On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 378-396

For a general càdlàg Lévy process X on a separable Banach space V we estimate values of infc≥0 {ψ(c) + inf$$ 𝔼TV(Y,[0,T])}, where A$$(c) is the family of processes on V adapted to the natural filtration of X, a.s. approximating paths of X uniformly with accuracy c, ψ is a penalty function with polynomial growth and TV(Y, [0,T]) denotes the total variation of the process Y on the interval [0,T], Next, we apply obtained estimates in three specific cases: Brownian motion with drift on ℝ, standard Brownian motion on ℝ$$ and a symmetric α-stable process (α ∈ (1, 2)) on ℝ.

DOI : 10.1051/ps/2022011
Classification : 60G51, 60G52, 60J65, 49K45
Keywords: Levy processes, total variation, uniform approximation
@article{PS_2022__26_1_378_0,
     author = {Bednorz, Witold M. and {\L}ochowski, Rafa{\l} M. and Martynek, Rafa{\l}},
     title = {On optimal uniform approximation of {L\'evy} processes on {Banach} spaces with finite variation processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {378--396},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2022011},
     mrnumber = {4513264},
     zbl = {1523.60087},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2022011/}
}
TY  - JOUR
AU  - Bednorz, Witold M.
AU  - Łochowski, Rafał M.
AU  - Martynek, Rafał
TI  - On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 378
EP  - 396
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2022011/
DO  - 10.1051/ps/2022011
LA  - en
ID  - PS_2022__26_1_378_0
ER  - 
%0 Journal Article
%A Bednorz, Witold M.
%A Łochowski, Rafał M.
%A Martynek, Rafał
%T On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes
%J ESAIM: Probability and Statistics
%D 2022
%P 378-396
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2022011/
%R 10.1051/ps/2022011
%G en
%F PS_2022__26_1_378_0
Bednorz, Witold M.; Łochowski, Rafał M.; Martynek, Rafał. On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 378-396. doi: 10.1051/ps/2022011

[1] D. Applebaum, Lévy processes and stochastic integrals in Banach spaces. Probab. Math. Statist. 27 (2007) 75-88. | MR | Zbl

[2] W.M. Bednorz, R.M. Łochowski and R. Martynek, On tails of symmetric and totally asymmetric α -stable distributions. Prob. Math. Statist. 41 (2021) 321-345. | MR | Zbl

[3] A.N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae. Second Edition. Birkhäuser (2002). | MR | Zbl | DOI

[4] T.F. Chan and S. Esedoglu, Aspects of total variation regularized L 1 function approximation. SIAM J. Appl. Math. 65 (2005) 1817-837. | MR | Zbl | DOI

[5] K.B. Erickson, The strong law of large numbers when the mean is undefined. Trans. Amer. Math. Soc. 185 (1973) 371-381. | MR | Zbl | DOI

[6] J. Kallsen and J. Muhle-Karbe, Option pricing and hedging with small transaction costs. Math. Finance 25 (2015) 702-723. | MR | Zbl | DOI

[7] J. Kallsen and J. Muhle-Karbe, The general structure of optimal investment and consumption with small transaction costs. Math. Finance 27 (2017) 659-703. | MR | Zbl | DOI

[8] J.T. Kent, Eigenvalue expansions for diffusion hitting times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52 (1980) 309-319. | MR | Zbl | DOI

[9] R.M. Łochowski, A new inequality for the Riemann-Stieltjes integrals driven by irregular signals in Banach spaces. J. Inequal. Appl. 2018(20) (2018) 1-20. | MR | Zbl

[10] R.M. Łochowski and R. Ghomrasni, The play operator, the truncated variation and the generalisation of the Jordan decomposition. Math. Methods Appl. Sci. 38 (2015) 403-419. | MR | Zbl | DOI

[11] K. Sato, Łévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1999). | MR | Zbl

[12] G. Serafin, Exit times densities of the Bessel process. Proc. Am. Math. Soc. 145 (2017) 3165-3178. | MR | Zbl | DOI

Cité par Sources :