Limit behaviour of random walks on m with two-sided membrane
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 352-377

We study Markov chains on ℤ$$, m ≥ 2, that behave like a standard symmetric random walk outside of the hyperplane (membrane) H = {0} × ℤ$$. The exit probabilities from the membrane (penetration probabilities) H are periodic and also depend on the incoming direction to H, what makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew Brownian motion and the other m − 1 coordinates is a Brownian motion with a singular drift controlled by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually, a similar convergence theorem is established for the one-sided membrane without slides and random iid penetration probabilities.

DOI : 10.1051/ps/2022009
Classification : 60F17, 60G42, 60G50, 60H10, 60J10, 60J55, 60K37
Keywords: Skew Brownian motion, Walsh’s Brownian motion, perturbed random walk, two-sided membrane, weak convergence, martingale characterization,
@article{PS_2022__26_1_352_0,
     author = {Bogdanskii, Victor and Pavlyukevich, Ilya and Pilipenko, Andrey},
     title = {Limit behaviour of random walks on $\mathbb{Z}^m$ with two-sided membrane},
     journal = {ESAIM: Probability and Statistics},
     pages = {352--377},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2022009},
     mrnumber = {4481124},
     zbl = {1520.60036},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2022009/}
}
TY  - JOUR
AU  - Bogdanskii, Victor
AU  - Pavlyukevich, Ilya
AU  - Pilipenko, Andrey
TI  - Limit behaviour of random walks on $\mathbb{Z}^m$ with two-sided membrane
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 352
EP  - 377
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2022009/
DO  - 10.1051/ps/2022009
LA  - en
ID  - PS_2022__26_1_352_0
ER  - 
%0 Journal Article
%A Bogdanskii, Victor
%A Pavlyukevich, Ilya
%A Pilipenko, Andrey
%T Limit behaviour of random walks on $\mathbb{Z}^m$ with two-sided membrane
%J ESAIM: Probability and Statistics
%D 2022
%P 352-377
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2022009/
%R 10.1051/ps/2022009
%G en
%F PS_2022__26_1_352_0
Bogdanskii, Victor; Pavlyukevich, Ilya; Pilipenko, Andrey. Limit behaviour of random walks on $\mathbb{Z}^m$ with two-sided membrane. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 352-377. doi: 10.1051/ps/2022009

[1] M.T. Barlow, J. Pitman and M. Yor, On Walsh’s Brownian motions. Séminaire de probabilités de Strasbourg 23 (1989) 275–293. | MR | Zbl | Numdam

[2] R.F. Bass, Probabilistic Techniques in Analysis. Probability and its Applications. Springer-Verlag, New York (1995). | MR | Zbl

[3] P. Brémaud, Discrete Probability Models and Methods. Vol. 78 of Probability Theory and Stochastic Modelling. Springer, Cham (2017). | MR | Zbl

[4] D. Dolgopyat, M. Lenci and P. Nándori, Global observables for RW: Law of large numbers. Ann. l'Inst. Henri Poincaré — Probab. Stat. 57 (2021) 94–115. | MR | Zbl

[5] M. Freidlin and S.-J. Sheu, Diffusion processes on graphs: stochastic differential equations, large deviation principle. Probab. Theory Related Fields 116 (2000) 181–220. | MR | Zbl | DOI

[6] I.I. Gikhman and A.V. Skorokhod, The Theory of Stochastic Processes I. Vol. 210 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1974). | MR | Zbl

[7] D.S. Grebenkov, D. Van Nguyen and J.-R. Li, Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation. J. Magn. Resonance 248 (2014) 153–163. | DOI

[8] H. Hajri, Stochastic flows related to Walsh Brownian motion. Electr. J. Probab. 16 (2011) 1563–1599. | MR | Zbl

[9] H. Hajri and W. Touhami, Ito’s formula for Walsh’s Brownian motion and applications. Stat. Probab. Lett. 87 (2014) 48–53. | MR | Zbl | DOI

[10] J.M. Harrison and L.A. Shepp, On skew Brownian motion. Ann. Probab. 9 (1981) 309–313. | MR | Zbl | DOI

[11] A. Iksanov and A. Pilipenko, A functional limit theorem for locally perturbed random walks. Probab. Math. Stat. 36 (2016) 353–368. | MR | Zbl

[12] A. Iksanov, A. Pilipenko and B. Povar, Functional limit theorems for random walks perturbed by positive alpha-stable jumps. To appear in Bernoulli (2021). | MR | Zbl

[13] J. Jacod and A.N. Shiryaev, Limit theorems for stochastic processes. Vol. 288 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2003), second edition. | MR | Zbl

[14] O. Kallenberg, Foundations of Modern Probability. Probability and its Applications. Springer, New York (2002), second edition. | MR | Zbl

[15] I. Karatzas and M. Yan, Semimartingales on rays, Walsh diffusions, and related problems of control and stopping. Stoch. Process. Appl. 129 (2019) 1921–1963. | MR | Zbl | DOI

[16] J. Keilson and J.A. Wellner, Oscillating Brownian motion. J. Appl. Probab. 15 (1978) 300–310. | MR | Zbl | DOI

[17] A. Lejay, On the constructions of the skew Brownian motion. Probab. Surv. 3 (2006) 413–466. | MR | Zbl | DOI

[18] A. Lejay, The snapping out Brownian motion. Ann. Appl. Probab. 26 (2016) 1727–1742. | MR | Zbl | DOI

[19] V. Mandrekar and A. Pilipenko, On a Brownian motion with a hard membrane. Stat. Probab. Lett. 113 (2016) 62–70. | MR | Zbl | DOI

[20] R.A. Minlos and E.A. Zhizhina, Limit diffusion process for a non-homogeneous random walk on a one-dimensional lattice. Russ. Math. Surv. 52 (1997) 327–340. | Zbl | MR | DOI

[21] N. Moutal and D. Grebenkov, Diffusion across semi-permeable barriers: spectral properties, efficient computation, and applications. J. Sci. Comput. 81 (2019) 1630–1654. | MR | Zbl | DOI

[22] S. Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations. Osaka J. Math. 9 (1972) 513–518. | MR | Zbl

[23] H.-L. Ngo and M. Peignée, Limit theorem for perturbed random walks. Theory Stoch. Process. 24 (2019) 61–78. | MR | Zbl

[24] D.S. Novikov, E. Fieremans, J.H. Jensen and J.A. Helpern, Random walks with barriers. Nat. Phys. 7 (2011) 508–514. | DOI

[25] D. Paulin and D. Szász, Locally perturbed random walks with unbounded jumps. J. Stat. Phys. 141 (2010) 1116–1130. | MR | Zbl | DOI

[26] V.V. Petrov, Sums of Independent Random Variables, vol. 82 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York (1975). | MR | Zbl

[27] A. Pilipenko, An Introduction to Stochastic Differential Equations with Reflection, vol. 11 of Lectures in Pure and Applied Mathematics. Potsdam University Press, Potsdam (2014). | Zbl

[28] A. Pilipenko, A functional limit theorem for excited random walks. Electr. Commun. Prob. 22 (2017) 1–9. | MR | Zbl

[29] A. Pilipenko and Y. Pryhod’Ko, Limit behavior of symmetric random walks with a membrane. Theory Probab. Math. Stat. 85 (2012) 93–105. | Zbl | MR | DOI

[30] A.Y. Pilipenko and L.A. Sakhanenko, On a limit behavior of a one-dimensional random walk with non-integrable impurity. Theory Stoch. Process. 20 (2015) 97–104. | MR | Zbl

[31] A.Y. Pilipenko and V. Khomenko, On a limit behavior of a random walk with modifications upon each visit to zero. Theory Stoch. Process. 22 (2017) 71–80. | MR | Zbl

[32] A.Y. Pilipenko and Y. E. Prikhod’Ko, On the limit behavior of a sequence of Markov processes perturbed in a neighborhood of the singular point. Ukrainian Math. J. 67 (2015) 564–583. | MR | Zbl | DOI

[33] A.Y. Pilipenko and Y. E. Prykhodko, Limit behavior of a simple random walk with non-integrable jump from a barrier. Theory Stoch. Process. 19 (2014) 52–61. | MR | Zbl

[34] N.I. Portenko, Generalized diffusion processes. Vol. 83 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1990). | MR | Zbl | DOI

[35] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Vol. 293 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, corrected third printing of the third edition (2005). | MR | Zbl

[36] D. Szász and A. Telcs, Random walk in an inhomogeneous medium with local impurities. J. Stat. Phys. 26 (1981) 527–537. | MR | Zbl | DOI

[37] J.B. Walsh, A diffusion with a discontinuous local time. Astérisque 52 (1978) 37–45. | Numdam

[38] D.A. Yarotskii, Central limit theorem for a class of nonhomogeneous random walks. Math. Notes 69 (2001) 690–695. | MR | Zbl | DOI

Cité par Sources :