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LIMIT BEHAVIOUR OF RANDOM WALKS ON Zm WITH

TWO-SIDED MEMBRANE

Victor Bogdanskii1, Ilya Pavlyukevich2,*

and Andrey Pilipenko1,3

Abstract. We study Markov chains on Zm, m ≥ 2, that behave like a standard symmetric random
walk outside of the hyperplane (membrane) H = {0}×Zm−1. The exit probabilities from the membrane
(penetration probabilities) H are periodic and also depend on the incoming direction to H, what
makes the membrane H two-sided. Moreover, sliding along the membrane is allowed. We show that the
natural scaling limit of such Markov chains is a m-dimensional diffusion whose first coordinate is a skew
Brownian motion and the other m− 1 coordinates is a Brownian motion with a singular drift controlled
by the local time of the first coordinate at 0. In the proof we utilize a martingale characterization of
the Walsh Brownian motion and determine the effective permeability and slide direction. Eventually,
a similar convergence theorem is established for the one-sided membrane without slides and random
iid penetration probabilities.
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1. Introduction

A multidimensional Brownian motion is a fundamental stochastic process that describes an idealized math-
ematical model of a free physical diffusion in a homogeneous medium. Having in mind the observations of
pollen made by Brown or a later kinetic theory of gases, we can interpret a diffusion as a collective motion of
independent random walkers whose distribution density in space obeys the isotropic Gaussian distribution.

However in real physical or biological systems, the space is often separated into compartments by membranes
that impede or facilitate the passage of the walker and create an anisotropy in the walkers’ collective motion.
From the physical point of view, a membrane is a thin slice of a material whose physical properties (e.g.
diffusivity, permeability) are different from the properties of the environment. Diffusions through membranes
are observed in biological tissues where they control the transport of ions, water molecules and gases, or in
porous and composite materials.

A rigorous mathematical justification of the interpretation of a diffusion as a limit of scaled random walks
is given by the Functional Central Limit Theorem (FCLT, the Donsker–Prokhorov invariance principle). For
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m ≥ 1, let {e1, . . . , em} be a standard basis in Rm. Consider a symmetric random walk Z = (Z(n))n≥0 on Zm
defined by identical one-step transition probabilities

P
(
Z(n+ 1)− Z(n) = ±ek

∣∣∣Z(0), . . . , Z(n)
)

=
1

2m
, k = 1, . . .m, n ≥ 0.

Then the FCLT yields the weak convergence in the uniform topology

(Z([nt])√
n

)
t≥0
⇒
( 1√

m
W (t)

)
t≥0

,

where W is a standard m-dimensional Brownian motion.
In this paper we consider a novel class of scaling limits of random walks in the presence of extended spatially

non-homogeneous one- or two-sided barrier (membrane, interface). More precisely, in the m-dimensional space
we consider an (m − 1)-dimensional semi-permeable hyperplane that separates the space into two half-space
compartments. A random walker performs a symmetric random walk outside of the membrane, however the
probability of the passage through the membrane is determined by the hitting position of the membrane by
the walker and by its incoming direction. Thus the probability to penetrate the membrane depends of the fact
whether the walker has reached it from the “right” of from the “left”. Furthermore we will consider two models
in which the membrane has a spatially regular periodic or random structure.

In the first model, the penetration probabilities are periodic in space, so that the membrane reminds of a
two-sided fabric. Hence, the scaled limit of such Markov chains outside of the membrane will be just a Brownian
motion. The passage probability through the membrane will be obtained with the help of an appropriate aver-
aging of the periodic individual penetration probabilities. Hence the limit process in the direction perpendicular
to the membrane will be a skew Brownian motion. The other coordinates converge to a standard Brownian
motion, maybe, with a singular drift controlled by the local time of the first coordinate at the origin.

Another case of a spatially regular structure considered in this paper is a membrane imitating a “random”
perforated surface. In this case one can think of a random walk in a random environment: we assume that the
membrane is one-sided and that the random penetration probabilities at each point are iid random variables
with values in [0, 1] with the mean value p̄. As in the first model, the (quenched) scaled limit will be a skew
Brownian motion in the direction perpendicular to the membrane and a standard Brownian motion in the rest
(m− 1) coordinates.

The proofs of these results are purely probabilistic and employ methods of homogenization and dynamics of
singular stochastic differential equations. Our results give a path-wise picture of the diffusion through a two-side
semi-permeable interface. In the physical language this corresponds to the Langevin–Smoluchowsky approach
to diffusions. It should be emphasized that physical papers (see, e.g., Novikov et al. [24], Grebenkov et al. [7],
Moutal and Grebenkov [21] and references therein) devoted to similar problems use analytical methods, mainly
the analysis of the Fokker–Planck equation.

One-dimensional locally perturbed random walks were considered from different points of view in Harri-
son and Shepp [10], Minlos and Zhizhina [20], Pilipenko and Pryhod’ko [29], Pilipenko and Prikhod’ko [32],
Pilipenko and Sakhanenko [30], Ngo and Paigné [23]. In this paper, we use the multidimensional martingale
characterization approach previously considered in Iksanov and Pilipenko[11] in dimension one.

It should be noted that if transition probabilities of a multidimensional random walk are perturbed on a
finite set or on a hyperplane of co-dimension 2, then under some natural assumptions its scaling limit is a
Brownian motion, see Szász and Telcs [36], Yarotskii [38], and Paulin and Szász [25].

We also refer the reader’s attention to the following related mathematical works. In the monograph by
Portenko [34], the theory of diffusion processes with semipermeable membranes was developed. The research
papers by Lejay [18] and Mandrekar and Pilipenko [19] considered thin layer perturbation of a Brownian motion
that results in a Brownian motion with the so-called non-instantaneous “hard membrane”. In papers Pilipenko
and Khomenko [31], Pilipenko [28], the perturbation of transition probabilities of a random walk depended on
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the number of visits of the walk’s current state. As a result, Donsker’s scaling limit process was obtained as a
solution to a stochastic equation with drift depending on a process’s local time. Iksanov et al. [12] and Pilipenko
and Prykhodko [33] considered one-dimensional random walks on a half line with reflection to the upper half line
upon crossing zero. It was assumed that bounces off zero belong to a domain of attraction of a stable law. The
limit process for scaled processes was a reflected Brownian motion with a non-local Feller–Wentzell boundary
condition at zero.

The paper is organized as follows. Section 2 contains the setting and the main result for the model of
two-sided periodic membrane. In Section 3 we introduce the Walsh Brownian motion that will be used in the
proofs and give its convenient realization as a d-dimensional stochastic process that takes values on the positive
coordinate half-axes. We will also formulate two martingale characterizations of the Walsh Brownian motion.
Section 4 is devoted to the proof of Theorem 2.1. In the final Section 5 we show how our method can be applied
to a model of a random one-sided membrane that possesses some ergodic properties.
Notation. The weak convergence in the Skorokhod space D([0,∞),Rm; J1) is denoted by ⇒. It should be
noted, however, that all limit processes in this paper are continuous. The convergence in distribution of random

variables is denoted by
d→.

2. Two-sided periodic membrane: the model and the main result

Let m ≥ 2 and let {e1, . . . , em} be a standard basis in Rm. Consider a Markov chain Z = {Z(n)}n≥0 on Zm
that behaves as a simple random walk outside of the hyperplane H := {0} × Zm−1, i.e., for all k = 1, . . . ,m

P
(
Z(n+ 1) = z ± ek

∣∣∣Z(n) = z
)

=
1

2m
, z /∈ H. (2.1)

For each n ≥ 1, we denote the first coordinate of the process Z by X, and the other (m− 1) coordinates by Y
so that Z = (X,Y ).

We will interpret H as a semipermeable two-sided membrane that may let a particle pass from one half-
space to another with certain probabilities that can depend on the crossing direction. Moreover, the particle
can “slide” along the membrane.

The membrane has to be homogeneous, i.e., the transition probabilities from the membrane are periodic in
space.

Notice that if the membrane is two-sided, then Z is not a Markov chain, generally. Indeed, its position
upon leaving the membrane is determined by both the current location on the membrane and by the particle’s
incoming direction. Hence, in order to introduce a Markov structure we have to enlarge the state space by
splitting the membrane H into two parts H− and H+ corresponding to its “right” and “left” sides: we denote

H− := {−0} × Zm−1, H+ := {+0} × Zm−1,

and we set H := H− ∪H+.
Now we consider a Markov chain Z = (Z(n))n≥0 = (X (n), Y (n))n≥0 on the state space

{±0,±1,±2, . . . } × Zm−1.

Its second coordinate Y is the (m − 1)-dimensional process from the original Markov chain Z whereas the
process X is defined on the enlarged space {±0,±1,±2, . . . }. The transition probabilities of the Markov chain
Z = (X , Y ) are defined as follows.

Outside of the two-sided membrane H the satisfy (2.1), namely

P
(
Z(n+ 1) = z ± ek

∣∣∣Z(n) = z
)

=
1

2m
, z /∈ H,
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where we agree that for each y ∈ Zm−1

(1, y)− e1 = (+0, y) and (−1, y) + e1 = (−0, y),

(+0, y) + e1 = (1, y) and (−0, y) + e1 = (1, y),

(+0, y)− e1 = (−1, y) and (−0, y)− e1 = (−1, y).

In other words, away from H the Markov chain Z is a symmetric random walk.
Suppose also that the process Z does not stay on the membrane, i.e.,

P
(
Z(n+ 1) ∈ {−1, 1} × Zm−1

∣∣∣Z(n) ∈ H
)

= 1.

However it is allowed that upon hitting the membrane (from the “left” or from the “right”) the walker can
“slide” along the membrane, so that its y-coordinate changes. We assume that transition probabilities from H
have periodic structure.

Notation. Let k = (k2, . . . , km) be a fixed (m− 1)-tuple of natural numbers k2, . . . , km ≥ 1. Let U denote the
box in Zm−1 defined by

U := [0, k2 − 1]× · · · × [0, km − 1].

For y ∈ Zm−1, y = (y2, . . . , ym) we denote

y (mod k) := (y2 (mod k2), . . . , ym (mod km)) ∈ U.

For each j ∈ U we set

H±j := {(±0, y) ∈ H± : y (mod k) = j}.

Clearly,

H± =
⋃
j∈U
H±j .

The following are our key assumptions concerning the transition probabilities of the random walk in the
membrane.

Aperiodic. Periodicity of the transition probabilities. We assume that there exist k2, . . . , km ≥ 1 such that for all
l2, . . . , lm ∈ Z, for all z0 ∈ H, for all z1 ∈ {−1,+1} × Zm−1 we have

P
(
Z(n+ 1) = z1

∣∣∣Z(n) = z0

)
= P

(
Z(n+ 1) = z1 + k2l2e2 + · · ·+ kmlmem

∣∣∣Z(n) = z0 + k2l2e2 + · · ·+ kmlmem

)
.

(2.2)

Aγ . To describe the transitions through the membrane, we denote by 0 ≤ τ0 < τ1 < · · · the successive arrivals
of Z to H or, equivalently, of X to {−0,+0}.

On the finite state space {−0,+0}×U we consider an auxiliary embedded process Ẑ = (Ẑ(n))n≥0 as follows
defined by

Ẑ(n) =
(
X (τn), Y (τn) (mod k)

)
=

{
(−0, j), if Y (τn) (mod k) = j ∈ U and X (τn) = −0,

(+0, j), if Y (τn) (mod k) = j ∈ U and X (τn) = +0, n ≥ 0.
(2.3)



356 V. BOGDANSKII ET AL.

1

1

1

1

1 1

1

1

1

1

−2

−1

0

1

2

3

−2 −1 −0 +0 1 2

1.

1− p

1

1− p

1

1− p

p

p

p

1

1

1

1

1

−2

−1

0

1

2

3

−2 −1 −0 +0 1 2

2.

1− p

1

1− p

1

1− p

p

p

p

1− q

1

1− q

1

1− q

q

q

q

−2

−1

0

1

2

3

−2 −1 −0 +0 1 2

3.

Figure 1. Examples of three possible membrane compositions. To guarantee permeability for
the membranes 2. and 3. we assume that p ∈ (0, 1] and p, q ∈ (0, 1] respectively.

The process Ẑ is a finite Markov chain.
Since the original Markov chain Z is a symmetric random walk outside of the membrane, the states within

the sets {−0} × U and {−0} × U are connected. The connectivity of these sets, however, is determined by the
permeability property of the membrane. The examples on Figure 1 illustrate the three possible situations.

1. The membraneH is two sided reflecting and no transition between the half-spaces is possible. Consequently
the behaviour of Z on the left-hand space and on the left-hand space can be studied separately. In any case,
Ẑ is an irreducible finite Markov chain either on {−0} × U or on {+0} × U . For initial values Z(0) ∈ H±
it will have invariant (limiting) distributions π = {π(±0,j)}j∈U supported on {±0} × U respectively.

2. The membrane is semi-permeable in one direction. Assume for definiteness that transitions from H− into
{+0, 1, 2, . . .}×Zm−1 are possible. In this case, all the states {−0}×U are inessential for the Markov chain
Ẑ whereas the states {+0} × U form an irreducible class. Hence, Ẑ has a unique stationary distribution

π = {π(+0,j)}j∈U

supported on {+0} × U .
3. Eventually, if the membrane is permeable in both directions there is a unique stationary distribution

π = {π(−0,j), π(+0,j)}j∈U

of Ẑ on {−0,+0} × U .

For the limiting stationary distribution π (maybe depending on the initial value Z(0)) and we introduce the
effective permeability

γ :=
∑
j∈U

(π(+0,j) − π(−0,j)) ∈ [−1, 1]. (2.4)

Note that γ = ±1 corresponding to “reflection” is possible only in cases 1 and 2.
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Ac. Finally, we describe the “slides” along the membrane. We denote

α(±0,j) := E
[
Y (1)− Y (0)

∣∣∣X (0) = ±0, Y (0) = j
]
∈ Rm−1, j ∈ U,

the mean slide sizes along the “right” of the “left” side of the membrane, and assume that they are finite.
Introduce the effective slide as

c := Eπ

[
Y (1)− Y (0)

]
=
∑
j∈U

(
π(+0,j) · α(+0,j) + π(−0,j) · α(−0,j)

)
∈ Rm−1. (2.5)

By the strong law of large numbers for Markov chains (see, e.g. [3], Cor. 7.2.10),

lim
n→∞

1

n

n−1∑
k=0

1I
(
Ẑ(k) = (±0, j)

)
= π(±0,j) PZ(0)-a.s.

By the strong Markov property, it is easy to see that the process (Z(τn),Z(τn + 1))n≥0 is also a Markov chain
and the strong law of large numbers yields again that

lim
n→∞

1

n

n−1∑
k=0

X (τk + 1) = EπX (1)

=
∑
j∈U

[
π(+0,j)

(
P(+0,j)(X (1) = 1)−P(+0,j)(X (1) = −1)

)
+ π(−0,j)

(
P(−0,j)(X (1) = 1)−P(−0,j)(X (1) = −1)

)]
(2.6)

and

lim
n→∞

1

n

n−1∑
k=0

1I
(
Y (τk) ≡ j,X (τk + 1) = ±1

)
= Pπ(Y (0) ≡ j,X (1) = ±1)

=
∑
j∈U

[
π(+0,j)

(
P(+0,j)(X (1) = 1)−P(+0,j)(X (1) = −1)

)
+ π(−0,j)

(
P(−0,j)(X (1) = 1)−P(−0,j)(X (1) = −1)

)]
.

(2.7)

Notice that X (τk + 1) = 1 if and only if X (τk+1) = +0 and X (τk + 1) = −1 if and only if X (τk+1) = −0. So,
(2.6) yields another representation for the effective permeability:

γ = EπX (1).

Finally, an analogous argument yields the representation for the effective slide c:

c = lim
n→∞

1

n

n−1∑
k=0

(Y (τk + 1)− Y (τk)) a.s.

Now we are ready to formulate the main result of the paper. Let WX and WY be independent standard
Brownian motions in R and Rm−1 respectively.
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For γ ∈ [−1, 1] defined in (2.4), we consider a skew Brownian motion Xγ that is a unique strong solution of
the SDE

Xγ(t) = γL(t) +WX(t), t ≥ 0. (2.8)

where L is the symmetric two-sided local time of Xγ at zero, see Harrison and Shepp [10]. Other characterizations
and properties of the skew Brownian motion can be found in the review by Lejay [17].

Furthermore, let

Y c(t) := cL(t) +WY (t), t ≥ 0, (2.9)

i.e., the process Y c is a (m− 1)-dimensional Brownian motion that slides in the direction c at the time instants
when Xγ touches zero. Note that (2.9) is not a stochastic differential equation because the process L is already
determined in (2.8).

For the Markov chain Z = (X , Y ) define the rescaled continuous time processes Xn and Yn by

Xn(t) :=
X ([nt])1I(|X ([nt])| > 0)√

n
, Yn(t) :=

Y ([nt])√
n

, t ≥ 0. (2.10)

Note that the process Xn is a rescaled projection of X on Zm with the states ±0 identified as 0.

Theorem 2.1. Let Z be a perturbed random walk on {±0,±1, . . . }×Zm−1 satisfying the preceding assumptions.
Then for any initial value Z(0), the weak convergence holds true:

(Xn, Yn)⇒ 1√
m

(Xγ , Y c), n→∞,

where the processes Xγ and Y c are defined in (2.8) and (2.9), and γ and c are defined in (2.4) and (2.5)
respectively.

The crux of Theorem 2.1 is transparent. Away from the membrane H, the limiting process (Xγ , Y c) coincides
with the m-dimensional Brownian motion (WX ,WY )/

√
m. The perturbation of the transition probabilities on

the two-sided membrane results in the appearance of a singular drift in the x-direction perpendicular to the
membrane. Hence the x-coordinate of the limiting process becomes a skew Brownian motion with the effective
permeability parameter γ ∈ [−1, 1]. The y-coordinates are perturbed by a singular drift in the effective sliding
direction c ∈ Rm−1. This drift equals zero as long as the limiting process stays away from the membrane. However
upon hitting the membrane, the limiting process performs a singular “sliding” in the direction c controlled by
the local time at zero of the x-coordinate. Note that the two-sided membrane structure disappears in the limit
as n→∞ and the limiting process (Xγ , Y c) is a continuous Markovian process in Rm.

We illustrate Theorem 2.1 by examples depicted on Figure 1.

Example 2.2. 1. We have a one-periodic two-sided reflecting membrane. For initial values Z(0) ∈
{. . . ,−1,−0} × Zm−1 we have convergence

(Xn, Yn)⇒ 1√
2

(
X−1, Y 0

)
d
=

1√
2

(
− |WX |,WY

)
with γ = −1 and c = 0, whereas for initial values Z(0) ∈ {+0,+1, . . . } × Zm−1 we have convergence

(Xn, Yn)⇒ 1√
2

(
X1, Y 1

)
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with γ = 1 and c = 1. Note that X−1 and X1 are negative and positive reflected Brownian motions.
2. For initial values Z(0) ∈ {. . . ,−1,−0} × Zm−1, the Markov chain Z leaves the half space in finite time

with probability one, and never returns back. Hence the problem is essentially one-sided and for any initial
value Z(0) ∈ {±0,±1, . . . } × Zm−1 we have convergence

(Xn, Yn)⇒ 1√
2

(
X1, Y 1

)
with γ = 1 and c = 1.

3. In this case we have a two-periodic two-sided permeable membrane. Let

τ = inf{k ≥ 0: Z(n) = (X (n), Y (n)) ∈ H}

be the first hitting time of the Markov chain Z of the two-sided membrane H. Since away of the membrane H,
the increments of Z coincide with the increments of a translation invariant two-dimensional symmetric random
walk Z, we can easily calculate the probabilities of hitting the membrane in an even or an odd point:

α := P(1,0)(Y (τ) ≡ 0) = P(1,1)(Y (τ) ≡ 1) = P(−1,0)(Y (τ) ≡ 0) = P(−1,1)(Y (τ) ≡ 1) = 2−
√

2,

1− α := P(1,0)(Y (τ) ≡ 1) = P(1,1)(Y (τ) ≡ 0) = P(−1,0)(Y (τ) ≡ 1) = P(−1,1)(Y (τ) ≡ 0) =
√

2− 1.
(2.11)

With the help of (2.11) we calculate the transition probabilities of the embedded Markov chain Ẑ on {−0,+0}×
{0, 1}:

P =

(−0, 0) (−0, 1) (+0, 0) (+0, 1)

(−0, 0) α 1− α 0 0
(−0, 1) (1− p)(1− α) (1− p)α p(1− α) pα
(+0, 0) qα q(1− α) (1− q)(1− α) (1− q)α
(+0, 1) 0 0 α 1− α

Solving the forward Kolmogorov equation (PT − Id)π = 0 we obtain the stationary law π of Ẑ:

π(−0,0) =
q(1− α) + pq(2α− 1)

2(p+ q)(1− α) + pq(2α− 1)
, π(−0,1) =

q(1− α)

2(p+ q)(1− α) + pq(2α− 1)
,

π(+0,0) =
p(1− α)

2(p+ q)(1− α) + pq(2α− 1)
, π(+0,1) =

p(1− α)

2(p+ q)(1− α) + pq(2α− 1)
,

and calculate the effective permeability and the effective slide according to (2.4) and (2.5):

γ =
2(p− q)(1− α) + pq(2α− 1)

2(p+ q)(1− α) + pq(2α− 1)
,

c =
2p(1− α)

2(p+ q)(1− α) + pq(2α− 1)
.

(2.12)

Clearly, setting q = 0 we obtain γ = 1 and c = 1 as in the previous case 2. �

The idea of the proof of the Theorem 2.1 consists in a decomposition of the process Z into excursions starting
and ending on the membrane H. The excursions have a probability law of excursions of a symmetric random
walk.
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If the membrane is homogeneous (k2 = · · · = km = 1), then it is well know that the scaled limit of the
x-coordinate is a skew Brownian motion, see Harrison and Shepp [10]. To control the slide in the y-component
we only have to control the number of visits of the x-coordinate of the Markov chain to 0. However, if the
membrane is periodic with a non-trivial period, then the sign of the x-coordinate of an excursion is selected in
accordance with the transition probabilities (2.2), i.e., its sign depends on the position of the random walk at
the last visit to the membrane. The slide along the y-subspace depends on that position too.

Due to the periodicity assumption (2.2), there is d = 2|U | := 2k2 · · · km different types of excursions between
consecutive visits of the membrane. In order to treat this number of excursions at the same time we have to
consider a natural generalization of the skew Brownian motion, namely, a Walsh Brownian motion. Hence we
will show that the family of d one-sided random walks converge to a Walsh Brownian motion. This will allow
us to derive the effective permeability and sliding parameters.

3. Walsh’s Brownian motion and its martingale
characterizations

Walsh’s Brownian motion (WBM) was introduced in the Epilogue of Walsh [37] as a diffusion on d rays on
a two-dimensional plane with the common origin. On each ray WBM, is a standard one-dimensional Brownian
motion that however can change the ray upon hitting the origin, i.e., each ray is characterized by a weight pi > 0,
i = 1, . . . , d, p1 + · · ·+ pd = 1, that heuristically can be understood as a probability to go on the ray number i.
Hence, the conventional WBM is a process X on the plane expressed in polar coordinates as X = (Rt, θt) where
R is the reflecting Brownian motion and θ is a random process taking values on the set of d angles on [0, 2π)
and being constant during each excursion of R from 0. This representation has been used in various works on
WBM including Barlow et al. [1], Freidlin and Sheu [5], Hajri [8], Hajri and Touhami [9], and Karatzas and
Yan [15].

In this paper prefer to embed the WBM into a d-dimensional Euclidean space as it was indicated in Walsh
[37]. To this purpose, let E be the union of non-negative coordinate half-axes in Rd, i.e.,

E = {x ∈ Rd : xi ≥ 0 and xixj = 0, i 6= j, i, j = 1, . . . , d}.

We fix probabilities p1, . . . , pd > 0, p1 + · · · + pd = 1, and also denote qi = 1 − pi, i = 1, . . . , d. Let also
(Ω,F ,F,P) be a filtered probability space satisfying the usual hypotheses. Then adopting the Markovian
characterization of the WBM from Barlow et al. [1], we say that WBM is a time-homogeneous continuous Feller
Markov process X = (X1, . . . , Xd) on E with the one-dimensional laws given by

E0eλ1X1(t)+···+λdXd(t) =

d∑
k=1

pkE0eλk|W (t)|,

Exeλ1X1(t)+···+λdXd(t) = Exj

[
1I(t < τ0)eλjW (t)

]
+

d∑
k=1

pkExj

[
1I(t ≥ τ0)eλk|W (t)|

]
= Exj

[ d∑
k=1

pkeλk|W (t)|
]

+ Exj

[
1I(t < τ0)

(
eλjW (t) −

d∑
k=1

pkeλkW (t)
)]
,

x = (0, . . . , xj , . . . , 0), xj > 0, λ ∈ Cd,

W is a standard Brownian motion and τ0 = inf{t ≥ 0: Wt = 0}. Notice that the last expectation can be
considered as the expectation of a killed Brownian motion.

In Barlow et al. [1], the authors also gave the martingale characterization of the WBM realized as a process
on the plane. In terms of the d-dimensional realization X of the WBM, their characterization takes the following
form.
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Theorem 3.1 (Propositon 3.1 and Theorem 3.2 in Barlow et al. [1]). Let X = (X1(t), . . . , Xd(t))t≥0 be an
adapted continuous process. Then X is a WBM with parameters p1, . . . , pd > 0 if and only if it satisfies the
following conditions:

1. Xi(t) ≥ 0 and Xi(t)Xj(t) = 0 for all i 6= j and t ≥ 0;
2. for each i = 1, . . . , d the process

Ni(t) := qiXi(t)− pi
∑
j 6=i

Xj(t), t ≥ 0,

is a continuous martingale with respect to F;
3. for each i = 1, . . . , d the process

(Ni(t))
2 −

∫ t

0

(
qi1I(Xi(s) > 0)− pi1I(Xi(s) = 0)

)2
ds, t ≥ 0, (3.1)

is a continuous martingale with respect to F.

Note that since the product of the indicator functions in (3.1) is identically zero, we have

〈Ni〉t =

∫ t

0

(
qi1I(Xi(s) > 0)− pi1I(Xi(s) = 0)

)2
ds

=

∫ t

0

(
q2i 1I(Xi(s) > 0) + p2i 1I(Xi(s) = 0)

)
ds.

Furthermore, it is clear, see Lemma 2.2 in Barlow et al. [1], that the radial process

R(t) :=

d∑
i=1

Xi(t) = max
1≤i≤d

Xi(t)

is a reflecting Brownian motion, and hence it has a local time at 0 defined by:

LX(t) := LR(t) := lim
ε→0+

1

2ε

∫ t

0

1I
(

max
1≤i≤d

Xi(s) ≤ ε
)

ds. (3.2)

In the following theorem we give an equivalent martingale characterization of the WBM that better fits into
the setting of this paper.

Theorem 3.2. Let X = (X1(t), . . . , Xd(t))t≥0 and ν = (ν(t))t≥0 be adapted continuous processes. Then X is a
WBM with parameters p1, . . . , pd > 0, and ν is the local time of X at 0 if and only if they satisfy the following
conditions:

a) Xi(t) ≥ 0 and Xi(t)Xj(t) = 0 for all i 6= j, t ≥ 0;
b) ν(0) = 0, ν is nondecreasing a.s.,

∫∞
0

1I(X(s) 6= 0) dν(s) = 0 a.s.;
c) the processes M1, . . . ,Md defined by

Mi(t) := Xi(t)− piν(t), t ≥ 0, (3.3)
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are continuous square integrable martingales with respect to F with the predictable quadratic variations

〈Mi〉t =

∫ t

0

1I(Xi(s) > 0) ds. (3.4)

d)
∫∞
0

1I(X(s) = 0) ds = 0 a.s.

Remark 3.3. There is a typo in §3 in Barlow et al. [1] (p. 281). One should remove the indicator 1Ir>0 in the
formula for hi(r, θ), otherwise the zero process is also a solution of equations (3.2) or (3.3) from their paper.
Note that condition (d) in our Theorem 3.2 prohibits 0 to be a sticky point of X.

Proof. We will show that conditions 1–3 of Theorem 3.1 and a)–d) of Theorem 3.2 are equivalent.
i) We show that a)–d) ⇒ 1–3.

First, it is obvious that a) implies 1.
By c), each process Ni is a martingale as a linear combination of martingales:

Ni(t) = qiXi(t)− pi
∑
j 6=i

Xj(t)

= qi(Mi(t) + piν(t))− pi
∑
j 6=i

(Mj(t) + pjν(t))

= qiMi(t)− pi
∑
j 6=i

Mj(t).

Observe that quadratic covariations 〈Mi,Mj〉 vanish for i 6= j. Indeed, applying the Cauchy-type inequality
for quadratic covariations (Proposition 15.10 in Kallenberg [14]) we get

〈Mi,Mj〉t =

∫ t

0

d〈Mi,Mj〉s =

∫ t

0

(
1I(Xi(s) > 0) + 1I(Xi(s) = 0)

)
d〈Mi,Mj〉s

≤
(∫ t

0

1I(Xi(s) > 0) d〈Mj〉s ·
∫ t

0

d〈Mi〉s
)1/2

+
(∫ t

0

1I(Xi(s) = 0) d〈Mi〉s ·
∫ t

0

d〈Mj〉s
)1/2

≤
(∫ t

0

1I(Xi(s) > 0)1I(Xj(s) > 0) ds · t
)1/2

+
(∫ t

0

1I(Xi(s) = 0)1I(Xi(s) > 0) ds · t
)1/2

= 0

Consequently with the help of c) we obtain the martingale property 3. Indeed, by the Itô formula we get

(Ni(t))
2 = (Ni(0))2 + 2

∫ t

0

Ni(s) dNi(s) + 〈Ni〉t

= (Ni(0))2 + 2qi

∫ t

0

Ni(s) dMi(s)− 2pi
∑
j 6=i

∫ t

0

Ni(s) dMj(s)

+ q2i 〈Mi〉t + p2i
∑
j 6=i

〈Mj〉t.
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We have ∫ t

0

(
qi1I(Xi(s) > 0)− pi1I(Xi(s) = 0)

)2
ds =

∫ t

0

(
q2i 1I(Xi(s) > 0) + p2i 1I(Xi(s) = 0)

)
ds

= q2i 〈Mi〉t + p2i
∑
j 6=i

〈Mj〉t,

where we used (d) in the last equality. Hence we get the property 3.
Show that the process ν is the local time of X at zero. Let LX be the local time of X at zero and let

R(t) = max
1≤i≤d

Xi(t) =

d∑
i=1

Xi(t)

be the radial part of the WBM X. By Lemma 2.2 in Barlow et al. [1], R is a reflecting Brownian motion with
a local time LR, and hence

R(t)− LR(t)

is a Brownian motion. On the other hand

R(t)− ν(t) =

d∑
i=1

Mi(t)

and Z(t) :=
∑d
i=1Mi(t) is a continuous martingale with the bracket (we use 3.)

〈Z〉t =

d∑
i=1

∫ t

0

1I(Xi(s) > 0) ds = t,

thus, Z is a F-Brownian motion. By the uniqueness of the semimartingale decomposition, ν = LR. Notice that
LR = LX .
ii) We show that 1–3 ⇒ a)–d).

Let X be a WBM. Denote ν := LX its local time at 0. The properties a), b) and d) follow immediately.
For each i = 1, . . . , d consider the process

Yi(t) = Xi(t)−
∑
j 6=i

Xj(t), t ≥ 0. (3.5)

and a rescaled martingale

Ñi(t) :=
1

piqi
Ni(t) =

1

pi
Xi(t)−

1

qi

∑
j 6=i

Xj(t), t ≥ 0, (3.6)

with the bracket

〈Ñi〉t =

∫ t

0

( 1

p2i
1I(Xi(s) > 0) +

1

q2i
1I(Xi(s) = 0)

)
ds.
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Then obviously

1I(Ni(s) > 0) = 1I(Ñi(s) > 0) = 1I(Xi(s) > 0) = 1I(Yi(s) > 0),

1I(Ni(s) < 0) = 1I(Ñi(s) < 0) = 1I(Yi(s) < 0).

Consider the processes

Wi(t) :=

∫ t

0

(
pi1I(Ñi(s) > 0) + qi1I(Ñi(s) < 0)

)
dÑi(s).

These process are continuous martingales with the bracket

〈Wi〉t = t,

hence they are Brownian motions. Denoting ai(x) := 1
pi

1I(x > 0) + 1
qi

1I(x < 0) we get that Ñi satisfies the SDE

Ñi(t) = Ñ0 +

∫ t

0

ai(Ñi(s)) dWi(s),

and hence each Ni is the so-called oscillating Brownian motion, see Keilson and Wellner [16]. By Nakao’s
theorem, see Nakao [22], this SDE has a unique strong solution. Let ri(x) = pi1I(x > 0) + qi1I(x < 0). Taking
into account (3.5), (3.6) and the property a) we get that

Yi = ri(Ñi).

Repeating literally the calculations from Section 5.2 in Lejay [17] we get that

Yi(t) = Yi(0) +Wi(t) + (2pi − 1)LYi(t),

where LYi(t) is the symmetric local time of Yi at 0.
Hence Yi is a skew Brownian motion with parameter (2pi − 1). Moreover the radial process R = |Yi| = |X|

is a reflected Brownian motion and

R(t) = |Yi(t)| = R(0) +

∫ t

0

sgn(Yi) dWi(s) + LYi(t).

Futhermore,

R(t) = R(0) +W (t) + LR(t)

for some Brownian motion W . From the uniqueness of the decomposition of R as a semimartingale we get that
LYi = LR for all i = 1, . . . , d.

It follows from Theorem 1.7, Chapter VI of [35] that the right and left local times of Yi at 0 are equal to

LYileft(t) = 2(1− pi)LYi(t), LYiright(t) = 2piL
Yi(t).
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Finally Tanaka’s formula yields

Xi(t) = max{Yi(t), 0}

= max{Yi(0), 0}+

∫ t

0

1I(Yi(s) > 0) dWi(s) +
1

2
LYiright(t)

= max{Yi(0), 0}+

∫ t

0

1I(Yi(s) > 0) dWi(s) + piL
R(t),

and thus the process Mi = Xi − piν is a continuous martingale with the bracket (3.4).

Corollary 3.4. Let X = (X1(t), . . . , Xd(t))t≥0 be a WBM with parameters p1, . . . , pd > 0 and let I ⊆ {1, . . . , d}.
Let

γ =
∑
i∈I

pi −
∑
j∈Ic

pj = 2
∑
i∈I

pi − 1 ∈ [−1, 1].

Then the process

Xγ(t) :=
∑
i∈I

Xi(t)−
∑
j∈Ic

Xj(t), t ≥ 0,

is a skew Brownian motion with the parameter γ.

Proof. Without loss of generality assume that I = {1, . . . , k} for some 0 ≤ k ≤ d. By Theorem 3.2, the process

W (t) =

k∑
i=1

Mi(t)−
d∑

j=k+1

Mj(t)

is a continuous martingale. Taking into account (3.3) we get

W (t) = Xγ(t)− γν(t).

Since the local times at 0 of X and Xγ coincide, we get

W (t) = Xγ(t)− γL(t)

where L is the local time of Xγ at 0. The bracket of the martingale W equals

〈W 〉t =

d∑
i=1

∫ t

0

1I(Xi(s) > 0) ds = t,

and thus W is a Brownian motion. In other words, Xγ satisfies the SDE Xγ(t) = W (t) + γL(t) and thus is a
skew Brownian motion, see Harrison and Shepp [10].

4. Proof of Theorem 2.1

Consider the Markov chain Z = (X , Y ) on the enlarged state space {±0,±1, . . . }×Zm−1. Let us decompose
the process X into 2|U | non-negative excursions parameterized by the elements of the set {−0,+0}×U . By σn,
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n ≥ 0, denote the time instant of the last visit of the random walk Z to H before time n, i.e.,

σn := max
{
k ≤ n : X (k) ∈ {−0,+0}

}
, σ0 = 0.

Consider 2|U | processes

Xj,+(n) := X(n)1I(Y (σn) ≡ j,X(n) > 0),

Xj,−(n) := |X(n)|1I(Y (σn) ≡ j,X(n) < 0), j ∈ U,
(4.1)

and introduce a 2|U |-dimensional random sequence {(Xj,+(n), Xj,−(n))j∈U}n≥0 on N2|U |
0 . Observe that all its

coordinates are non-negative, only one coordinate of the vector (Xj,+(n), Xj,−(n))j∈U may be non-zero, and
Xj,±(σn) = 0.

To study the limit behavior of the scaled process Xn(·) defined in (2.10) we will prove that the properly scaled
2|U |-dimensional process (Xj,+(n), Xj,−(n))j∈U converges to a WBM with parameters {π(+0,j), π(−0,j)}j∈U . To
this end, for each j ∈ U we decompose the processes Xj,+ and Xj,− into a sum of a martingale and a “local
time in 0”, namely we set

Xj,±(n) =

n∑
k=1

(Xj,±(k)−Xj,±(k − 1))1I(Xj,±(k − 1) > 0)

+

n∑
k=1

1I(Xj,±(k − 1) = 0, Xj,±(k) = 1)

=: M j,±(n) + Lj,±(n), M j,±(0) = Lj,±(0) = 0.

(4.2)

Since the Z is a symmetric random walk outside of H, it follows from the construction that

E
[
(Xj,±(k)−Xj,±(k − 1))1I(Xj,±(k − 1) > 0)

∣∣∣Fk−1

]
= 1I(Xj,±(k − 1) > 0) ·E

[
Xj,±(k)−Xj,±(k − 1)

∣∣∣Fk−1

]
= 0

and the sequences (M j,+(n))n≥0 and (M j,−(n))n≥0 are martingales for any j ∈ U with respect to filtration
(Fn)n≥0 generated by Z. Moreover, since

〈M j,±〉n =

n∑
k=1

E
[
(Xj,±(k)−Xj,±(k − 1))2 · 1I(Xj,±(k − 1) > 0)

∣∣∣Fk−1

]
=

1

m

n∑
k=1

1I(Xj,±(k − 1) > 0),

the sequences

(M j,±(n))2 − 1

m

n∑
k=1

1I(Xj,±(k − 1) > 0), n ≥ 0,

are martingales too.
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We set

Xj,±
n (t) :=

Xj,±([nt])√
n

, M j,±
n (t) :=

M j,±([nt])√
n

, νj,±n (t) :=
Lj,±([nt])√

n
. (4.3)

Proposition 4.1. There are continuous processes {X±j }j∈U , continuous martingales {M±j }j∈U and a nonde-
creasing process ν such that

(Xj,±
n ,M j,±

n , νj,±n )j∈U ⇒ (X±j ,M
±
j , p

±
j ν)j∈U , n→∞, (4.4)

where

p±j = Eπ1I(X (1) = ±1, Y (0) = j)

= π(+0,j)P(+0,j)(X (1) = ±1) + π(−0,j)P(−0,j)(X (1) = ±1), j ∈ U.

Moreover, the process
√
m(X±j ,M

±
j , p

±
j ν)j∈U satisfies conditions of Theorem 3.2.

To prepare the proof of Proposition 4.1 we notice that in problems of this type it is often helpful to start
with the study of the radial process

S(n) :=
∑
j∈U

(Xj,−(n) +Xj,+(n)), n ≥ 0.

The process S = {S(n)}n≥0 is a Markov chain on N ∪ {0} with reflection at 0 whose steps in N have the
distribution

P
(
S(n+ 1) = j − 1

∣∣∣S(n) = j
)

= P
(
S(n+ 1) = j + 1

∣∣∣S(n) = j
)

=
1

2m
,

P
(
S(n+ 1) = j

∣∣∣S(n) = j
)

= 1− 1

m
, j ≥ 1,

P
(
S(n+ 1) = 1

∣∣∣S(n) = 0
)

= 1.

Set

L(n) :=

n−1∑
k=0

1I(X(k) = 0) =

n−1∑
k=0

1I(S(k) = 0) =
∑
j∈U

(L+
j (n) + L−j (n)), n ≥ 0, (4.5)

L(n) being the number of visits of S to the origin up to time n.

Lemma 4.2. We have the weak convergence

(S([n·])√
n

,
L([n·])√

n

)
⇒ 1√

m

(
|B(·)|, L0(·)

)
, n→∞,

where B is a standard Brownian motion, L0(·) is a local time of B at 0 defined by (3.2).

Proof. Whereas the convergence of the reflected random walks to a reflected Brownian motion is straightforward,
certain work should be done to ensure the convergence of the local times.
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Let {ξk}k≥1 be a sequence of iid random variables, P(ξk = ±1) = 1
2m ,P(ξk = 0) = 1− 1

m . Consider a random

walk Q(n) =
∑n
k=1 ξk, Q(0) = 0. We recursively construct a reflected sequence Q̃ setting

Q̃(0) = 0, N(0) = 0,

N(n+ 1) =

{
N(n) + 1, if Q̃(n) = 0,

N(n), if Q̃(n) > 0,

Q̃(n) = Q(n−N(n)) +N(n).

Notice that {(Q̃(n), N(n))}n≥0
d
= {(S(n), L(n))}n≥0. It also clear that

N(n) ≤ − min
0≤k≤n

Q(n) + 1,

so that N(n)/n→ 0, n→∞ a.s. Consequently,

[nt]−N([nt])

n

a.s.→ t, n→∞,

uniformly on each interval [0, T ], T > 0.
We have the following estimate of the modulus of continuity of Q̃ and N : for all n, k ≥ 1

max
|i−j|≤k
1≤i≤j≤n

|Q̃(k)− Q̃(l)| ≤ 2 max
|i−j|≤k
1≤i≤j≤n

|Q(k)−Q(l)|+ 2,

max
|i−j|≤k
1≤i≤j≤n

|N(k)−N(l)| ≤ max
|i−j|≤k
1≤i≤j≤n

(
|Q̃(k)− Q̃(l)|+ |Q(k −N(k))−Q(l −N(l))|

)
≤ 3 max

|i−j|≤k
1≤i≤j≤n

|Q(k)−Q(l)|+ 2.

These estimates together with the convergence
√
mQ([n·])√

n
⇒ B(·) yield that the sequence

{√
m
( Q̃([n·])√

n
,
Q([n·])√

n
,
N([n·])√

n

)}
n≥1

is weakly relatively compact and any of its limit points (A,B,C) is a continuous process such that

a) A(t) ≥ 0 and A(t) = B(t) + C(t), t ≥ 0,
b) B is a standard Brownian motion,
c) C is a nondecreasing process, C(0) = 0,

∫∞
0

1I(A(s) > 0) dC(s) = 0.

This means that the pair (A,C) is a solution to the Skorokhod problem for B, see for example Chapter 1 in
Pilipenko [27], i.e.,

A(t) = B(t)− min
s∈[0,t]

B(s), C(t) = − min
s∈[0,t]

B(s).

The joint convergence

√
m
( Q̃([n·])√

n
,
Q([n·])√

n
,
N([n·])√

n

)
⇒ (A,B,C), n→∞,
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follows from uniqueness of the solution to the Skorokhod problem.

Eventually, it is well known that (A(t), C(t))t≥0
d
= (|B(t)|, L0(t))t≥0 by Lévy’s theorem, see, e.g. Corollary

19.3 of [14]. The Lemma is proved.

Lemma 4.3. The sequence {(Xj,±
n (·),M j,±

n (·), νj,±n (·))j∈U}n≥1 is weakly relatively compact in D([0, T ],R6|U |)
and any limit point is a continuous processes.

Proof. Notice that the modulus of continuity (in the uniform topology) of any Xj,±
n is dominated by doubled

modulus of continuity of {S(n·)/
√
n}, and the modulus of continuity of any M j,±

n is dominated by doubled
modulus of continuity of Xj,±

n . The third coordinate is the difference of the first two. Hence the statement of
this Lemma follows from Lemma 4.2.

Proof of Proposition 4.1. To show convergence {(Xj,±
n )j∈U}n≥0 to the WBM it suffices to verify that for any

subsequence {(Xj,±
nk

)j∈U}k≥0 there is a subsubsequence that converges to the WBM. Due to Lemma 4.3 without

loss of generality we will assume that the sequence
{(
Xj,±
n (·),M j,±

n (·), νj,±n (·)
)
j∈U

}
n≥1

converges in distribution

to a continuous process
(
Xj,±(·),M j,±(·), νj,±(·)

)
j∈U

.

Let us check the conditions a)–d) of Theorem 3.2 for the process
√
m
(
Xj,±(·),M j,±(·), νj,±(·)

)
j∈U

.

a) It follows from the construction that Xj,±(t) ≥ 0, t ∈ [0, T ]. Moreover, only one of these processes may be
positive at any fixed time.

b) and d) The processes νj,±(·) are non-decreasing a.s. and νj,±(0) = 0. Lemma 4.2 yields that

(
|X(·)|, ν(·)

)
d
=

1√
m

(
|B(·)|, L0(·)

)
,

where

ν(t) =
∑
j∈U

(νj,−(t) + νj,+(t)).

Since
∫ T
0

1I(B(t) = 0) dt = 0 and
∫ T
0

1I(|B(t)| > 0) dL0(t) = 0 a.s. for any T > 0, we have

∫ T

0

1I(|X(t)| = 0) dt = 0,∫ T

0

1I(|X(t)| > 0) dν(t) = 0

almost surely.

c) It follows from the construction that

Xj,±(t) = M j,±(t) + νj,±(t) a.s.

for all j ∈ U, t ≥ 0. To show that

νj,±(t) = p±j ν(t) a.s. (4.6)
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we recall the strong law of large numbers (2.7) for Markov chains. For any t > 0 the process L([nt]) defined in
(4.5) increases to +∞ a.s. as n→∞. Hence

νj,±n (t)∑
k∈U ν

k,−
n (t) +

∑
k∈U ν

k,+
n (t)

=
1

L([nt])

L([nt])∑
k=0

1I(Y (τk) ≡ j,X (τk + 1) = ±1)

→ Eπ1I(X (1) = ±1, Y (0) = j)

= π(+0,j)P(+0,j)(X (1) = ±1) + π(−0,j)P(−0,j)(X (1) = ±1) a.s.

The processes M j,±
n (·), j ∈ U , are local martingales with respect to the filtration generated by the process

{Xj,±
n (·),M j,±

n (·)}j∈U . Since the jumps of each M j,±
n (·) are uniformly bounded, the limits M j,± are local

martingales with respect to filtration generated by {Xj,±,M j,±}j∈U due to Lemma 1.17 in Chapter IX of Jacod
and Shiryaev [13]. Moreover, the limit processes are continuous due to Lemma 4.3.

It is left to show that

〈M j,±〉t =
1

m

∫ t

0

1I(Xj,±(s) > 0) ds a.s. for j ∈ U, t ≥ 0. (4.7)

By Skorokhod’s representation theorem there is a probability space and the copies{(
X̃j,±
n (·), M̃ j,±

n (·), ν̃j,±n (·)
)
j∈U

}
n≥1

and
{(
X̃j,±(·), M̃ j,±(·), ν̃j,±(·)

)
j∈U

}
of {(

Xj,±
n (·),M j,±

n (·), νj,±n (·)
)
j∈U

}
n≥1

and
{(
Xj,±(·),M j,±(·), νj,±(·)

)
j∈U

}
such that on any interval [0, T ] we have a.s. uniform convergence(

X̃j,±
n (·), M̃ j,±

n (·), ν̃j,±n (·)
)
j∈U
→
(
X̃j,±(·), M̃ j,±(·), ν̃j,±(·)

)
j∈U

, n→∞. (4.8)

To prove (4.7) it suffices to verify that with probability 1 the sequence

(
M̃ j,±
n (t)

)2
− 1

m

∫ [nt]/n

0

1I(X̃j,±
n (s) > 0) ds

converges uniformly over t ∈ [0, T ] to

(M̃ j,±(t))2 − 1

m

∫ t

0

1I(X̃j,±(s) > 0) ds.

Here we again use Lemma 1.17 in Chapter IX of Jacod and Shiryaev [13] and a localization procedure. It follows
from (4.8) that we have to prove the convergence of the integrals only.

Let ω ∈ Ω be such that (4.8) holds. If s ∈ [0, T ] is such that X̃k,s(s) > 0 for some 1 ≤ k ≤ |U | and s ∈
{−,+} then X̃k,s

n (s) > 0 for large n. Since only one of the processes {X̃j,s(s)}j∈U,s∈{−,+} and only one of

{X̃j,s
n (s)}j∈U,s∈{−,+} may be non-zero we have convergence of the indicators for all j ∈ U :

lim
n→∞

1I(X̃j,±
n (s) > 0) = 1I(X̃j,±(s) > 0). (4.9)
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The process X̃ = (X̃j,+, X̃j,−)j∈U spends zero time in 0 with probability 1 because
√
m
∑|U |
j=1(X̃j,+ + X̃j,−)

is a reflected Brownian motion, see Lemma 4.2. Therefore for a.a. ω and a.a. s ∈ [0, T ] there is k and s such
that X̃k,s(s) > 0 and we have (4.9) for any index (j,±), j ∈ U . So by the Fubini theorem and by the Lebesgue
dominated convergence theorem for a.a. ω and all j ∈ U we have convergence of the integrals

lim
n→∞

∫ t

0

1I(X̃j,±
n (s) > 0) ds =

∫ t

0

1I(X̃j,±(s) > 0) ds.

This completes the proof of Proposition 4.1. �

To treat convergence of Y , similarly to the representation (4.2) for {Xj,±(n)} we decompose the sequence
Y = {Y (n)}n≥0 into the sum

Y (n) =

n−1∑
k=0

(
Y (k + 1)− Y (k)

)
1I(X(k) 6= 0)

+
∑
j∈U

n−1∑
k=0

(
Y (k + 1)− Y (k)

)
1I(X (k) = ±0, Y (k) ≡ j)

= MY (n) +DY (n), n ≥ 0,

and we define

MY
n (t) :=

MY ([nt])√
n

, DY
n (t) :=

DY ([nt])√
n

.

The following Proposition is proven analogously to the previous reasoning.

Proposition 4.4. Let X and ν be as in Proposition 4.1. Then

(
Xn(·), νn(·),MY

n (·), DY
n (·)

)
⇒
(
X(·), ν(·), 1√

m
WY (·), cν(·)

)
,

where WY is a (m− 1)-dimensional Brownian motion independent of X, and c is defined in (2.5).

Proof of Theorem 2.1. We combine Propositions 4.1 and 4.4 together with Corollary 3.4. �

5. One-sided membrane with ergodic properties

The same method of decomposition of the perturbed Markov chain into a sum of excursions combined with
the strong law of large numbers (2.6) can be applied for the analysis of a one-sided membrane that has ergodic
properties.

As in Section 2, let m ≥ 2 and let {e1, . . . , em} be a standard basis in Rm. Consider a Markov chain
Z = (X,Y ) on Zm that behaves as a simple random walk outside of the hyperplane H := {0} × Zm−1, i.e.,
(2.1) holds true.

Let {py}y∈H ⊂ [0, 1]. Now we interpret H as a semipermeable non-homogeneous membrane that may let a
particle into one half-space with probabilities {py}y∈H . More precisely, we assume that for each z = (0, y) ∈ H:

py = P
(
Z(n+ 1) = z + e1

∣∣∣Z(n) = z
)

= 1−P
(
Z(n+ 1) = z − e1

∣∣∣Z(n) = z
)
.
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Note that the particle leaves the membrane in the direction orthogonal to H, i.e., Y (n+ 1) = Y (n) for Z(n) ∈ H
with probability 1, and hence there is no slide along the membrane.

We assume that the membrane has the following ergodic property:
ASLLN(β): there is β > 0 such that

lim
A→∞

1

|V (A, o)|
∑

y∈V (A,o)

py =: p̄ ∈ [0, 1] a.s.,

where the limit is taken over all cubes V (A, o) ⊆ H of volume |V (A, o)| with side size larger than A and whose
centre o is within distance Aβ from the origin.

We give two clarifying examples for the assumption ASLLN(β).

Example 5.1. Assume that the family {py}y∈H has a periodic structure: there are k2, . . . , km ≥ 1 such that
for all l2, . . . , lm ∈ Z and for all y ∈ H

py = py+k2l2e2+···+kmlmem .

Then {py} clearly satisfy assumption ASLLN(β) for any β > 0 with

p̄ =
1

k2 · · · km

k2,...,km∑
i2,...,im=1

p(i2,...,im).

Example 5.2. Let {py}y∈H be i.i.d. random variables with values in [0, 1] defined on a probability space
(Ω′,F ′,P′). Then for each fixed ω′ ∈ Ω′ the family {py(ω′)} defines a random “environment”. Then the
assumption ASLLN(β) with β > 0 is satified with

p̄ = E′py.

To see this, let β > 0, and let V (A, o) denote a cube with the size A ∈ N and the centre at o ∈ Zm−1. Then

P
( 1

|V (A, o)|
∑

y∈V (A,o)

py 6→ p̄
)

= P
( ∞⋃
m=1

∞⋂
k=1

∞⋃
A=k

⋃
|o|≤Aβ

{ 1

|V (A, o)|

∣∣∣ ∑
y∈V (A,o)

(py − p̄)
∣∣∣ > 1

m

})
. (5.1)

For each m ≥ 1 and A ≥ 1 we apply Hoeffding’s inequality, see Chapter III, §5.8 in Petrov [26]:

P
( ⋃
|o|≤Aβ

{ 1

|V (A, o)|

∣∣∣ ∑
y∈V (A,o)

(py − p̄)
∣∣∣ > 1

m

})
≤ (2Aβ)m−1P

( 1

|V (A, o)|

∣∣∣ ∑
y∈V (A,o)

(py − p̄)
∣∣∣ > 1

m

)
≤ 2(2Aβ)m−1e−2|V (A,o)|/m2

= 2(2Aβ)m−1e−2A
m−1/m2

.

Hence, the probability in (5.1) equals to 0.

Theorem 5.3. Let assumption ASLLN(β) holds true for some β > 1. Then for any initial value Z(0) ∈ Zm the
weak convergence holds true:

(Xn, Yn)⇒ 1√
m

(Xγ , Y 0), n→∞,

where Xγ and Y 0 are defined in (2.8) and (2.9), with γ = 2p̄− 1, and c = 0.
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Proof. 1. Without loss of generality assume that Z(0) = 0. As in Section 4 we decompose the Markov chain
Z = (X,Y ) into the “left” and the “right” excursions. Since the membrane is one-sided, and there is no need
of introducing the set U , the notation of Section 4 simplifies significantly. Similarly to (4.1) we define

X+(n) := X(n) · 1I(X(n) > 0),

X−(n) := |X(n)| · 1I(X(n) < 0),

so that

X(n) = X+(n)−X−(n), n ≥ 0.

Then we decompose these processes similarly to (4.2) as

X±(n) =

n∑
k=1

(
X±(k)−X±(k − 1)

)
· 1I(X±(k − 1) > 0) +

n∑
k=1

1I(X±(k − 1) = 0, X±(k) = 1)

=: M±(n) + L±(n), M±(0) = L±(0) = 0.

The processes M± are martingales, and L± are non-decreasing processes. Recall the processes Xn(·) and Yn(·)
defined in (2.10), and define additionally the scaled processes X±n , M±n , ν± similarly to (4.3) (omitting the
index j), so that

Xn(t) = X+(t)−X−(t), Mn(t) = M+(t)−M−(t), νn(t) := ν+n (t) + ν−n (t).

Analogously to reasoning of the previous section (Propositions 4.1 and 4.4), we have that the sequence

{(X+
n , X

−
n , Xn,M

+
n ,M

−
n ,Mn, ν

+
n , ν

−
n , νn, Yn)}n≥0

is weakly relatively compact in D(R+,R10) each its limit point (X+, X−, X,M+,M−,M, ν+, ν−, ν, Y ) is
continuous, and

X(t) = X+(t)−X−(t), M(t) = M+(t)−M−(t), ν(t) = ν+(t) + ν−(t),

where M+ and M− are local martingales with the brackets

〈M±〉t =
1

m

∫ t

0

1I(X±(s) > 0) ds.

Moreover, the process
√
m|X| =

√
m(X+ +X−) is a standard reflected Brownian motion,

√
mν is its local time

at 0, and the process
√
mY is a standard (m− 1)-dimensional Brownian motion independent of X.

Hence to prove Theorem 5.3 it remains to show that

ν+(t)

ν(t)
= p̄ a.s. for all t > 0. (5.2)

To verify this, it suffices to prove that

lim
n→∞

ν+n (t)

νn(t)
= lim
n→∞

L+([nt])

L([nt])
= p̄ a.s. for all t > 0. (5.3)
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2. Let τk be the moment of kth visit of X to 0, k ≥ 0, τ0 = 0, so that Z(τk) = (0, Y (τk)). By the strong Markov

property we have

Law(τk − (τk−1 + 1)) = Law(τ |X(0) = 1), k ≥ 1,

and

Law(Y (τk)− Y (τk−1)) = Law(Y (τ)|X(0) = 1, Y (0) = 0), k ≥ 1,

where τ is the first return time to zero of X,

τ = inf{k ≥ 1: X(k) = 0}.

It is well known that τk <∞ a.s. and τk → +∞ a.s. as k →∞. Hence

Y (τn) =

n∑
k=1

(
Y (τk)− Y (τk−1)

)
, n ≥ 0,

is a random walk on Zm−1 whose jumps have the probability distribution Law(Y (τ)|X(0) = 1, Y (0) = 0).
We claim that

Y (τn)

n

d→ S, n→∞, (5.4)

where S is a 1-stable random variable on Rm−1 with the characteristic function Eei〈u,S〉 = e−|u|/
√
m, u ∈ Rm−1.

Indeed, for each n ≥ 1 consider the symmetric random walk Z̃ = (X̃, Ỹ ) on Zm starting at Z̃(0) = (n, 0, . . . , 0).
Denote

τ̃0 = 0,

τ̃1 = inf{k ≥ 1: X̃(k) = n− 1},
· · ·

τ̃n = inf{k ≥ 1: X̃(n) = 0}.

Then clearly

(τ1, . . . , τn, Y (τ1), . . . , Y (τn))
d
= (τ̃1, . . . , τ̃n, Ỹ (τ̃1), . . . , Ỹ (τ̃n))

By the functional central limit theorem,

Law
(√

m
Z̃([n2 ·])

n

∣∣∣Z̃(0) = (n, 0, . . . , 0)
)
⇒ Law

(
W (·)

∣∣∣W (0) = (1, 0 . . . , 0)
)
,

where W is a standard m-dimensional Brownian motion, and thus(
n2τ̃n, n

−1√mỸ (τ̃n)
)

d→
(
τW ,

(
W2(τW ), . . . ,Wm(τW )

))
,

where τW = inf{t ≥ 0: W1(t) = 0}. It is well known that (W2(τW ), . . . ,Wm(τW )) is a 1-stable random vector,
see, e.g., Theorem II.1.16 in Bass [2].
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3. With (5.4) in hand, we apply Theorem 1.3 from Dolgopyat et al. [4], that states that under the assumption
ASLLN(β) with β > 1

1

n

n−1∑
k=0

pY (τk) → p̄ a.s., n→∞.

4. Now we are able to finish the proof of (5.2) Then

L+(n) =

n−1∑
k=0

1I(X(k) = 0, X(k + 1) = 1) =
∑

k : τk≤n−1

1I(X(τk + 1) = 1),

L(n) =

n−1∑
k=0

1I(X(k) = 0) = max{k ≥ 1: τk ≤ n− 1}.

Since τk → +∞ a.s., L(n)→∞ a.s. as well as at least one of the processes L+(·) and L−(·).
Consider the process

Q+(n) :=

n−1∑
k=0

1I(X(τk + 1) = 1),

and note that

lim
n→∞

L+(n)

L(n)
= lim
n→∞

Q+(n)

n
= lim
n→∞

1

n

n−1∑
k=0

(
1I(X(τk + 1) = 1)− pY (τk)

)
+ lim
n→∞

1

n

n−1∑
k=0

pY (τk)

= lim
n→∞

1

n

n−1∑
k=0

(
1I(X(τk + 1) = 1)− pY (τk)

)
+ p̄.

The process

V (n) :=

n−1∑
k=0

(
1I(X(τk + 1) = 1)− pY (τk)

)
is a martingale difference with

E
[
1I(X(τk + 1) = 1)− pY (τk)

]
= 0 and E

[
1I(X(τk + 1) = 1)− pY (τk)

]2
≤ 2.

Hence by the strong law of large numbers for martingales (Theorem 8b in Chapter II, §3 of Gikhman and
Skorokhod [6]) we have convergence

V (n)

n
→ 0 a.s., n→∞,

what finishes the proof of Theorem 5.3.
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