(y)dy
= / f(y)h(y) dy,
R
where we used (3.16) for the last equality. We deduce that fue(O,l) m?(dy) du = v(dy). Hence MO = A0,1) X

5F;1(u) x m? € M (u, v).

Let us now show that M is the only AW ,-minimal martingale rearrangement coupling of 7% for p > 2.
Since |y — F,; ! (u)| is dum(dy)-almost everywhere constant, we have

p/2 p/2
( w§<m2,6w<u>>du> - ( | JEw —y|2m2<dy>du>
(0,1) v (0,1) JR

,1

(3.18)

Since by Proposition 3.2 and its proof, f(o 1 W3 (m,, 6F71(u)) du does not depend on M= A(0,1) X 6F71(u) X
my € M (1, v), to conclude it is enough to show that for M #+ M\O,

p/2
MZ(M, %HF) > ( o) WQQ(mua 5F;1(u)) du) . (319)

Let x € II(A0,1); A(0,1)) be optimal for .ZV\V,,(M\, 7HE). Suppose first that x(du,du’) = Ao,1)(du) 6, (du’).
Since

/ / ly — F,7H(w)]? may (dy) du = W22(mm(5F_1(u))du= Wg(m2,6F_1(u))du:1,
(0,1) JR (0,1) Y (0,1) v
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and M #+ M O |y — F,; Y (u)| is not dum,,(dy)-almost everywhere constant, so by Jensen’s strict inequality we
have

R _
AW, (M, 71T = Wﬁ(muﬁp;l(u))du:/ ly — F, H(u)]” my(dy) du
(0,1) Rx(0,1)

p/2 p/2
> (/ ly — F 1 (u)]? mey, (dy) du) = ( W3 (my, Ot (w) du) .
Rx(0,1) (0,1) v

Else if x(du,du’) # A(o,1)(du) d,(du’), then using Jensen’s inequality for the third inequality and (3.13) for
the fourth, we have

=P

AW (M, 71F) > / W8 (M, 61 () X (du, du’) > / WS (M, 6ot (y) X (du, du)
(0,1)x(0,1) (0,1)x(0,1)

(3.20)

p/2 p/2
> / W%(mu,éFfl(u,))x(du,du’) > W%(mu,(SFfl(u))du ,
(0,1)x(0,1) v (0,1) v

which proves (3.19) and therefore that MO is the only .ZV\Vp—minimal martingale rearrangement coupling of
7 Note that (3.20) is valid for M = M?, which in view of (3.18) shows that A(g,1)(du) ,(du’) is the only
coupling between Ay 1y and A1) optimal for .ZV\VP(M 0 7#HF) With similar arguments we prove that

Mo(dl‘» dy) = p(dx) (Q(T(m)) 6T(:1:)+1<dy) + (1 = q(T(x))) 6T(x)71(dy))

is the only AW ,-minimal martingale rearrangement coupling of 7HE and p(dx)§,(dz’) is the only coupling
between p and g optimal for AW (MO, 7HE).

Remark 3.6. Since F), is continuous, by Proposition 3.4, for each Q € Q, M@ defined by (3.6) is a martingale
rearrangement coupling of 78 : AW, (nHF M®@) = inf ey AW E M). A related but slightly differ-
ent minimisation problem is considered in [26], where, according to Proposition 2.11, any element of the family
(M®)geg of martingale couplings minimises

/ ly — T(a)| M(dz, dy) = / Wi (8r(a, M) pu(dz) = / Wi (mHF | M) p(dz)
RxR R R

among all martingale couplings M between p and v and satisfies [; o |y — T(z)| M@ (dz,dy) = Wi (u,v).
According to Proposition 3.5 of [26], since p > 2, the inverse transform martingale coupling M? minimises
foR ly — T(z)|P M®(dz,dy) among all martingale couplings M ¥ parametrised by @ € Q. Yet the minimiser
over the whole set of martingale couplings between u and v is not M7 but M°.

Indeed, by construction we have MIT({T'(x)}) > 0, u(dz)-almost everywhere, hence MIT # M and |y —
T(z)| is not M!T(dz,dy)-almost everywhere constant. Then by Jensen’s strict inequality and the fact that
Jaxg [y — T(x)|* M(dz,dy) does not depend on the choice of M € I (u,v), we get

</R><]R ly = Tl M (da, dy)) s (/RR ly = T ()| M (da, dy)) :

o (3.21)
([ w-T@Prara.a) "



518 B. JOURDAIN AND W. MARGHERITI

Note that in Proposition 3.5 of [26] (resp. [26], Prop. 5.9), (3.11) and (3.12) (resp. (5.22)) are only valid in
the case p € {1} U[2, +00) since the function ¢, defined in the proof lacks the claimed convexity property when
p < 2 (resp. since (5.25) is only valid for p € {1} U [2, +00)).

4. STABILITY OF THE INVERSE TRANSFORM MARTINGALE COUPLING

In the next proposition we prove the stability in ZV\VP, for p > 1, of the lifted inverse transform martingale
coupling, defined for all u, v € P;(R) in the convex order by

M (du, dz, dy) = Ao, (du) .1, (de) " (dy),

where (m!7)ye(0,1) is defined by (3.10). In another proposition, we give a condition on the first marginals
ensuring that the inverse transform martingale coupling is stable in AW,,.

Proposition 4.1. Let p > 1 and pn, v, € Po(R), n € N, be in convex order and respectively converge to (v and
vin W, asn — +oo. Then

=P [T TSIT ~IT ~IT
Wp( n ) S o Wp((mn )u,mu ) un—> 0, ( 1)

where MIT = X 1) % 5F,7n1(u) x (miT

Iy, resp. MIT = A1) X 5F_1( x miT | denotes the lifted inverse transform
W

martingale coupling between p, and vy, resp. p and v.

Proof. By Remark A.4, it is enough to prove that ﬁvl(ﬁ,{T, Z\/ZIT) goes to 0 as n — oo. Since

AW (MIT, M) < Wi (7)., mlT) du,
(0,1)

it suffices to show that the right-hand side vanishes as n goes to +o0o. This is achieved in two steps. First, we
prove that, on the probability space (0,1) endowed with the Lebesgue measure, the family of random variables
(W” ((~IT)uvszLT))n€N is uniformly integrable, which, with the inequality W, > W, implies the uniform

n

integrability of (W ((ml7)., ﬁziT))neN. Second we show for du-almost all u € (0,1) that

n

Wi (), ml") — 0 (4.2)

n—-+oo

Let us begin with the uniform integrability. For u € (0,1), we can estimate
Wy (@ l) <270 [l (iuldy) + T ). (13)

According to Lemma 2.6 of [26], M’ is the image of 1 (g 1)(u) dum/T (dy) by (u,y) — (F;*(u),y) so that
the second marginal of this measure is v(dy). Therefore

/ / [yl 17 (dy) du = / Iyl? v(dy) < +oc.
(0,1)

Hence it is enough to check the uniform integrability of ([ [yl (miT). (dy))n cy to ensure that of
(W;f ((NflT)u,ﬁLIT))neN. Since the second marginal of the measure 1 g 1)(u) du (mA"),(dy) is v, (dy), this mea-

u

sure also writes v, (dy)k; (du) for some probability kernel k™ on R x (0,1). Let ¢ > 0 and A be a measurable
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subset of (0,1) such that A(A) < e. For all n € N, we have

//Iyl” dy)du—/RIyl”Tn(dy),

where 7, (dy) = fu1:0 L a(u) kyy (du) v, (dy) is such that 7, < v, and 7,(R) = A(A). Hence

sup In(A) < I (vy),
A€B((0,1)), A(A)<e

where I7(() is defined for all ¢ € P,(R) as the supremum of [, [y|” 7(dy) over all finite measures 7 on R such
that 7 < ¢ and 7(R) < e. Let n > 0. By Lemma 3.1 (b) of [9], since v € P,(R), there exists ¢’ > 0 such that
IZ,(v) < n. Let then N € N be such that for all n > N, W#(v,,v) <7, so that by Lemma 3.1 (c) of [9],
18, (vn) < 207 OWP (v, v) + IE,(v)) < 2°1. By Lemma 3.1 (b) of [9 [9] again there exists ¢” > 0 such that for all
n<N, I (v,) < 2”77 We deduce that for all € € (0,&" Ae”),

s Lgrr

sup sup Jn(A4) < 2%,
neNAeB((0,1)), A(A)<e

which yields uniform integrability of ([, [y|? (miT), (dy>)neN‘
Next, we show the du-almost everywhere pointwise convergence of (4.2). Since, by monotonicity, u —

(Fr 1(u), F;1(u)) is continuous du-almost everywhere on (0, 1) and, then, the weak convergence implies that
(Bt (w) By Hw) —— (B, (), B (), (4.4)

we suppose without loss of generality that this convergence holds. Let n € N. Let ¥,,, resp. ¥,,_, be the map
defined by the left-hand, resp. right-hand side of (3.1), with (pn, vy) replacing (u, v). By (3.10),

~IT . F;:nl (’LL) - Fljnl (U)
(8 = 2O+ (=P Dy I a0 = Ry o i, = i © 0
and ¢, (u) = U2 (W4 (u).
Suppose first that u € Uy i.e. F ' (u) = F, " (u), so that m/)" = d,-1(,). We have
Wi (7 s i) = P ()| Fy (o (w) — B ()| + (1 = pu(u) | Fy  (u) — B (u))|

< pa(W)F) (n(w) — Fp ()| + 1 E) H(u) — FH (u)) (45)
= [F Hw) = F) )| + [ Fy H (u) — B (w))| '
< |F () = F )]+ 2|F Hu) = F7 (u)l,

where the right-hand side goes to 0 as n — oo by (4.4).
Suppose next that u € Uy ie. F;'(u) > F;'(u), the case u € U_ being treated in a similar way. Then
without loss of generality

Frl(u) — F Y (u)

v

F (p(w) = B (u)

mlT = P g1 (o)) + (L= p(u))0p-1,) with p(u) =



520 B. JOURDAIN AND W. MARGHERITI

and @(u) = W1 (¥, (u)). By (4.4), for n large enough, u € U, so that without loss of generality, p,(u) =
Flrnl(u)fFv_nl(u

)
Fo (pn (w)—F,, ! (u)

and checking (4.2) amounts to show that

F  on(u) — F(p(w). (4.6)

n——+oo

It was shown in the proof of Proposition 5.10 in [26] that ¥, converges uniformly to ¥ on [0,1] and for
dv-almost every v € (0,1),

By (0 (W (D) — B (U2 (T (L)), (4.7)

v
n—-+oo

Let D be the set of discontinuities of F,; ' o W™ which is at most countable by monotonicity. Then Proposition
4.10, Chapter 0 of [36] yields

vy (1) 1
0= / ]lp(’l)) dv = / ]].{\1;+(u)ep} d\I!+(u).
v, (0) 0

We deduce that for du-almost all u € U, F; ' o U~! is continuous at ¥ (u), which we suppose from now.

According to (4.7), there exists € > 0 arbitrarily small such that

r (v (e B00)) o 0 (- )
)
(

and F,! (wnl (\I/M(l)w)) — FyN (U (U4 (u) +¢)).

-+

For n large enough, we have ¥ (u) € {\I!mr(l) Te=e (1) ‘I’\I,S‘()Ss} . Therefore, by monotonicity, we have

FrH (2 (U (w) - 2)) = limnf F ! (‘Pnl (‘I’““)%»

< lim inf Fyinl(\l’_l (\I’n-l—(u)))

n——+oo n-

< limsup F, (0,1 (W, 4 (u)))

n—

n—-+oo
_ _ U,y (u)+e
< limsup F; ! (@ i(xpn 1 +)>
> n~>+o<£) Vn, < n +() \I/Jr(l)

=F,; M (U2 (T (u) + ).

Since F,; ' o W' is continuous at W (u), we get when ¢ vanishes the convergence (4.6), which concludes the
proof of (4.2) and therefore (4.1) O

Proposition 4.2. Let p > 1 and pn,vn € Po(R), n € N, be in convex order and respectively converge to (1 and
v in W, as n — +o0o. Suppose that asymptotically, any jump of F), is included in a jump of F,, , that is

n’

Ve eR, p({z}) >0 = Ixp)nen €RY,  F, (2,) AFu(z) — Fy, (v,—)V Fu(z—) — p({z}), (4.8)

n—-4o0o
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which is for instance satisfied if u is non-atomic. Then

AW, (MIT MY — 0, (4.9)

n—-+oo

where M!T | resp. M'T, denotes the inverse transform martingale coupling between p, and vy, resp. j and v.

n

Remark 4.3. If (4.8) is not satisfied, then (4.9) may not hold. Indeed, for n € N*, let u, = U((—1/n,1/n)),
p=20d and v, = v = U((-1,1)). We trivially have M T (dz,dy) = p(dz)v(dy), so AW (MIT, MT) >
Joer Wi((MJT) 2, v) pin(dx). However, for n € N*, since F),, is continuous, we have that for all z € R,
(MIT) = (m)") p,(2), Where according to (3.10), ((mh"). (dy))ue(o 1y is a probability kernel such that for
all u € (0,1), there exist a,b € [~1,1] and p € [0, 1] which satisty m!? (u,dy) = pd, + (1 — p)dy. Using the fact
that the comonotonic coupling is optimal for the W;-distance, we get

P 1
Wl(p5a+(1—p)5b,y)=/ |a—|—1—2u|du—|—/ [b+1—2u|du.
0

P

It is easy to show that f0p|a + 1 — 2u|du is equal to p(a+ 1 —p) > p? if (a+1)/2 > p, and equal to
(a+1)?/2 = pla+1) + p* < p*if (a+1)/2 < p. Therefore, one can readily show that [} [a + 1 — 2u|du > p?/2,
attained for a = p — 1. Similarly, we have fpl b+ 1 —2u|du > (1 — p)?/2, attained for b = p. We deduce that
for all (a,b,p) € R? x [0,1], W1 (pds + (1 — p)dp,v) > (p? + (1 — p)?)/2 > 1/4, attained for p = 1/2, hence
Joer Wi((MJT) 2, ) pin(dx) > 1/4, which proves that (4.9) is not satisfied.

Proof of Proposition 4.2. By Lemma A.3 below we may suppose without loss of generality that p = 1. We have
1
AW T ) < [ (1B ) = E @]+ W (2720 MED ) ) du
0
1
:Wl(un7ﬂ)+/ Wl <(MIT) (u)vMI—l( )) du.
0

For (z,v) € R x [0,1] and n € N, let 8(z,v) = F,(z—) + vp({z}), On(z,v) = F,, (z—) + v ({z}) and

1

Then (1.15) and the triangle inequality yield

[ (O M)

(0,1)

<]&J)ON1«NQTHENMKN%MRHM>+4N10Nhhw#wyﬂﬁf%w>)du

S/(o,m? (Wl ((mf?)e (F (w),0) T 0"( Fol(u)v )) + Wi (ﬁzen(Fﬂ_nl(u)’v), ~£{Ffl(u) v))) dudv

_ ~IT ~ T ~ T
_Axmannm)m+wwm( T ety T 1)

In order to show (4.9), it is therefore sufficient by (4.1) to prove that the second summand in right-hand side
vanishes when n goes to +oo. This is achieved in two steps. First, we prove that, on the probability space (0,1)2
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endowed with the Lebesgue measure, the family of random variables <W1 ( b (F=1 () )’ m! ? 1), )>) is
pn (U po (U neN

uniformly integrable. Second, we show for du dv-almost every (u,v) € (0,1)? that

Wi (g AT (4.10)

0 (Fy (w),0)? T0(F (), v)) n e

Let us begin with the uniform integrability. For (u,v) € (0,1)2, we can estimate

~IT ~IT
Wl( My, (Bt (w)w) o(F, /\y| en(F—l(u (dY) +m9(F,fl(u)7v)(dy))'

Hn

For each nonnegative measurable function f : R — R, we have by (1.15)

~IT - ~IT
/0 12 (/ |y| nl(u)m)(dy)> dudv = /(0 12 f <‘/]R |y| mg(Fu1(u)7v)(dy)) du dv
[ ([ matran) a
(0,1) R

According to Lemma 2.6 of [26], M "' is the image of 1 g 1)(u) dumlT (dy) by (u y) — (F; ' (u),y) so that the

second marginal of this measure is v(dy), hence the random variables <W1 ( b (F=1 () )’ ﬁiI(T 10, )>)
pn (U wo (U neN

are uniformly integrable.
Next, we show the dudv-almost everywhere pointwise convergence of (4.10). Let w € (0,1) be in the set of
continuity points of F,,; !, F,71, Fy'oW™' o W, and F, ! o W " o W_. Recall that we have

F Y (w) - F Y(w)

v

W} Y (p(w)) — Ft (w)

mlT = P(W)0 51 (o) T (1 = P(W))0 g1,y With p(w) = L gt ) 2ps

€10,1].

Let (wn)nen be a sequence with values in (0,1) converging to w and let us show that

Wi (Ll mlil) — 0. (4.11)

n—-+oo

Suppose first that w € Up i.e. F,,'(w) = F,; ' (w). Then a computation similar to (4.5) yields

v

Wiy, i) < [FH(wn) = FyH(w)] + 20F) (wa) — F 7 (w)],
where the right-hand side goes to 0 as n — +o0 by continuity of F}’ Land F ! at w.

Suppose next that w € Z/l+ Le. B Yw) > F; Y (w), the case w € L{_ being treated in a similar way. Then by
continuity of F,’ Land F1 at w, wn € Uy for n large enough so that without loss of generality

p(w) = Fl(w) = F N (w) () = FY(wp) — Fy Y (wy)
Fy (e(w)) = F 'l (w)’ R (e(wn) = FyH(wy)

o(w) = T-H(V, (w)), and p(w,) = V=1 (¥, (w,)), hence (4.11) follows from the continuity at w of F; *, F,; ' and

u’

F;loW"toW,. Since the set of discontinuity points of the non-decreasing functions FM_I7 F7ULF Towlow,
and F;'o W' o W_ are at most countable, we deduce by (1.15) and (4.11) that it is sufficient to show for
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du dv-almost every (u,v) € (0,1)2

Hn n—-+o00 s
or equivalently
(B (@), Fo (82)) = (Fuwu=), Fulw) (4.12)

for du-almost every u € (0,1), where x,, := F,;!(u) and z}} := F, " (u).
Let then u € (0,1). Since, by monotonicity, u — (F;!(u), F, ! (u)) is continuous du-almost everywhere on

m v
(0,1) and, then, the weak convergence implies that
(Fl:nl(u),Fl;f(u)) WS (Fﬂ_l(u),Fl,_l(u)), (4.13)

we suppose without loss of generality that this convergence holds. For n € N, define [,, = inf;>, ¥ and r, =
SUpy>, Th. Since (4.13) holds, we find that (In)nen, resp. (rn)nen, is a nondecreasing, resp. nonincreasing,
sequence converging to x,,. Due to right continuity of F), and left continuity of x — F),(x—) we have

F,(xy—)= lim F,(l,—) and lim F,(rp) = F,(zy).

p—+oo p——+oo
By Portmanteau’s theorem and monotonicity of cumulative distribution functions we have

F,(l,—) <liminf F,, (I,—) < liminf F}, (z;,—) < limsup F,, (z,) < limsup F,, (rp) < Fu(rp).

n—+oo n—+00 n—+o0 n—+oo

By taking the limit p — 400, we find

F,(xy—) <liminf F,, (2;,—) <limsup F),, (z;;) < F.(z.).

n—-+o0o n——+oo

This implies (4.12) as soon as F), is continuous at x,,. Suppose now that F, is discontinuous at x,,. Since x has
countably many atoms, we may suppose without loss of generality that u € (F},(x,—), Fj,(zy)). Let (2)nen € RY
be the sequence associated to = z,, by (4.8). For n large enough, we have u € (F,, (zn—), Fyu, ()), hence
xn, = 1. Using the assumption made in (4.8), we get

liminf F), (xy) = liminf(F,, (z;) A Fu(za))

n——+oo } n—-+o0o

— liminf(F,, () A Fu(2,) - Fy, (20-) V Ey(0,-) + F, (@) —) V Fu(2,-))

n—-+o0o

= pl{a}) + i inf (B, (2 -) V Fu(wu—) 2 Fulw),

hence F),, (z7) e F,(z,). Similarly, F, (z}—) e F,(z,—), which shows (4.12) and concludes the proof.
O

APPENDIX A. ADAPTED WASSERSTEIN DISTANCES

A useful point of view is the following: for all u,v € P,(R) and 7 € II(u,v), let J(m) be the probability
measure on R x P,(R) defined by

J(m)(dz, dp) = p(dzx) oz, (dp). (A1)
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Then one can readily show that for any u’, " € P,(R) and 7’ € II(u, v),
AW, (. 7") = W, (J(m), J (")), (A.2)

where R x P,(R) is of course endowed with the product metric ((z,p), («',p")) — (|z —2'|" + W[,’(p,p’))l/p.
Therefore, the topology induced by AW, coincides with the initial topology with respect to J. This allows us
to easily derive the two following lemmas.

Lemma A.1. Let p > 1, p,v,p/, v/ € Py(R) and 7 € Il(p,v), 7’ € (i, v'). Then there exists a coupling
x € I(p, 1) optimal for AW ,(w,n’), i.e. such that

AWD (m, ") :/]R i (Jo = 2'|” + Wh(mg, 7)) x(da, da’).
X

Remark A.2. A similar statement holds when 7, 7" have three marginals. In that case, writing 7(dz, dy, dz) =

p(dz) 7y (dy, dz) and 7' (da’, dy’, dz") = p/(d2’) «l, (dy’, dz") we define

AWP(r, ") = inf / x—2'|P + AWO (e, Tl dz,dz’).
p(m, ') et RX]R(| | o )) x( )

Let K(m) be the probability measure on R x P,(R x P,(R)) defined by

K (m)(dz, dp) = p(dz) 6 (x,)(dp).

Then one can readily show that

where R X P, (R x P,(R)) is of course endowed with the product metric ((z, p), (z,p)) = (lz — 2’| + W5(p,p')) e
Similarly to Lemma A.1, the latter characterisation allows us to easily see that there exists a coupling
x € (p, p') optimal for AW, (7, 7").

Proof of Lemma A.1. Since R is Polish, so are the set P,(R) and the set of probability measures on R x P,(R).
Hence there exists a coupling P € II(J(w), J(n')) optimal for W,(J(7), J(n')), i.e.

Wi (I (m), J(w")) = / |(z,p) = (2, p")|” P(dz, dp, da’, dp').
RXP,(R)xRxP,(R)

Since the J(m) and J(7’) are concentrated on graphs of measurable maps, it is clear that P(dz,dp,dz’,dp’) =

x(da,da’) 6, (dp) dx:  (dp") for x(da,da’) = [, ep @)xp, @) P(dz, dp,da’,dp’) € I(u, p'). Then

AWE (") = WhH(J (), ("))

(lz = 2P + Wi (p,p') x(dz,dz") br, (dp) 6, (dp')

B /]RXPP(]R)XRXP,,(]R)

= / (|lz —2'|” + Wh (s ') x(dz, dz’),
RxR

hence x is optimal for AW, (7, 7’). O
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Lemma A.3. Let p > 1, pi,v € Py(R), (tn)nen, Un)nen € Ppo(R)N, 7 € (u, v) and (m,)nen € ey T, vn)-
Then

AW, (T, 1) — 0 <= AW (1, ) + W, (ttn, 1) + Wy(vp,v) —> 0. (A.3)

n—-+0oo n—-+0oo

Proof. Clearly,

/RX%(R) (lz]” + Wo(p, 60)) J(ﬂ)(dx,dp)Z/R<|x|”+/Ry|P7rw(dy)) u(de)

_ / (2]? u(de) + / lyl° v(dy)

so that m and J(7m) have equal p-th moments. Since convergence in W, is equivalent to convergence in W
coupled with convergence of the p-th moments, we deduce from (A.2) that

AW, (T, ) — 0

n—-+oo

= AW;(mp, 7 '/Ix”un (dx) /Iylpvn dy) — /valp (dx) /Iyl'” dy} — 0.

n——+o0o
Since W; < AW; and W;-convergence of the couplings implies that of their respective marginals and
liminf, o [p 2|7 pn(dz) > [p 2] p(dz), liminf, o [p [yl? va(dy) > [ ly|? v(dy), using the fact that con-

vergence in W, is equivalent to convergence in W, coupled with convergence of the p-th moments again, we
conclude that the right-hand side is clearly equivalent to

AWl(Wn,ﬂ')‘i’Wp(,uny )+W(Vn7 ) — Oa

n—r+oo

which proves (A.4). O

Remark A.4. For p > 1, let A\, u,v € P,(R), (An)nen, (in)nen, Wn)nen € P,(R)N, 7 € P(R x R x R) with
marginals A, u, v and 7, € P(R x R x R) with marginals \,, ptn, v, for n € N. Then

AW (7, 1) = 0 = AW (T, )+ Wyhas N) + Wylttn 1) + Wy(vmsv) — 0. (Ad)

This can be proved by the same argument as in the previous proof since, for the mapping K introduced in
Remark A.2, one has

/ (2]° + WE(p.S(0.0))) K () (i, dp) = / (2]? + WE (I (m). 50.50))) Mdz)
RxP,(RxP,(R)) R

- / 2P\ (dz) + / (1917 + WE 0.y 60)) e (dy, R)A(d)
R RxR

= [taae)+ [ leutan) + [ 1zt
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