Asymptotic Analysis of a Matrix Latent Decomposition Model
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 208-242

Matrix data sets arise in network analysis for medical applications, where each network belongs to a subject and represents a measurable phenotype. These large dimensional data are often modeled using lower-dimensional latent variables, which explain most of the observed variability and can be used for predictive purposes. In this paper, we provide asymptotic convergence guarantees for the estimation of a hierarchical statistical model for matrix data sets. It captures the variability of matrices by modeling a truncation of their eigendecomposition. We show that this model is identifiable, and that consistent Maximum A Posteriori (MAP) estimation can be performed to estimate the distribution of eigenvalues and eigenvectors. The MAP estimator is shown to be asymptotically normal for a restricted version of the model.

DOI : 10.1051/ps/2022004
Classification : 62F12, 62H21
Keywords: Hierarchical model, matrix data sets, low rank, stiefel manifold, identifiability, strong consistency, asymptotic normality
@article{PS_2022__26_1_208_0,
     author = {Mantoux, Cl\'ement and Durrleman, Stanley and Allassonni\`ere, St\'ephanie},
     title = {Asymptotic {Analysis} of a {Matrix} {Latent} {Decomposition} {Model}},
     journal = {ESAIM: Probability and Statistics},
     pages = {208--242},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2022004},
     mrnumber = {4425001},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2022004/}
}
TY  - JOUR
AU  - Mantoux, Clément
AU  - Durrleman, Stanley
AU  - Allassonnière, Stéphanie
TI  - Asymptotic Analysis of a Matrix Latent Decomposition Model
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 208
EP  - 242
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2022004/
DO  - 10.1051/ps/2022004
LA  - en
ID  - PS_2022__26_1_208_0
ER  - 
%0 Journal Article
%A Mantoux, Clément
%A Durrleman, Stanley
%A Allassonnière, Stéphanie
%T Asymptotic Analysis of a Matrix Latent Decomposition Model
%J ESAIM: Probability and Statistics
%D 2022
%P 208-242
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2022004/
%R 10.1051/ps/2022004
%G en
%F PS_2022__26_1_208_0
Mantoux, Clément; Durrleman, Stanley; Allassonnière, Stéphanie. Asymptotic Analysis of a Matrix Latent Decomposition Model. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 208-242. doi: 10.1051/ps/2022004

[1] C. Aicher, A.Z. Jacobs and A. Clauset, Learning Latent Block Structure in Weighted Networks. J. Complex Netw. 3 (2015) 221–248. | MR | DOI

[2] M. Ali and J. Gao, Classification of matrix-variate fisher—bingham distribution via maximum likelihood estimation using manifold valued data. Neurocomputing 295 (2018) 72–85. | DOI

[3] S. Allassonniere, Y. Amit and A. Trouvé, Toward a coherent statistical framework for dense deformable template estimation. J. Royal Stat. Soc. B 69 (2007) 3–29. | MR | DOI

[4] E.S. Allman, C. Matias and J.A. Rhodes, Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 37 (2009) 3099–3132. | MR | Zbl | DOI

[5] T.W. Anderson and Y. Amemiya, The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Stat. 16 (1988) 759–771. | MR | Zbl | DOI

[6] O.E. Barndorff-Nielsen, Identifiability of mixtures of exponential families. J. Math. Anal. Appl. 12 (1965) 115–121. | MR | Zbl | DOI

[7] O.E. Barndorff-Nielsen, Information and exponential families. In: Statistical theory, Wiley series in probability and mathematical statistics. Wiley, Chichester, New York (1978). | MR | Zbl

[8] P.J. Bickel, Y. Ritov and T. Rydén, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann. Stat. 26 (1998) 1614–1635. | MR | Zbl | DOI

[9] S. Bonhomme and J.-M. Robin, Consistent noisy independent component analysis. J. Econ. 149 (2009) 12–25. | MR | DOI

[10] J. Chen, G. Han, H. Cai, J. Ma, M. Kim, P. Laurienti and G. Wu, Estimating common harmonic waves of brain networks on Stiefel manifold, in A.L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M.A. Zuluaga, S.K. Zhou, D. Racoceanu and L. Joskowicz (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2020, Lecture Notes in Computer Science, Springer International Publishing, Cham (2020) 367–367.

[11] J. Chevallier, V. Debavelaere and S. Allassonniére, A coherent framework for learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. SIAM J. Imag. Sci. 14 (2021) 349–388. | MR | DOI

[12] Y. Chikuse, Concentrated matrix Langevin distributions. J. Multivar. Anal. 85 (2003) 375–394. | MR | Zbl | DOI

[13] Y. Chikuse, Statistics on Special Manifolds, Lecture Notes in Statistics, Springer-Verlag, New York (2003). | MR | Zbl

[14] Y. Chikuse, State space models on special manifolds. J. Multivar. Anal. 97 (2006) 1284–1294. | MR | Zbl | DOI

[15] R. Douc, Non Singularity of the Asymptotic Fisher Information Matrix in Hidden Markov Models. (2005). | arXiv

[16] R. Douc, E. Moulines, J. Olsson and R. Van Handel, Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Stat. 39 (2011) 474–513. | MR | Zbl | DOI

[17] R. Douc, F. Roueff and T. Sim, Necessary and sufficient conditions for the identifiability of observation-driven models. J. Time Ser. Anal. 42 (2021) 140–160. | MR | DOI

[18] N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky and A. Venkataraman, A generative-discriminative basis learning framework to predict clinical severity from resting state functional MRI data, in A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-Léopez and G. Fichtinger (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2018. Springer International Publishing, Cham (2018), vol. 11072, 163–163. | DOI

[19] N.S. D’Souza, M.B. Nebel, N. Wymbs, S. Mostofsky and A. Venkataraman, Integrating neural networks and dictionary learning for multidimensional clinical characterizations from functional connectomics data, in D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.-T. Yap and A. Khan (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2019. Springer International Publishing, Cham (2019), vol. 11766, 709–709. | DOI

[20] L.L. Duan, G. Michailidis and M. Ding, Spiked Laplacian Graphs: Bayesian Community Detection in Heterogeneous Networks. [stat] (2020). | arXiv

[21] A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. | MR | Zbl | DOI

[22] K. Fan, On a theorem of weyl concerning eigenvalues of linear transformations I. Proc. Natl. Acad. Sci. 35 (1949) 652–655. | MR | Zbl | DOI

[23] P.J. Forrester, Log-gases and random matrices (LMS-34). Vol. 34 of London Mathematical Society Monographs. Princeton University Press (2010). | MR | Zbl

[24] C. Fraikin, K. Hüper and P.V. Dooren, Optimization over the Stiefel Manifold, in vol. 7 of PAMM: Proceedings in Applied Mathematics and Mechanics. Wiley Online Library (2007) 1062205–1062205. | DOI

[25] Y. Gu and G. Xu, Identifiability of Hierarchical Latent Attribute Models. [cs, stat] (2021). | arXiv | MR

[26] P.D. Hoff, Simulation of the matrix Bingham—von Mises—Fisher distribution, with applications to multivariate and relational data. J. Comput. Graph. Stat. 18 (2009) 438–456. | MR | DOI

[27] H. Holzmann, A. Munk and B. Stratmann, Identifiability of finite mixtures - with applications to circular distributions. Sankhya 66 (2004) 440–449. | MR | Zbl

[28] S. Janson, Graphons, Cut Norm and Distance, Couplings and Rearrangements, Vol. 4 of New York Journal of Mathematics. NYJM Monographs, State University of New York, University at Albany, Albany, NY 4 (2013) 76. | MR | Zbl

[29] M. Jauch, P.D. Hoff and D.B. Dunson, Random Orthogonal Matrices and the Cayley Transform. Bernoulli 26 (2020) 1560–1586. | MR | DOI

[30] P.E. Jupp and K.V. Mardia, Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions. Ann. Stat. 7 (1979) 599–606. | MR | Zbl

[31] J.T. Kent, Identifiability of Finite Mixtures for Directional Data, Ann. Stat. 11 (1983). | MR | Zbl

[32] C.G. Khatri and K.V. Mardia, The von Mises—Fisher Matrix Distribution in Orientation Statistics. J.R. Stat Soc. Ser. B (Methodological) 39 (1977) 95–106. | MR | Zbl | DOI

[33] A. Khetan and M. Mj, Cheeger Inequalities for Graph Limits, [math] (2018). | arXiv

[34] T.N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in ICLR 2017 (2017).

[35] A. Kume, S.P. Preston and A.T.A. Wood, Saddlepoint Approximations for the Normalizing Constant of Fisher—Bingham Distributions on Products of Spheres and Stiefel Manifolds. Biometrika 100 (2013) 971–984. | MR | Zbl | DOI

[36] P. Latouche and S. Robin, Variational Bayes Model Averaging for Graphon Functions and Motif Frequencies Inference in W -graph Models, Stat. Comput. 26 (2016) 1173–1173. | MR | DOI

[37] M. Lavielle and L. Aarons, What Do We Mean by Identifiability in Mixed Effects Models?. J. Pharmacokinet. Pharmacodyn. 43 (2016) 111–122. | DOI

[38] E.L. Lehmann and G. Casella, Theory of Point Estimation, Springer Texts in Statistics, 2nd edn., Springer, New York (2003). | MR | Zbl

[39] X. Li, N.C. Dvornek, Y. Zhou, J. Zhuang, P. Ventola and J.S. Duncan, Graph Neural Network for Interpreting Task-fMRI Biomarkers, in D. Shen, T. Liu, T.M. Peters, L.H. Staib, C. Essert, S. Zhou, P.-T. Yap and A. Khan (editors), Medical Image Computing and Computer Assisted Intervention — MICCAI 2019, Lecture Notes in Computer Science, Springer International Publishing, Cham (2019) 485–485.

[40] X. Liang, L. Wang, L.-H. Zhang and R.-C. Li, On Generalizing Trace Minimization. [cs, math] (2021). | arXiv | MR

[41] L. Lin, V. Rao and D. Dunson, Bayesian Nonparametric Inference on the Stiefel Manifold. Stat. Sin. 27 (2017) 535–553. | MR

[42] L. Lovász, Large Networks and Graph Limits. Colloquium Publications, vol. 60, American Mathematical Society, Providence, Rhode Island (2012). | MR | Zbl

[43] C. Mantoux, B. Couvy-Duchesne, F. Cacciamani, S. Epelbaum, S. Durrleman and S. Allassonnière, Understanding the Variability in Graph Data Sets through Statistical Modeling on the Stiefel Manifold, Entropy 23 (2021) 490. | MR | DOI

[44] S.S. Mukherjee and S. Chakrabarti, Graphon Estimation from Partially Observed Network Data. [cs, stat] (2019). | arXiv

[45] S.C. Olhede and P.J. Wolfe, Network Histograms and Universality of Blockmodel Approximation. Proc. Natl. Acad. Sci. 111 (2014) 14722–14727. | DOI

[46] S. Pal, S. Sengupta, R. Mitra and A. Banerjee, Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold. Bayesian Anal. 15 (2020) 871–908. | MR

[47] T.P. Peixoto, Bayesian Stochastic Blockmodeling, in P. Doreian, V. Batagelj and A. Ferligoj (editors), Advances in Network Clustering and Blockmodeling, Wiley Series in Computational and Quantitative Social Science, 289–332, Wiley (2020) .

[48] Z. Ren, T. Sun, C.-H. Zhang and H.H. Zhou, Asymptotic Normality and Optimalities in Estimation of Large Gaussian Graphical Models. Ann. Stat. 43 (2015). | MR

[49] A.A. Shabalin and A.B. Nobel, Reconstruction of a Low-Rank Matrix in the Presence of Gaussian Noise. J. Multivar. Anal. 118 (2013) 67–76. | MR | Zbl | DOI

[50] B. Sischka and G. Kauermann, EM-based Smooth Graphon Estimation Using MCMC and Spline-Based Approaches. Soc. Netw. 68 (2022) 279–295. | DOI

[51] E. Tabrizi, E.B. Samani and M. Ganjali, A Note on the Identifiability of Latent Variable Models for Mixed Longitudinal Data. Stat. Probab. Lett. 167 (2020) 108882. | MR | Zbl | DOI

[52] H. Teicher, Identifiability of Finite Mixtures. Ann. Math. Stat. 34 (1963) 1265–1269. | MR | Zbl | DOI

[53] T. Traynor, Change of Variables for Hausdorff Measure (from the Beginning). Universitá degli Studi di Trieste. Dipartimento di Scienze Matematiche 26 suppl. (1994) 327–327. | MR | Zbl

[54] A.W. Van Der Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 1st edn., Cambridge Univ. Press, Cambridge (1998). | MR | Zbl

[55] J. Xu, Rates of Convergence of Spectral Methods for Graphon Estimation, in International Conference on Machine Learning (2018) 5433–5433.

[56] S.J. Yakowitz and J.D. Spragins, On the Identifiability of Finite Mixtures. Ann. Math. Stat. 39 (1968) 209–214. | MR | Zbl | DOI

Cité par Sources :