For a general càdlàg Lévy process X on a separable Banach space V we estimate values of infc≥0 {ψ(c) + inf$$ 𝔼TV(Y,[0,T])}, where A$$(c) is the family of processes on V adapted to the natural filtration of X, a.s. approximating paths of X uniformly with accuracy c, ψ is a penalty function with polynomial growth and TV(Y, [0,T]) denotes the total variation of the process Y on the interval [0,T], Next, we apply obtained estimates in three specific cases: Brownian motion with drift on ℝ, standard Brownian motion on ℝ$$ and a symmetric α-stable process (α ∈ (1, 2)) on ℝ.
Keywords: Levy processes, total variation, uniform approximation
@article{PS_2022__26_1_378_0,
author = {Bednorz, Witold M. and {\L}ochowski, Rafa{\l} M. and Martynek, Rafa{\l}},
title = {On optimal uniform approximation of {L\'evy} processes on {Banach} spaces with finite variation processes},
journal = {ESAIM: Probability and Statistics},
pages = {378--396},
year = {2022},
publisher = {EDP-Sciences},
volume = {26},
doi = {10.1051/ps/2022011},
mrnumber = {4513264},
zbl = {1523.60087},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2022011/}
}
TY - JOUR AU - Bednorz, Witold M. AU - Łochowski, Rafał M. AU - Martynek, Rafał TI - On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes JO - ESAIM: Probability and Statistics PY - 2022 SP - 378 EP - 396 VL - 26 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2022011/ DO - 10.1051/ps/2022011 LA - en ID - PS_2022__26_1_378_0 ER -
%0 Journal Article %A Bednorz, Witold M. %A Łochowski, Rafał M. %A Martynek, Rafał %T On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes %J ESAIM: Probability and Statistics %D 2022 %P 378-396 %V 26 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2022011/ %R 10.1051/ps/2022011 %G en %F PS_2022__26_1_378_0
Bednorz, Witold M.; Łochowski, Rafał M.; Martynek, Rafał. On optimal uniform approximation of Lévy processes on Banach spaces with finite variation processes. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 378-396. doi: 10.1051/ps/2022011
[1] , Lévy processes and stochastic integrals in Banach spaces. Probab. Math. Statist. 27 (2007) 75-88. | MR | Zbl
[2] , and , On tails of symmetric and totally asymmetric -stable distributions. Prob. Math. Statist. 41 (2021) 321-345. | MR | Zbl
[3] and , Handbook of Brownian Motion - Facts and Formulae. Second Edition. Birkhäuser (2002). | MR | Zbl | DOI
[4] and , Aspects of total variation regularized function approximation. SIAM J. Appl. Math. 65 (2005) 1817-837. | MR | Zbl | DOI
[5] , The strong law of large numbers when the mean is undefined. Trans. Amer. Math. Soc. 185 (1973) 371-381. | MR | Zbl | DOI
[6] and , Option pricing and hedging with small transaction costs. Math. Finance 25 (2015) 702-723. | MR | Zbl | DOI
[7] and , The general structure of optimal investment and consumption with small transaction costs. Math. Finance 27 (2017) 659-703. | MR | Zbl | DOI
[8] , Eigenvalue expansions for diffusion hitting times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 52 (1980) 309-319. | MR | Zbl | DOI
[9] , A new inequality for the Riemann-Stieltjes integrals driven by irregular signals in Banach spaces. J. Inequal. Appl. 2018(20) (2018) 1-20. | MR | Zbl
[10] and , The play operator, the truncated variation and the generalisation of the Jordan decomposition. Math. Methods Appl. Sci. 38 (2015) 403-419. | MR | Zbl | DOI
[11] , Łévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1999). | MR | Zbl
[12] , Exit times densities of the Bessel process. Proc. Am. Math. Soc. 145 (2017) 3165-3178. | MR | Zbl | DOI
Cité par Sources :





