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ASYMPTOTIC ANALYSIS OF A MATRIX LATENT
DECOMPOSITION MODEL

CLEMENT MANTOUX! %%*® STANLEY DURRLEMAN'?
AND STEPHANIE ALLASSONNIERE""

Abstract. Matrix data sets arise in network analysis for medical applications, where each network
belongs to a subject and represents a measurable phenotype. These large dimensional data are often
modeled using lower-dimensional latent variables, which explain most of the observed variability and
can be used for predictive purposes. In this paper, we provide asymptotic convergence guarantees for the
estimation of a hierarchical statistical model for matrix data sets. It captures the variability of matrices
by modeling a truncation of their eigendecomposition. We show that this model is identifiable, and that
consistent Maximum A Posteriori (MAP) estimation can be performed to estimate the distribution of
eigenvalues and eigenvectors. The MAP estimator is shown to be asymptotically normal for a restricted
version of the model.
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1. INTRODUCTION

Latent variable models are powerful tools to capture the complexity of high-dimensional data. Their hierarchi-
cal structure decouples this complexity into a low-dimensional distribution of latent variables and a mechanism
to generate observations from latent variables. Over the last decades, they have proven relevant to perform
regression and classification tasks as well as to provide interpretable representations of the data. In this paper,
we are interested more specifically in the analysis of matrix data sets: in this context, an observation is a matrix
which represents the interactions between a given number of entities. The main case of interest is network
data set analysis, where matrices represent the evolution of a given network across time, or the same network
structure measured in different situations.

Recently, the analysis of network data sets has received increased attention in the literature, in particular
for medical applications, where each network represents a different patient, typically its brain connectivity
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network. The need to understand the complex structure of the interactions within networks has brought the
development of low-dimensional representations of these networks, with methods like sparse dictionary learning
or graph auto-encoders [18; 39]. In many cases, the core modeling assumption relies on the low rank of the
observed matrices [10]. In that regard, such models can be interpreted as constraints on the distribution of the
eigenvalues and the eigenvectors. However, although these recent works have achieved great performance on
practical tasks, little has been done in the literature so far to analyze their theoretical soundness.

In this paper, we provide an asymptotic analysis for a recently proposed network data set analysis model
[43] which, in terms of generative modeling, can be considered a generalization of several current similar models
relying on graph auto-encoders [34] and dictionary learning [19]. The model quantifies the variability in the
spectral decomposition of network adjacency matrices: the leading eigenvectors, taking values in the Stiefel
manifold, and the related eigenvalues are considered as latent variables in a hierarchical generative model. It
relies on the classical assumption that the relevant information in a matrix of interaction coefficients can be
captured by a low-rank approximation [49]. The model structure introduced in [43] was shown to be able to
account for the complex variability of functional brain networks using a restricted number of parameters, and
provides an interpretable representation of this variability.

We first show that the model is identifiable, and consider the parameter estimation problem. We show
that, although the Maximum Likelihood Estimator may not be defined, the Maximum A Posteriori estimator
exists for wide classes of prior distributions. Finally, we show the almost sure consistency of the estimator and
its asymptotic normality as the number of samples goes to infinity. The technical difficulties arise from the
hierarchical structure of the model: only a few specific such cases have received attention in the literature. For
instance, the identifiability of latent variable models remains an open question for most latent variable network
analysis models. Although our results take stock on the model structure, we believe that they can be transposed
without hurdle to many similar models.

Notations

In the next sections, we use the following notations:

— AT denotes matrix transposition, Tr(A) the trace and det(A) the determinant,

— ||z|| denotes the canonical Euclidean norm for vectors, and the related operator norm for matrices,
— ||All > denotes the Frobenius norm and (A4, B) . = Tr(AT B) the related inner product for matrices,
— If X is a n x p matrix, z; € R™ denotes its i-th column, so that X = (z1,...,2,),

— Vy, is the Stiefel manifold of n x p matrices X such that X "X = I,.

— Oy (R) is the orthogonal group V.,

— For A a vector and X a matrix, we define A - X = X "Diag(\)X,

— For A an x n matrix and X an x p matrix, we define A x X = (z, Az;)?_,.

2. A STATISTICAL MODEL FOR SPECTRAL DECOMPOSITION
2.1. Model definition

2.1.1. Observations distribution

We study the generative model for sets of weighted graph adjacency matrices Aq,..., Ay € R"*™ proposed

in [43]. It draws symmetric low rank adjacency matrices A by generating their eigenvectors X = (z1,...,2,) €
R™*P and eigenvalues A = (A1, ..., Ap) € RP, and combining them with an additive noise £ € R™*™.
A= XDiag M) X" +¢ (2.1)

In practice, the adjacency matrix A represents a network. n corresponds to the number of nodes (e.g. in the
case of brain connectivity, the number of brain regions), and p < n is chosen such that the residual term
e is small. The eigenvectors take values in the Stiefel manifold V,, of matrices such that X "X = I,. Their
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probability distribution will be described in the next section. The eigenvalues follow a multivariate Gaussian
distribution A ~ N (u,0%1,). The noise ¢ is a symmetric matrix whose coefficients above the diagonal also
follow a Gaussian distribution A (0, U?Inx(n_H) /2)- We assume that the variables ), X, e are independent. This
assumption is strong: it might not be satisfied in practice, as the variation of a pattern x; should be naturally
correlated to a variation of the related \;. However, it also allows keeping a small number of parameters, which
allows for robust estimation in practice when the number of observed matrices is low. Their interpretations will
be given in Section 2.2.2 on simpler alternative models.

2.1.2. Figenvectors distribution

As an element of the Stiefel manifold V,), the eigenvector matrix X is described by a probability distribution
over V,,,. The canonical framework for these distributions is exposed in [13], and consists in taking a measure
with density with respect to the Haar measure over the Stiefel manifold. The Haar measure [dX] is defined, up
to a constant, as the only measure invariant to orthogonal transformations, i.e., for S C V,,;, and O € O, (R),
JsldX] = [,4[dX] = [4,[dX]. It can be rescaled by a constant factor to correspond to the Hausdorff measure
over Vy,, [29].

The distribution considered for X is the von Mises-Fisher (vMF) distribution, also called Matrix Langevin
distribution in the literature. It was first introduced by [32], who derived basic properties of the distribution
and its Maximum Likelihood Estimator (MLE), and was further studied for both theoretical and algorithmic
purposes [12, 30, 35, 46]. The von Mises-Fisher distribution over V,, is defined by its probability density function
(p.d.f.) with respect to the Haar measure:

p(X) = exp(Te(X T F)) =

1 1
C(F) C(F) CXp (51 <x17m1>+"'+51) <xpvmp>) ’ (22)
with C(F) the normalizing constant and F = (fi,..., f,) = MDiag(s) = (ma,...,my)Diag(s1,...,s,) the
parameter of the distribution (F € R"*P). In the model considered here, M € V,,, and the s;’s are non-negative
to ensure identifiability. By definition, the modal point M has maximal probability. The s;’s control the spread
around the modal point, and are called the concentration parameters of the distribution.

The vMF distribution has a simple interpretation and requires few parameters. It imposes no dependency
between the columns of X, except the orthogonality constraint. It forms an exponential family of distributions,
and as such lends itself to efficient numerical estimation procedures. The normalizing constant C(F') has an
analytic expression relying on the hypergeometric function of a matrix argument, and represents the main
difficulty when analyzing the distribution, as it prevents from getting an explicit expression of its moments.

With this definition, we can write the full density of the model defined in the previous section. The likelihood
of an observed matrix A writes:

p(A]6) = / /V PATX XX [ 0)p(A | 6) [dX]AN

1 1 2 1 2
= X F)p— | A=—p|"—=—|[A-X-X X
//VR C(F)@m) ™ Poral (< g Nl g 1A ”F> .

where we introduced the notation A - X = XDiag(A\)X " to lighten the formula, and 6 = (F, u, oy, 0.) regroups
the model parameters.

Remark 2.1. The overall model structure (2.1) can be compared with equation (1.11) in [23], which states
that, for any continuous probability distribution p(A) over the space of symmetric matrices: for any bounded
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continuous function h,

/R (A4 da = / /O - B X)pr - X) TTOw — Ag) [dX]AA,

i<j

with [dX] the normalized Haar measure over the group of orthogonal matrices O, (R). In other words, any
matrix distribution is equivalently characterized by the joint distribution of its eigenvalues and eigenvectors. In
that regard, our main hypotheses consist in constraining on the number of non-zero eigenvalues and imposing
that the distributions of X and A can be decoupled.

2.2. Motivation: network modeling
2.2.1. Beyond the graphon model

The graphon [42] is the standard reference model used in network theory to analyze large graphs from a
probabilistic perspective. Many pieces of work in both the theoretical [28, 33, 55] and applied [36, 44, 50]
literatures focus on the properties of the model it describes and its statistical estimation.

A graphon is a symmetric function w : [0,1]%2 — [0, 1], which is to be understood as a continuous adjacency
matrix with an infinite number of nodes. The graphon defines a distribution over n x n symmetric adjacency
matrices by drawing n uniform numbers Uy,...,U, ~ U([0,1]), and forming the matrix A;; = w(U;,U;), or
A;j ~ B(w(U;,U;)) in the case of binary networks. The graphon inference problem thus consists, given one or
several matrices A, in determining both the function w and the positions (U;) of the nodes.

The main application of the graphon model is the Stochastic Block-Model (SBM), which assumes that
w is block-wise constant. It amounts to dividing the set of nodes into clusters with given probabilities, and
determining the connection between the nodes with the connection between their clusters. The SBM provides a
well-studied [1, 45, 47] framework which is particularly relevant for a clustering analysis of networks, i.e. finding
the most relevant partition among the nodes.

Both the graphon model and the SBM were conceived to analyze networks where nodes are drawn ran-
domly and play interchangeable roles. They mostly focus on understanding the structure of the hidden graphon
dynamic, which requires identifying the U;’s or the cluster labels.

Given a data set of matrices, both graphon and SBM would either (1) assume that the U;’s are drawn
independently for each matrix or (2) take the same U;’s for each matrix in the data set. The first case yields
a distribution whose expectation has constant coefficients: E[A;;] = E[w(U,U’)] with U, U’ ~ U([0,1]). The
second case results in a constant distribution with A;; = w(U;,U;) for every sample matrix A, or a matrix
of independent Bernoulli variables A;; ~ B(w(U;,U;)) in the case of binary networks. Both options lead to
simplistic distributions which are not relevant from a practical perspective.

In the context considered here, the nodes remain the same from one matrix to another (e.g. brain regions),
and cannot be permuted. This allows to easily estimate the average interactions, which is the main difficulty
for the graphon and the SBM. Modeling the matrices’ spectral decomposition goes one step further than the
SBM, and induces a dependency between the coefficients. It allows for instance computing the distribution of a
set of matrix coefficients given other observed matrix coefficients.

2.2.2. Accounting for the full network variability

Two similar approaches currently co-exist in the literature to analyze sets of networks. On the one hand,
Variational Graph Auto-Encoders (VGAE) [34] assume that each node 4 is represented by a low-dimensional
vector z; € RP, and models the adjacency matrix as A;; = h(zz—'— zj), with h a non-linear function. The model
thus characterizes A by a low-dimensional representation Z € R™ P, and retrieves A = h(Z'Z) = h(1, - Z).
The matrices 1, - Z are constrained to having positive eigenvalues. Additionally, the VGAE model considers all
variables z; as independent and identically distributed.
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On the other hand, a dictionary model was proposed by [19], and writes each adjacency matrix A as a
weighted combination of fixed rank one matrices: A = \jz12] +--- + )\pxp:cg, which rewrites as A - X. Here,
the goal is to find the best A for each matrix A, while the matrix X is the same for all networks. This model
thus imposes a strong dimension constraint on the adjacency matrices.

Each of these two approaches capture one aspect of the variability: for the VGAE, only the “eigenvectors”
vary, and for the dictionary model, only the “eigenvalues” depend on the network. The model we study here
simultaneously accounts for these two sources of variability, and thus allows for a richer representation, while
keeping a latent space dimension comparable to that of VGAE. From the VGAE perspective, the rows (My;)?_;
shape the distribution of zj, and the parameters (i, 0/2\) determine the (possibly non-positive) inner products
between the z;’s. From the dictionary model perspective, the column m; = (My;)}}_, gives the i-th dictionary
element and s; its concentration; the coefficient My,; gives the strength of the contribution of pattern i to the
interactions of node k in the network. The parameters (u,03) give the distribution of the dictionary weights.

2.3. Conditional distribution

Summarizing the model definition in Section 2.1, we assume that an observed adjacency matrix A writes as
A= XX +e¢, with (A, X) € RP x V,,, being independent latent variables and e a symmetric matrix of Gaussian
distributed noise coefficients. The full model p.d.f. writes:

1 1

_ 1 2 2

From this expression, we can express the conditional distribution of the latent variables (X, A) given A as
follows. In the remainder of the paper, we will denote

1 1 1 1 1
Ax X = (z Azy)?_, 92—24—? and ,uAX:of7 [JQA*X+2M} . (2.3)
P

€ X

The expression of the conditional density p(X, A | A,6) of the latent variables given the observed variable A
writes as:

{p(X | 4,0) o exp (X, F)p + 5t llnax|?)
p(A | X, A,0) = N(pax,07).

The proof of this equation follows the same lines as in Lemma C.1 in Appendix C. We will be using this
expression of the conditional distribution in Section 5 on asymptotic normality. The 51z ||1a x||? term in the
P

distribution of (X | A) is typically much larger than (X, F)  as long as n > p, and it thus determines the shape
of the distribution. As shown in the following proposition, it is maximized by the eigenvectors of A.

Proposition 2.2. For A € R"*"™, HMAX”z is mazimized by taking X among the eigenvectors of A. Furthermore,
if the eigenvalues of A all have multiplicity one, this maximization is strict.

Proof. Let A= UTDU be the eigendecomposition of A, with U'TU = I,,. Without loss of generality, we take
oy = 0. = 1. We have:

p
2
a5, 2laxl’” = g 3 (el A+ po
p

= max (v (D + pil,)y:)?  (setting Y = UX)
Y&V i3
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= max ZZ[(dk+Ni)yz'2k]2

i=1 k=1

P n
Z Z(dk + 113)?y% (Jensen’s inequality)
i=1 k=1

= KYoY)..
Yrgfa;fp< Y OY)p

IN
:
»

Y E€Vnp

With K € R"*? defined by K;; = di + p1; and Y © Y the Hadamard (entrywise) product. If we extend K to a
n X n matrix K’ by padding zeros, and extend Y to an orthogonal matrix () by completing Y into a basis, the
objective function remains unchanged: (K, Y 0Y)p = (K',Q ® Q) p.

Since @ is orthogonal, the matrix S = @ ® @ is doubly stochastic. Furthermore, the Birkhoff-von Neumann
theorem states that the set of doubly stochastic matrices is the convex hull of the set of permutation matrices. As
a consequence, the linear function (K’, S) . is maximized by taking for S a permutation matrix. Such matrices
are orthogonal and verify S ® S = S, and their only square roots for the Hadamard product are permutation
matrices with negative coefficients allowed. Therefore, the optimal choice for Y has its columns in the canonical
basis. Hence the optimal choice for X = U TY is to take its columns among the eigenvectors of A.!

When Y is a permutation matrix, Jensen’s inequality becomes an equality, so that taking the related X =
UTY is also an optimal choice for the original objective ||xa X||2. Furthermore, if A has n distinct eigenvalues,
Jensen’s inequality is strict except when y; is a vector of the canonical basis. Therefore, in that case, the optimal
subset of eigenvectors of A (up to permutation and change of sign) is the only maximizer of ||uax|*. O

Remark 2.3. When taking p = 0, the result can be proved more simply by using Ky Fan’s principle on
eigenvectors [22]. A closely related, yet different result, was recently obtained by [40]. We believe that obtaining a
closed-form formula for maximizing the complete conditional density p(X | A, 8) would require significantly more
work. The eigenvectors of A are no longer optimal: the best value of X is obtained as a trade-off between M and
the closest optimal eigenvalue combination of A, with the concentration and variance parameters determining
the balance between both.

3. MODEL IDENTIFIABILITY

Identifiability of statistical model p(z | 8) refers to the property that, if 61 # 62, then the distributions
p(- | 01) and p(- | 2) must differ. It is a generally desirable property, as it ensures that the model is well-defined
and behaves in an intuitive way. It also has an immediate theoretical interest, since it enables to prove that
Maximum Likelihood Estimators converge to the correct value when the data is generated according to the
model. It can be proved for instance by retrieving the parameter 6 from a set of moments of p(- | ).

The identifiability of latent variable models is a general, long-standing question, which has been studied and
proved for only few specific models. It relates to the question of identifying the parameters of graphical models
where only a fraction of the variables is observed. Much work has been devoted to the identifiability of finite
mixture models [27, 51, 52, 56]. In a similar spirit, classes of statistical models with discrete latent variables have
also recently been proved to be identifiable [4, 25]. Partial results have been shown for mixed-effects models, in
particular in a longitudinal setting [37, 51]. In a less closely related domain, identifiability results exist on time
series model with latent variables [17]. Finally, general identifiability results are available for (possibly infinite)
mixtures of exponential models [6, 7]. Although the latter result is related to the model we consider here, its
necessary theoretical conditions turn out to be hard to verify in practice.

IThe authors thank the math.stackexchange.com community member user1551 for his helpful answer on the Birkhoff-von

Neumann theorem.
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The main difficulty with identifying latent variable models comes from the expression of the observations’
likelihood:

pato = [[ - paxaisax.

Even though our full model p(A4, X, \ | 6) is identifiable, the marginalized model p(A | #) may not be: permuting
two eigenvalues p;, p1; and the related eigenvector parameters f;, f;, or changing the sign of f; does not change
the distribution of A. This first obvious source of non-identifiability is easily overcome, by imposing that the
normalized columns (my,...,m,) (denoting m; = f;/|f;|) are sorted according to the lexicographical order and
that each column has its first non-zero element positive. An additional constraint allows getting a provably
identifiable marginal model: we shall assume that the f;’s are non-zero, i.e. that the concentration parameters
s; = || fi|| are positive. These two constraints form the set of identifiable parameters ©:

@id:{9|m1_<...—<mp and mins; > 0}.

With this definition, we have the following result:

Theorem 3.1. Ifp < n, over ©'9, different parameters 6, # 0o yield different marginal probability distributions
p(A|61) and p(A | 6).

Proof. Given 6 € ©'4, we show that all parameters (F, i, 0, 0.) can be retrieved from the distribution p(A | 6).
We first identify the noise variance. This allows identifying the eigenvalue parameters, and finally the eigenvector
parameters.

Identifying ox and o.. Using Lemma C.1 and o, * X = al,, we have, for all o € R:

1 oP 1 o2 o2 1 o2
A= ol 9 :771)6 —7n2a2+7p 2a2+ 2 p _ -|—a7p 1
p( n | ) anU?Q 0_;1/{ Xp ( 20_3 20'§p ||/~L|| 20_;1\ 20_3\ o_io_g </~L7 P> ’

with 0,2 = 072 + 052, The function a + logp(A = al,, | 0) is a second-order polynomial, its coefficients
(ag, a1, az2) can thus be identified. In particular, the degree two coefficient gives the value of

2 2 2

n?  plol
= —— . 3.1
a2 202 202 (3.1)

Similarly, the computation in Lemma C.1 can be used to derive the gradient V 4p(A | 0). It writes, for A = al:
1
Vap(A|0) = —p(A=al |0) (—al +E[B])

2 2
where B is the random variable given by B = X, - X, with A, ~ A/ (%u + %alp, aﬁ). Furthermore, since we
A £

have

E[B] = E[X "Diag(\,)X] = > E[N|Elziz] ],

%
i=1
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F

Vap(A=al |[0)\ 1 02 ag
() = e 2 el tpsza).

As a consequence, the a-linear function above can be deduced from the distribution of A, hence we know its
coefficients. In particular, the leading coefficient az writes:

we deduce:

2

2:“2 70‘
5

VapA=alle) 1 [
pA=all0) o2 ‘“”Z

Finally, since Tr E[z;z,] = <E[mzm:], I> = E[z, Iz;] = 1, we have:

n o
as = —;g + P;é .
The formulas of a3z and as in equation (3.1) can be combined to obtain _Tig(nQ —np) = ag — paz /2. Therefore,
since p # n, o can be identified, along with o.
Identifying p.
The moment generating function of A writes as:

GA(T) = E[eTAr] = E[eT X+ r] = G\ x (T) x G(T).

Since the distribution of € has been characterized, G.(T') is known, and hence Gy.x can be deduced as
Ga(T)/G.(T). As the moment generating function characterizes the probability distribution, if the distribution
A - X is identifiable then the distribution of A is identifiable. We thus turn on the problem of identifying p given
the distribution of A - X (and proceed similarly for the eigenvector parameters in the next paragraph). We have
for t € R:

1
€] =B |32 X TDiag()* X | = B [X " Diag((¢)1_)X]
k=0
P

P P
ZE[ew‘izix?] = ZE[e“‘i]]E[xixiT] = Zet“ﬁ%”itQE[zixI] )

i=1 i=1 i=1

. . . . . 12,2
which in particular gives Tr(E[e“‘ X]) = ?:1 etrita ot

The functions of the form ¢ — etti+3793t* are linearly independent for distinct y;’s: this allows retrieving both
the u;’s and the multiplicity count of each eigenvalue.

Identifying F. From there, we could use the matrices E[z;x, ] to 1dent1fy the modal directions m;. Indeed, as
shown in [32] (Egs. (2.9)- (2.11))7 each my, is an eigenvector of each E[z;x; ]. However, the related eigenvalues
and remaining n — p eigenvectors are unknown, and the relevant eigenvectors cannot be identified easily. In the
limit of large concentration parameters, ]E[xlac;r] ~ ml—m;'—, so that the largest eigenvalue is the one corresponding
to m;. Yet this argument cannot be quantified, as the eigenvalues involve partial derivatives of log C(F') which
are hard to manipulate.

Instead, we get a better result by expressing the density of the distribution of B = A - X = 2(\, X), with
support on the set Im(2) of n x n square matrices with rank p. The distribution of B is characterized by the
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expectations E[h(B)] with h continuous bounded. We have:

E[h(B)] = / / BP0 X)) - p(r | O)p(X | 0) [AX]dA. (3.2)

We want to perform a change of variable so as to express the expectation as an integral over Im(%). However
this cannot be performed directly. First, the mapping & is not injective. Next, the most relevant change of
variable formula for this problem is, to the best of our knowledge, the main result of [53], which gives a formula
for mappings taking inputs in vector spaces (which is not the case here as X € V,,;,).

The first problem can be solved by splitting the integral over domains where & is injective, which means
preventing permutation and change of signs in the columns of X. To that end, for 7 € S, a permutation and
[ e {£1}?, we denote Xr ; = (f1Zr(1)s--» [pTr(p)), and by Ax = (Ar1), .-+, Ar(p)). We also define the sets

Ag={X €Vyp | 1 <--- <z, and the first non-zero coefficient of each column is > 0}
Ary={Xrs| X €Ao},

where < denotes the lexicographical order over R™. By construction, we have V,, = Ur fAx y UO with O a set
with measure zero. We get

S = ff, | HIOX)- 019X

Furthermore, the map X +— X, ¢ corresponds to multiplying X by an orthogonal matrix. By construction, the
Haar measure over V,, is invariant to this transformation [13]. Moreover, the map A — A, is also a linear
orthogonal transformation, and as such has Jacobian determinant one. Hence we can perform the change of
variable (A, X) — (Ar, X ), and we get:

EHE) =3 J[L . @O Xe )0 | 000 ) XN
~ [ M@0 60 | 06X s |6) XN
RP X Ag . f

B //]Rpr W2 X)) > PN O p)p(X | br,) [AXTAA,

™ f

with 0, ; = (Fr f, tir, Ox, 0c).

The first problem is now solved, as Z is injective over R? x Ajy. We now need to get to an integral formulation
over a vector space. To that end, we consider the inverse of the Cayley transform of X: D = C~1(X). We refer
the reader to Appendix A for a definition of the Cayley transform C. It is a smooth injective map from the
tangent space at identity 77, Vi, = {(g) | AT = — A} to the manifold V,,, which covers the entire manifold
apart from a set with measure zero. As explained in [29] (Thm. 4.1), a change of variable from D to X can be
performed, and amounts to adding a multiplicative factor J; (D), with J; is a generalized Jacobian determinant.
It follows that we can rewrite:

NN = [y PO CON 01 020X 87)- (D) 4D



ASYMPTOTIC ANALYSIS OF A MATRIX LATENT DECOMPOSITION MODEL 217

Since the map D — C(D) is injective on 17, Vynp (Egs. (1)-(3) in [29]), the map (A, D) — B = 2(X,C(D)) is
injective over RP? x C~1(Ap). Given B, we denote by Ap, Xp and Dp its pre-images by 2 and C. Since the
considered mapping is smooth, the main theorem of [53] applies. Letting Jo(A, D) be the generalized Jacobian
determinant involved in the formula, it writes as:

BB) = [ W)X 00 0 0l | 0n)- S5 dB.
m(<9 o f 2 9

where dB denotes the Hausdorfl measure over Im(%). Since both maps C' and Z are diffeomorphic, the
generalized Jacobian determinants involved are non-zero.
As a consequence, the random variable B has density

J1(Dpg)

A 0 X Or ) —v 7
z;p( 5| 0n (X | 0ns) 25 5 3

over its support w.r.t. the Hausdorff measure. Therefore, if the distribution of B is known, we can deduce the
value of the function B +— 3 p(Ap | Ox,7)p(Xp | 0r,r). For X € Ag and A € R?, it comes that we know the
value of

IAX) =D DN | O 1)p(X | b p) -
. f

Since the sum above is invariant by any permutation 7 and change of sign f, it follows that the value of this
expression is known not only for X € Ay, but over the whole manifold V,,. Now, we consider the specific case
A = p. Up to a normalizing constant, f,(X) is a probability distribution over V,,: it is a mixture of von Mises-
Fisher distributions with parameters (Fy ;) and mixture weights proportional to p(u | 6x ). This structure
allows using the main result of [31], which grants that the von Mises-Fisher densities given by the Fy ; are
linearly independent. This result can be combined with the main theorem of [56], which states that a family of
finite mixtures is identifiable if and only if the mixture components form a linearly independent set.

As a consequence, we identify the parameter F' up to a column permutation and change of sign. Moreover,
in the sum above, the probabilities p(u | 6 f) with maximal amplitude are given by 7 = Id, and all the other
permutations such that for all i, y;y = p; (which encompasses eigenvalue multiplicity). Since we assumed
that all concentration parameters are positive, all (Fy f) are distinct and hence the maximal mixture weights
correspond to the matrices (Fy ;) with 7 as just described. This finally allows matching eigenvalues with
eigenvectors, completing the identification of 6.

O
4. EXISTENCE AND CONSISTENCY OF THE M AP ESTIMATOR
4.1. Maximum a posteriori versus maximum likelihood
We turn to the problem of estimating € from samples Ai,..., Ay when the number of samples N grows

large. In this section, we assume that the samples are distributed according to a distribution P, which may not
be of the form p(4 | 9).

However, the MLE may not be defined: the optimal value for F' may theoretically be infinite, as the model
likelihood does not necessarily decrease at infinity. For instance, if the samples Aq,..., Ay are drawn from a
Gaussian distribution with i.i.d. coefficients and mean equal to a rank p matrix Ay - Xy, the parameters oy
and s; tend to take extreme values (o) being very small and s; being very large), and the distribution of
latent variables is highly concentrated around (Ao, Xo). This phenomenon occurs because the estimated data
distribution asymptotically converges to the true data distribution, which lies at the boundary of the model
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family (in the sense that taking very large s;’s and a very small o yields a distribution close to the true data
distribution).

This problem is overcome numerically by adding a prior distribution p(f) and considering the Maximum A
Posteriori (MAP) estimator over the set O of all parameters:

On € argmaxg p(f | Ay,... Ay) = argmaxg p(Ay, ... Ax | 0)p(0) .

In this section, we want to account for the possible convergence of latent variable distributions to constant
values. For this purpose, instead of the parameterization 8 = (F, u, 0, 0.), we will be defining the parameter
set by © = {0 = (M, s,p,0n,0:) | o5 > 0,8; < +00}, with the equivalence given by F = MDiag(s). In the next
section, this representation will allow us to formally consider an extension of the set © accounting for the case
where s; = +00 and oy = 0.

We consider inverse Gamma distributions for the prior p(oy,o.), the uniform distribution over V,, for M,
and any p.d.f. decreasing at infinity for p(s) and p(u). Unlike the MLE, with this prior specification the MAP
estimator is guaranteed to exist.

Theorem 4.1. Given the proposed model, with parameters following the prior distribution described above, for
any set of matrices (A;)N,, there exists On € argmaxgeq p(0 | A1,. .., AN).

Proof. The bound obtained in Lemma C.2 gives with Bayes’ formula:

2
n
logp(f | A) < -5 log(2m) — (n* — p)logo. — plog o + log p(6) — log p(A).

Since

{p(fn) = Fey (10 exp(=Fr /o)
p(oe) 1“6(22)(1/0’6)%Jrl exp(—pB:/0.),

and given the other assumptions on the prior distribution, we have logp(6 | A) — —oo as any of the model
variables reaches an open boundary of its domain. Furthermore, the function logp(f | A) is smooth: the integral
representation given by Lemma C.1 writes as

1 1 o? 1 . 1 2 1 2
— — 1Allx — = FX)+ — dX .
T G o |5 1Al — g Wl [ e |t )+ 553 liax

Vi

p(A|8) =

Since the manifold V,,,, is compact and the integrand f(6, X) = exp((F, X) + || pax | /2072) is smooth on © X Vpy,
classical integration theorems grant that logp(# | A) is smooth over every compact subset of ©: given a compact
set K, the domination function g(X) = maxpeck f(X,0) is smooth over K. Hence logp(6 | A) is smooth over O.
In particular, the function logp(A | 0) is coercive and continuous, and it thus admits a maximizer over . [J

4.2. MAP consistency

The above result motivates the study of the MAP estimator over the MLE. However, although adding a prior
distribution grants the existence of a maximizer within ©, the weight of the prior term decreases as the number
of samples grows large, and we should expect the MAP estimator to diverge to the boundary of © for some
empirical data distributions P. This phenomenon is accounted for by considering an extended set of parameters
©> allowing null eigenvector variance (i.e. A constant) and infinite von Mises-Fisher concentrations (i.e. z;
constant for some i’s):

0> = {(Ma Sa/-‘vo'kﬂjs) | ox € [O,—FOO),SZ‘ S [07+OO]} .
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We prove in Lemma C.3 that the likelihood p(A | 8) extends continuously to ©°°. The extension essentially
amounts to considering eigenvalue and eigenvector distributions restricted to a conditional subspace. With this
convention, the objective function ¢ to be asymptotically maximized can be defined over ©> as the almost sure
(a.s.) limit of the empirical objective function + va:l log p(A; | 0) + %p(#) defined over ©:

£0) = ]EP(dA) [logp(A | 0)].

If P has a density with respect to the Lebesgue measure, the function ¢ is equal, up to a constant term which
depends only on P, to the opposite of the Kullback-Leibler divergence between P and p(A | ). The MAP
estimator is said to be consistent if it converges to the set ©, of maximizers of ¢(6). In the case where P
corresponds to some p(A | 8*) for * € ©'4, ¢ only has one maximizer, which is the true model parameter *.
For large classes of sufficiently regular families of statistical models, the MLE and the MAP can be proved to
be consistent and, in probability, to minimize the KL divergence to the optimal point [54].

The consistency of MLE for latent variable models has been studied for several classes of models, like Hidden
Markov Models [16], Independent Component Analysis [9] or longitudinal mixed effects models [3, 11]. Along
these results, we obtain the almost sure (a.s.) consistency of the MAP estimator. We study two particular cases:
in the first case, we assume that the parameters which may diverge stay bounded, and obtain a.s. convergence
to the set of maximizers over the constrained set. In the second case, we show that the unconstrained MAP
estimator converges a.s. to the set of maximizers over ©>.

The convergence to the set of maximizers of £(6) is quantified by the distance d(fy,®.). However, the
set ©%° of maximizers of £ over ©> may have some elements with infinite coordinates, which prevents from
quantifying distances. To overcome this issue, we consider the reparameterization £(0) = (M, h(s), p,ox, 0¢),
with h : [0, +00]? — [0,1]” applying the same continuous increasing transformation to each s;, for instance
h(s); = atanh(s;). Over the new parameter space 2 = £(0°°), we also obtain the almost sure consistency of
the MAP &y = £(0y).

Theorem 4.2. Let ©" be the set of parameters with each s; and 0;1 upper bounded by n, and let O be the the
set of maximizers of £ over ©". Consider the following hypotheses:

H1 The number of latent patterns is strictly lower than the number of nodes: p < n.

H2 The samples (A;)., are independent and identically distributed.

H3 The true data distribution P(dA) has a density w.r.t. the Lebesgue measure and exponentially decaying tails
beyond a compact set: there exist a,b > 0, such that for x large enough, SUD| A, >x P(A) < aexp(—bx).

Then, assuming H1, H2 and H3:

1. For alln > 0, ©] # @ and the MAP estimator é;{, on O" is consistent: for every continuous metric §,
almost surely,

5(67,, 01 X2t g,

2. The extended set of mazimizers is non empty: O° # &. Denoting E° = £(O2°), for every continuous
metric §, almost surely,

§(én,E2) 2% 0.

Remark 4.3. As a consequence, if all the elements of ©>° are equal on a coordinate, the corresponding
coordinate of éN converges to this value. In particular, for some distributions P we may have s; — 4o0c or
ox — 0 almost surely. This explains the phenomenon observed in the previous section on Gaussian empirical
data distributions.
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The proof follows the architecture of [11, 54]. The main difficulties and specificities lie in the proofs of the
required lemmas which are specific to the model, and the possibility of having partially constant latent variable
distributions. We thus only present here the structure of the main proof, and refer the reader to Appendix B
for the detailed argument. As the proof for the first assertion is a strictly simpler version of the proof of the
second assertion, we omit it for the sake of brevity.

Sketch of the proof. The proof is divided into four parts. We define

E* = Osté)p Epallogp(A|6)] and K. ={0e€ 0> |0(£(0),5°) > ¢},
€ oo

with ©> the Alexandrov compactification of ©%, as detailed in Appendix B.

A) We prove that, for all §,, € © such that §(£(6.),Z°) > €, there exists an open neighborhood U C ©>
of 05, such that

Epaa) LEZI;%OO logp(A | 9)} <E”.

B) The set K. described above is compact, and therefore among all the sets U defined in part A we can
extract a finite cover of K.. This allows proving that

N
1
limsup sup — logp(A; | 6) <E*.
N—+oo geK.nox N ; (4 16)

C) Using the definition of 6y and the law of large numbers, we show that

N
.1 - N
\minf Zi:l logp(Ai | On) = E7.

D) Finally, combining the two arguments above allows getting a contradiction if Oy € K. for an infinite

number of N. As a consequence, for all € > 0, On ¢ K. almost surely as N — 400, which gives precisely
6(En,E°) — 0.

O

5. ASYMPTOTIC NORMALITY OF THE MAP ESTIMATOR

A consequence of Theorem 3.1 is that, if the empirical data distribution P corresponds to p(A | 8p) for some
0y € ©'9, we have Ol = {y}: thus, by Theorem 4.2, the MAP estimator over ©'¢ converges almost surely to
fy. A classical question is then to establish the rate of convergence of Oy toward 0p, as well as the limiting
asymptotic distribution. An answer for the more general case of M and Z-estimators is provided in chapter 5
of [54], which we restate with adapted notations:

Theorem 5.1 (Them. 5.23 in [54]). Let mg(A) = logp(A | 0). Assume that mg is a measurable function such
that 0 — mg(A) is differentiable at 6y for P-almost every A with derivative V amep,(A). Assume that there exists
a function m with Ep(qa)[Mm(A)?] < 400, such that, for every 61 and 05 in a neighborhood of 6y :

[mo, (A) —ma, (A)] <m(A) |61 — b - (5.1)
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Furthermore, assume that the map £(6) = Epqa)[me(A)] admits a second-order Taylor expansion at a point of
mazimum 0y with nonsingular symmetric second derivative V = V2£(0y). If

N N
1 1
v > mg, (Ai) = sup > mg(4;) — op(1/N) (5.2)
i=1 j
and O — 0y in probability, then
N
~ 1
VN(On —00) = =V'—=" " Voma, (A;) + op(1).
VN i=1

In particular, the sequence \/]V(GAN — 0p) is asymptotically normal with mean zero and covariance matrix
V_lEP(dA) [Vemg(A)Vemg(A)T]V_l.

Remark 5.2. The notation op(1/N) designates a random variable Zy such that NZy — 0 in probability.

The most important condition in the theorem above is the non singularity of the Hessian matrix at 6y. In
general, V2((6) is impossible to compute for latent variable models, as it involves the Hessian of logp(A | ).
However, the problem gets more tractable when the data distribution P corresponds to p(A | 6y) for some
0o € ©. The Hessian matrix at 6y then classically rewrites as the Fisher information matrix I(6y) (see for
instance Lemma 5.3 in [38]):

V5l(0o) = Epaj60)[ Vi log p(A | 60)] = —Epaje,) [(Velog p(A | 60))(Velogp(A | 60)) "] = —1(6o).

The non-singularity of the Fisher information matrix remains difficult to prove for general latent variable models.
Some papers consider it as a base hypothesis to obtain the asymptotic normality, e.g. for Factor Analysis [5]
or Hidden Markov Models [8]. In the latter case, the more recent work of [15] provided a condition to obtain
the non-singularity of the Fisher information matrix. A recent result was obtained by [48] on the asymptotic
normality of MLE for Gaussian graphical models and apply it to estimation from partial observations. In this
specific case, the Fisher information has a simple closed form expression.

For the model considered here, no closed form expression can be expected, as the gradient of the log-likelihood
writes with integrals on V,,. Instead, we notice that, since the observation density p(A | 6y) is continuous and
I(6p) writes as the integral of (Vglogp(A | 69))(Velogp(A | 6p)) T, the matrix will be non-singular if we can find
dim(fp) matrices A; such that the related gradients Vylogp(A; | 8y) are linearly independent. This is formalized
in the following lemma:

Lemma 5.3. Let d = dim(6y). If Ay,...,Aq matrices can be found such that the related logp(A; | 6o) are
independent, then I(0y) is positive definite.

Proof. Let x € RY. We have:
x " 1(80)x = Epeaja,) |(x, Vologp(A | 6o))?| > 0.

If 271(6p)r = 0, then (x, Vglogp(A | 90)>2 must be zero everywhere. Therefore, since 6 — logp(A | 0) is
infinitely smooth, z is orthogonal to all the gradients Vglogp(A; | 6p), and thus to their linear span, which
covers the full space, which implies = 0. As a consequence, I(6p) is positive definite. O
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In the case of our model, it turns out that, although the expression of Vg logp(A | 0) is intractable, it simplifies
as || Al grows large. This simplification comes from the so-called Fisher identity:

p(A|0)
/]
= Vop(A, X, \ | 0) [dX]d)
p(A]0) Vip XRP ol 9)1X]
_ / / Vylogp(A, X, A | 0) - p(X, A | A,0) [dX]d\
Vnp XRP

=E[Vglogp(A, X, \) | 4],

Vologp(A|6) = Vop(A | 0)

and the gradient rewrites as an expectation of the complete log-likelihood over the latent variables. Given the
complete expression

1 1 1
(2m)n*/2g0* (2m)P/208 C(F)

1 2 1 2
p(A, X, A [ 0) = exp {<F7X>F—203||A—)\'X||F—%§|>\—H|| ;

this expectation yields for instance:
Vrlogp(A|0) =—-VplogC(F)+E[X | A].

As ||Al|p — +o0, we show in the upcoming Proposition 5.4 that the eigenvector distribution of (X | A)
concentrates around the permutations of the p eigenvectors of A related to the p largest eigenvalues. As a
consequence, Vg logp(A | 0) writes as the sum of VrlogC(F') and a linear combinations of all (X4), r, with
X4 the n x p eigenvector matrix of A and m € S, f € {£1}?. However, although X 4 can be chosen freely, the
subsequent linear combination turns out to be hard to compute and manipulate, which ultimately prevents from
getting an explicit expression for the gradient in F. The same phenomenon happens with the other gradients,
which all rely on an expectation given A.

This observation motivates the main hypothesis for our normality result. We shall consider a restricted vari-
ant of the main model p(A, X, \), where the X variable is constrained to the set Aq defined in equation (3):
the density of X writes as

Ixen,
C'(F)

X [0) = exp (X, F)p) , (5-3)

with C'(F) = [ A, €XP (X, F) ) [dX]. This constraint does not fundamentally change the model in the limits
where s; — 0 and s; — 4-00. For intermediate values, it truncates the other sections A, ¢ of the vMF distribu-
tion, but does not change the support of the distribution of A- X, as it still covers the set of rank p matrices. The
resemblance between p and p is optimized when the maximum of (X, F) . is reached in Ay, i.e. when choosing
the normalized columns of F' to be in Ag. We adopt this convention in the remainder of the section, as it also
facilitates proving the identifiability of the restricted model.

In the remainder of this section, the notations ¢(6), éN, ... refer to densities and estimators obtained for the
restricted model. We also assume that the empirical data distribution is given by p(A | 6y) rather than p(A | 6p).
With this restricted model, we have the following result:

Proposition 5.4. Let A € R™*"™ with rank at least p and distinct eigenvalues, and let Ay = tA fort € R. On the
restricted model with X € Ag, the distribution (X | A = A;) converges to the constant value X 4, with X4 € Ag

the list of eigenvectors of A corresponding to the p largest eigenvalues. In particular, E[X | A = A{] converges
to XA.
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Proof. By definition, E[X | A = A;] is the expectation of X w.r.t. the probability density proportional to
1 2
Lxen,exp | (X, F) + 292 leax|™) -
Tp

As t — +o00, the function g,(X) = 515 llieax||? reaches its maximum to a point which converges to X 4. We
p
have indeed:

2 2

2
14 = x| i o2 <A*Xﬂ ||N I

9) = lpua x| = 5%

By Proposition 2.2, ||Ax X ||2 is only at X = X4 on Ag (unicity is guaranteed as the eigenvalues of A are
distinct). Let D a region of V,, with non-zero Haar measure such that X4 ¢ D and let n > 0 such that if

X € D then ||[A* X|* < ||A* X4|> — 27. Let B, be a neighborhood of X 4 such that ||A % X|| > [|[A* X4 —n
We have:

fDexp (X, F) + g(X)) [dX]
Iy, exp (X, F) + g¢(X)) [dX]
fDeXp (X, F) 4 g:(X)) [dX]
fB exp ((X, F) + g:(X)) [dX]

Jpexo (X, F) + ¢ 7% (A Xal” —20) + t555 2 |4 Xall ) 4]

", 50 (X, F) + 255 (1A= Xl — ) — 55 ||A*XA||HM||)[ x|
2 2 |D|V
<exp | 2||F|, — 2t
( £, 772 7 ) Bylv.,

t
2.

P(X €D|A=A,0) =

Hence, by the Portmanteau theorem, the sequence of probability distributions (X | A = A;) converges in
distribution to the constant X 4. O

Remark 5.5. Proposition 5.4 can be compared to the decreasing uncertainty on the normalized position =/ ||x||
of a point x going to infinity. If we used the complete model, the distribution of X would instead converge to
the sum of Diracs at (X4)x ¢ weighted by p((Xa)x,f | 0).

With the result above, we can prove that dim© linearly independent gradients Vglogp(A | 6y) can be
obtained.

Lemma 5.6. The log-likelihood gradient Vglogp(A | 0) of the restricted model takes dim © = np+p+ 2 linearly
independent values.

Proof. As explained above, the Fisher identity reminded here allows computing gradients as A grows large:
Volog (A | 6) = E[Vylog i(4, X, X | 0) | A].

In order to alleviate the notations, the expectations E below refer to the distribution p(A, X, A | 6y). Since we
have:

1 1 1
PAX, N[ 0) = SE20 exp | (F, X) — oz llA-X X|7 -

2
2n)2er” (2m)P20% C'(F) A=nll™]

20?\ |
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we get for (F, u,ox,0¢):

2. Vylogp(A | 0) = %[ A A] M,

3. V2 logp(A | ) = 22+204 E[|A—X- X7 | 4],
4. Vozlogp(A|0) = —5r + 50r E[J|A — ull* | A].

Let t € R, consider the matrix A; = tA and denote X4 € Aj the matrix of eigenvectors of A for the p largest
eigenvalues. The expressions above simplify as t — +oc:

1. For F: Proposition 5.4 gives for A with p distinct non-zero leading eigenvalues:
Vrlogp(As | 0) = —VElogC(F) + X4 .
2. For p: as seen in Section 2.3, (A | X, Ay) ~ N(pa,x,07), so that we have

1 - 11
;V# logp(A; | 0) = to2 [EEN| X, A | Al — p]

OX

11

=-—[E Ay —
'503[ [hax | Ad = p
11 o2 o2
=" S |E|2tA* X+ Zpu| Al —
t Ui l 0'? + a_il’l/ ‘ t /~L‘|
t—+ ‘72
2 AR Xy
O)\Ua
3. For o2: similarly, we get
n? 1

1 -
13 Vozlogp(Ar | 0) = =55 + oo BIE[| A — A X||7 | X, 4] | Al

2t202  2t%20%

n2 1 9 9
= 5152 + ppga BIElIEAIG: — 2 (04 X) + NP | X, A | Al
712 1 2 2 9
= T 2202 + %20 4E[HtA||F = 2(pa,x,tA* X) + |[pa,x|I” +po, | A
t—+o0
e LA 22w Xl + 2 A Xl
€
4. For 0/2\:
1 ~ 1 9
ﬁv“z logp(A¢ | 6) = 2t2 2 + 224 4 E[JIA = ull” | A¢]
p 1 2
=——— 4+ ——E[E[|) — X, A | A
s + Bl — | X, 4] A
p 1 2
= ozt 7%20;;\E[”MA¢X — pl)* + poy | Al
ol

4
2)\
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In these expression, A * X4 = (A1,...,Ap) is the p leading eigenvalues of A, ||A * XA||2F = A+ + A2 and

HAH% =M + .- 4+ A2. In the remainder of the proof, we call these asymptotic rescaled values limit gradients.
Using the formulas above, we derive the following limit gradients.

e Taking X € V,,, we consider the limit gradient for - X*. Up to factors ¢ and ¢?> which do not affect the
linear independence, the result is:

—VrlogC(F)+ X
0_2
0252‘”
ASE

2 4
2
zrr |1~ 258 + 58l
4
, 2
2;{03 [ ]

e Taking a vector A € R? such that ||[A|| = |||, we consider matrices of the form X - I,,,. The resulting limit
gradient at t — +oo is:

—VrlogC(F) + I,

o

0.252)\
. >\25 04 )
2 [1-2% + 3] lul
2
i lul
e We consider the matrices A = Diag(u1, ..., tp, @, ..., a) with 0 < o < min; |g;|. The resulting limit

gradient is:

—VrlogC(F) + I,
op

e el

o1 [1= 23 + 22| |ul® + g0 (n — p)?

ot 2
2
e Finally, we take the matrix u - I,),. The resulting limit gradient is:

—VrlogC(F) + I,

p

0202 H

2 4
2
o [1-2% + 3] lul
4
g,

2
s

Subtracting the limit gradient at p - I,,;,, we can get linear combinations of gradients arbitrarily close to any
vector of the forms:

X -1, , 0 0
0 20— ) 0
0 ) P 0 ) 211721 042 (n _ p)2
0 0 0
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With X € V,,, and ||| = ||p||. We can now use Lemma C.8, which states that the elements of the form X — I,,,
span R™P. Similarly, elements of the form A — p span RP: taking A = —pu, the space contains —2u and thus
u. Hence it also contains all elements A with norm ||u||, which can be rescaled to get the entire space. As a
consequence, the three vector families above span the entire linear hyperplan R™ x R? x R x {0}. Furthermore,
the limit gradient at - I, has a non zero last coordinate and does not belong to this linear hyperplan. As a
consequence, the set of all limit gradients spans the entire gradient space. Therefore, the set of all gradients,
which gets arbitrarily close to limit gradients, also spans the entire gradient space. Finally, we can thus find
d = np + p + 2 matrices (A4;)%_; such that the vectors (Vglogp(A4; | 6))L, are linearly independent. O

With the result of Lemma 5.6, we can now obtain the asymptotic normality result.

Theorem 5.7. Assume that the empirical data distribution is given by the restricted model for some parameter
0y € ©'9. Then the MAP estimator 9N over ©'9 for the restricted model converges almost surely to 0y, and 9N
18 asymptotically normal:

VN(Ox — o) 2+ N(0,1(65)71).

Proof. As verified in Lemma C.9, the restricted model is identifiable on ©'¢, so that the only maximizer of £(6)
over ©'4 is f,. The proof of the consistency Theorem 4.2 adapts without hurdle to the restricted model, proving
that 6 ~ converges to 6y almost surely.

We can now check the conditions to apply Theorem 5.1. Since 6 — £(6) is smooth over ©, it admits a second-
order Taylor expansion at 8y, and Lemma 5.3 combined with Lemma 5.6 ensures that the Hessian matrix at this
point is non singular. Lemma C.10 shows that the Lipschitz condition (5.1) is satisfied by log p(A | 6). Finally,
condition (5.2) is satisfied, as the MAP estimator is such that:

N N
1 A 1
~ izzllogpmi [0v) = Z 0s (A | f) + 1 logp(l) — ~; logp(0x)

N
1 1 1 R
> _ 5( A _ _
> sup (N ;:1 log p(Ai [ 6) + & 1ogp(9)> v logp(fn)
1 & 1 )
>sup | — logp(A; | 0) | — —(suplogp(8) + log p(6 .
sup (N > “log p(A; | )) N(eeg gp(0) +logp(n))

OP(1/N)

Theorem 5.1 thus applies, and grants the convergence in distribution of v/ N (é ~ — b)) to the centered Gaussian
with covariance [V24(6p)] " E[(Valogp(A | 60))(Velogp(A | 00)) T1[V24(0)] " = 1(6y) . O

6. CONCLUSION

This papers provides theoretical guarantees for the estimation of the eigenvalue and eigenvector distributions
of the adjacency matrix decomposition model introduced in [43]. The considered model is identifiable, its MAP
estimator exists and converges almost surely to the points minimizing the Kullback-Leibler divergence to the
empirical data distribution. By considering an alternate restricted model, we obtain the usual 1/ VN convergence
rate and the asymptotic normality of the MAP estimator using the theory of [54]. Our results show that
asymptotic statistical analysis can be performed on manifold-valued latent variable models to obtain classical
guarantees. Arguments similar to those we presented should allow obtaining results in related models where little
theoretical work has been done. State-space models on Stiefel and Grassman manifolds [14], eigendecomposition
models for a single network matrix [26] or mixture models [2] could lend themselves to such an analysis.
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The model considered here, as most of the literature on statistics for Stiefel manifolds, is estimated with
MLE or MAP. Recently, [46] proposed a Bayesian framework for von Mises-Fisher distributions which allows
computing the posterior distribution of F' given observations of X. An interesting question would be to analyze
the behavior of this posterior distribution in a hierarchical model where X is a latent variable, in a direction
similar to the works of [41] and [20].

Finally, another important question on the model we studied is the analysis of its estimation error. In practice,
[43] rely on a variant of the EM algorithm to estimate the model parameters. EM-based methods are known
to produce local maxima of the likelihood, which prevents from getting a rigorous theoretical analysis of the
estimation error. However, even assuming that no local maximum is found, the E-step of the EM algorithm
behaves in an undesirable way, as the conditional distribution of (X, \) given A is multimodal (one mode per
permutation and change of sign for the columns of X). This conditional distribution yields a very low vMF
concentration far from the real one, as the samples X are spread over the manifold. A heuristic thus has to be
employed in practice to ensure that X stays close to Ay, and get a better estimate of the MAP. This question
will be part of our future work.
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APPENDIX A. REMINDERS ON THE STIEFEL MANIFOLD

The Stiefel manifold is the space of n x p matrices X such that X "X = I,. It has inherits a Riemannian
manifold either as a submanifold of R™*? or as a quotient of O,(R) by O,_,(R). The equivalence between
both corresponds to mapping X to the set of orthogonal matrices (X, X ), with X, completing X into an
orthonormal basis. The induced metrics are called respectively the Euclidean metric and the canonical metric.
The notions exposed here are introduced with great detail and clarity in [21].

Tangent space. Let X € V,,;,. The relation satisfied by matrices H in the tangent space T'xV,, is obtained
by differentiating the relation X "X = I,,: this yields H' X + X T H = 0. This definition of the tangent space
can be made more explicit by writing H under the form H = (X, XJ_)(g) = XA+ X | B, with A € RP*P
and B € R P)*P_ Such a decomposition is always possible, as (X,X 1) is an orthogonal matrix. Using this
expression in the equation of the tangent space yields AT = —A. As a consequence, T'xV,, can be defined as
the set of XA + X | B, with A a skew-symmetric matrix.

Function gradients. Given a function f :V,, — R, the manifold gradient of f at X is the matrix-valued
function Vy f. It is defined by the property that, if X; is a smooth curve on V,;, with Xy = X and Xo=He
Tx Vnp, then %(O) = (Vv f(X),H)y. Here, (-,-) y denotes the inner product on T'’x V,, of the Riemannian
manifold structure of V,,. Note that the definition of the gradient depends on the metric choice, which is worth
mentioning as this choice varies from one paper to another.

An important case is the situation where f can be extended to the whole matrix space. This allows computing
the Euclidean gradient of f. Then, depending on the metric choice, explicit formulas are available for the manifold
gradient. With respect to the canonical metric, we have [21]:

Vyf(X) = V(X)) - XVX)'X.

Cayley transform. In Riemannian geometry, the standard way of mapping elements of TxV,, to the base
manifold V,, is the Riemannian exponential map, defined with geodesic equations. Although explicit formulas
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are available for the exponential map on V,, (see again [21]), they rely on matrix exponential and little is known
on the properties of the inverse mapping.

In contrast, the Cayley transform Cx behaves better in that regard. It also sends elements from TxV,, to
Vnp and behaves similarly to the exponential map close to X, in the sense that

Cx(H)=X+2H +o(|H| ).
Denoting K = HX " — XH", the Cayley transform at X is defined by:
Ox(H)= I, +K)I, - K)™'X €V,,.

Cx was studied in more detailed for X = I,,, in [29]. In practice, the Cayley transform is used in optimization
to perform gradient descent [24], as it allows projecting the descent direction Vy f(X) onto the manifold and
requires only simple linear algebra computations. We prefer it to the exponential map because it has a simple
expression, is invertible, and covers the entire manifold apart from a set with measure zero.

APPENDIX B. PROOF OF THE CONSISTENCY OF THE MAP ESTIMATOR
We define

E* = sup Ep(aa)llogp(A|0)].
o>

The proof relies on the Alexandrov compactification ©> of ©>, which adds an infinity point for the
coordinates o (for the cases o. € {0,400}), oy (for the case oy = +o00) and p (for all the cases where
Jiall = +o0).

Part A. We prove that, for all §,, € ©> such that §(£(0s), Z°) > ¢, there exists an open neighborhood
U C O of 4 such that

Ep(aa) eeitlrlw%oo logp(A|0)| <E*. (B.1)

Let U}, be a decreasing sequence of open sets such that Np>olfs, = {0}, and let

fn(A)= sup logp(A|6).
OcU,NO>

Two cases arise:

1. If 0o € ©°°. Since 0 — logp(A | 0) is continuous, we have:

Fu(A) 22525 log p(A | 0) -

And the sequence f;(A) is decreasing for every A. Furthermore, Lemma C.6 ensures that the sequence
is bounded from above (with the upper bound obtained by taking the whole space for U). Hence the
monotone convergence theorem applies, and we get:

lim Epga)[fa(A)] = Epa)llogp(A|0c)] < E*

h—+o00

since 0, ¢ O5°. Therefore, it is sufficient to take h large enough to have equation (B.1) satisfied.
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2. If 0 ¢ ©°°, i.e. the variance parameters (oy,o:) take extreme values, we prove by contradiction that
limp o0 fr(A) = —o00 a.s. Let us assume that there exists a measurable set E € Z(R"*") such that
P(A € E) > 0 and, for all A € E, inf}, fr(A) > —oo. Since f,(A) is decreasing for every A in E, the
infimum is reached at infinity.

For each h, let (05,.m) € (U, N O®)N be a sequence such that:

lim logp(A | Onm) = sup logp(A]0)= fu(A)>inf fr(A).

m—>+00 OEU,NO>®

By taking for each h a value of 0}, ,, h~!-close to the function’s limit, we obtain a sequence 6, € (@’7)N
such that 6, — 0, and

liminflogp(A | 6) > inf fr(A) > —oc0.
h—+oo h

Since 0 ¢ ©°°, we have 03° = +00, 02° = 0 or 02° = +00. Hence this contradicts Lemma C.7. Therefore,
P(dA)-almost surely, fr(A) — —oo. We can again apply Lemma C.6 and use the monotone convergence
theorem, which grants

i E A)l = — E*.
pm paa)lfn(A)] 00 <

Therefore, whether 6, is in ©° or not, there exists an open neighborhood U of 6, such that
Ep@a)y | sup logp(A|6)| <E*.
0eUN©>

Part B. Define K. as:
K. ={0€0>[3(£(0),E) > ¢}

By definition of the Alexandrov compactification and by the continuity of §, K. is a compact set, hence we can
find a finite open cover (Up<p) of it, where each U}, satisfies equation (B.1). Let N € N. For all 0§ € K.:

N

N
sup > logp(A; [0) < sup Y sup logp(A; | 0).
0eK.NO> = 1<h<H ‘= bct,no>=

Since the observations A; are independent (H2), by the law of large numbers and by the definition of Uj:

N

1
lim — sup logp(A;|0) <E*.
N—+oo N z:; 0EU,NO>® ( | )

%

Hence

N
1
limsup sup — E logp(A; | 6) < E*.
N—+oo beK.no= N — (4:16)

Part C. For each 6% € ©%°, the law of large numbers gives limy_, o0 77 Zivzl logp(A; | 0*) = E*. Let 6* be
a sequence of parameters with finite values such that 8% — 6*. Then we have, for all k:
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p(On | AN)p(AN) . p(0" | AN)p(AN) — p(AN | 0%)p(6*)

AN | Oy) = . . = -
p(A™ | 6w) p(0y) p(0y) p(0y)

N N
> logp(A; | On) =Y logp(A; | 0%) + (log p(6") — log p(f))

i=1 i=1
And, since log p(#) is upper bounded by M, this leads to:

p(6")
-

1 A 1
7 (logp(0%) —logp(d)) > - log

Hence lim inf y_, o - (log p(6%) — log p(An)) > 0 and, almost surely, for all k:

N

lim inf — Zlogp (Ai | 6n) > Epraayllogp(A | 6%)].

And, from the continuity granted by Lemma C.7, limg_, 4 oo Ep(qa)[log p(A | 6%)] = E*, so that almost surely:

> E* .
lim inf — ZlogpA |6y) > E (B.2)

Part D. Finally, if Oy € K. for all N € N, then:

N

log p(A; 6 su logp(A; | 0).
; gp(dil )< sup Z gp(A; | 0)
Which implies almost surely:
N | X
hmsup— Zlogp A; | 0y) <limsup sup Zlogp(Ai |6) <E*. (B.3)
N—>+oo =1 N—+o0 €K, ne~ N i—1

Which directly contradicts the point of part C. Furthermore, if Oy € K. is only true up to a subsequence,

the argument remains valid, as all the limits in this proof as N — 400 can be taken with respect to any

extracted subsequence chosen a priori. Therefore, and since we proved in Theorem 4.1 that Oy is finite and
{0 € @ | §(£(0),E) > ¢} C K., 6(En,2°) > € as N — +00 almost surely, for all ¢ > 0. As a consequence,
(5 N, Z25°) — 0 almost surely.

APPENDIX C. LEMMAS

In order to state the required lemmas, let us denote

1 1 1
P € A s )\

We have the following lemma.
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Lemma C.1. The model likelihood rewrites as

1 oP 1 1 1
Al)=— 5L —— |43 = = ||ul* ) E — 2 C.2
PAL0) = G ot exp( 57 141 = 57 1P ) Bx | (o IaxP) | (©2)

where Ex denotes the expectation taken with respect to X only.

Proof. From the definition of our model,
pAl0)= [[ b X A0 |0 6)[dX]
np XIRP

1 1 1 1 2 1 2
= F,X)— A-XN-X|%— = |A— X]dX.
//VTLPXR” (27‘1’)”2/20’;‘2 (27T)p/20.§ C(F) €xp [< ) > 203 ” A ||F 20§ HA ﬂ’” [d ]d/\

Furthermore:

p
A= 3 X = A1~ 23" A (Al + 3 A (el )
k=1

k,l=1

p p
= | All7 - QZAk(szxk) + Z Ak Ak
k=1 k=1
= Al =2\ Ax X) +|IAI°

So that, using % =14 L.
P € A

1 1 1
A =
p(4]6) //v @n) Pam (2m)p/2aT O(F)

exp |17, X) = gz (1A = 2004 € )+ A1) = 52 (117 = o)+ )| (4]0

1 1 1
B //vnpxm (2m)"*20® (2m)P/20% C(F)

1 1 1/1 1
exp [(F,X) = oz 141 = 5oz Wil + (73 X i) = 3 (554 7 ) W] 1axan
€ € £ A

1 1 1
B //v 2n) 2o (2o C(F)

I 1 1 1
exp [(PLX) = o5 A = oz 405 (hod| A+ MD 03 11| ax10A,
P

L € p

Let pax = crg L}EA*X—I— éu} We get:

1
p(A|6)
0= T

1 2 2 1
X FX)— —||A|% — — + —= (A p N dX]dA
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| et ot e (X0 = 5 Al = 5 Il + 5o laxl
= 7eX 5 _— _——_— —
Vo, (2m)72/200% O(F) o} P 202 F 202 K 202 pax

A

1 1 )
(2m)P/208 “5 A X].
/RP 2myplzat P { 2072 IA = pax| } dA[dX]

=1

Thus we obtain the result:

1 1 ob 1 1 1
A|0) = = —— A% - = 2 / F X))+ — 21 dx
PA10) = Gz ol o o0 | o MG = oz Il [ exo |1 )+ g3 Inax P [0
%
p

1 1 , 1 ) 1 y
—  Poxp |- A% - — E — .
e ot exp[ 302 Ml = 52 ||u||} x[exp[zag laxl

Lemma C.2 (Bound on the log-likelihood). For all matriz A and parameters 0,
n2
logp(A | 6) < ——-log(2m) — (n* —p) log o= — plog ox.

Proof. Using 0%23 = % + U%, Jensen’s inequality gives ||puax]|]® < U% |A* X||* + é ||]|*. Proposition 2.2 implies,

for ;1 = 0, that ||[A* X| < ||A|| . Hence, for all X € V,,,, [pax|’ < % IA]2 + % || ]|*. This bound yields in
€ A
the expression of Lemma C.1:

2
logp(A]0) < —% log(27) —n?logo. + plogo, — plogoy .

Furthermore, from the definition of o, we have o, < 0., which gives the desired bound:

2
n
logp(A|6) < —5 log(27) — (n* — p)logo. — plogoy .

O

Lemma C.3 (Continuity of p(A | §) over ©>). The likelihood p(A | 8) extends continuously when s; = +oo for
a subset I of r indices or when oy = 0. In other words, 8 — p(A | 0) is continuous over ©°. With the following
notations

J is the complementary of I in {1,...,p},

X7 is the n x r matriz (X, ..., %),

Mi denotes an n x (n —r) matriz such that M Mj- =0 and Mj- € V.
gumr (X, F) is the von Mises-Fisher density with parameter F' and variable X,
F = MDiag(s) is the parameterization of F described in Section 2,

the extension reads:

SR aor (Y (M) TE)p(A | X = (M, Mj"Y), A = p,0) [dY] if ox = 0

AlO) =
p(A16) {ffvn_r,p_erP aomr (Y (ME)TE)p(A | X = (Mp, MiY), A = u,0)p(X | 0) [dY]d\ otherwise.

If all latent variables are constant, this yields the Gaussian likelihood A ~ N (p - M,021,,xx).
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Proof. For notational convenience, we suppose that I is composed of the first r indices of {1,...,p}. Let
{X1 = M} CVp,, be the set of values of X such that X and M match on the columns of I. The continuity at
infinity comes from the expression:

p(A]0) =Ex[p(A] X, A 0)]
= ]EXI,A[EXJ[p(A | X7>‘30) ‘ X17>‘]] .

The conditional expectation, computed below, is continuous (as the parameters in it remain finite). Furthermore,
in distribution, X; — M; and A — pu, as s; — 400 and o) — 0. Therefore in the limit the expression reduces
to the conditional expectation taken at the limiting final values:

1
T sty 5D((F7, X 7))p(} | 6) [dX]dA

/] exp((Fy, X)) f (4, X, \p(\ | 8) [dX]dX,
{X;=M;}xRp

Elp(A] X, A, 0) | X1] =

where the measure for X here corresponds to the Hausdorff measure over {X; = M;}. Furthermore, we have
{Xr =M}y ={(M;,M+Y)|Y € Vy_yp—r} and the map Y ~ (M;, M;"Y) is an isometry with respect to the
Haar measures (which is equal to the Hausdorff measure for Stiefel manifolds, as noted in [29]). We thus get:

/ / exp((Fy, X)) F(A, X, )p() | 6) [dX]dX
{X;=M;}xRp

= //V . exp(((MIL)TFJ’wa(A, (M7, MY), N)p(X ] 0) [dY]dX,
and similarly [[i ¢ _ 7y cme €XP((Fr, X7))p(A | 0) [dX]dA = C((MP)TFy). .

Lemma C.4 (Better bound on the likelihood). For 6 € © and A € R™™ such that |p| >
max(2||Al| p,20x/p/2 — 1), we have the bound

PA19) < G (rrgiog +1) e (~ gz (el 2= 141,

Proof. Using Proposition 2.2, which in particular grants that ||A « X|| < ||A| z, we have

T 1 )
PA|0) = Exx Wexp (—22 4= x|

2oz (141 - 200 40, +11%) )|

= E)\,X (27T0'2 n2/2

~Eax o mexp( 503 (415~ 145 X1 + 14X - %) )|

S E)\,X (27_(_0_2 n2/2

exp 2 5 1A% X — Al )}



234 C. MANTOUX ET AL.
Since [|A* X| < [|A]|p, we have |[A* X — X|| > d(\, B(0, ||A| z)) = max(0, |A]| — ||A]|z). And since |[u|| >

2||A|| g, we have:

2 1
(2r0?)" (4 16) < By [tz ex - o max(0. ] - [4102) |
g

1
+ Exx [1|/\|>|u|/2 exp (_W(”'M /2 - |A||F)2>:|

< PO < /2 + exp (505 (el /2= 141

Furthermore,
1 3
B <l /2) < B (1A~ sl € |5 il 2
1 2 1 2 9 2
—P(= A - 2 .
(21—l € | o t® o i)

Since by definition A ~ N(0,031,), 2% [|A — pl|? follows a chi-squared distribution with degree p. Its CDF is
A
given by:

p/2.2/2)
O ="50m)

with v(p/2,2/2) = f;72 tP/2=1e=t dt. Therefore we have:

1 2 1 2 9 2
P < 2Q))<P|—=|N— — -
(A < il /2) < (Ui 1A= nl eLwi 61 152 |M)

1 2 lul®
= 7/4” /2t dt
I'(p/2) J 2 '

2
QHM”

Furthermore the function ¢ — t?/2- et is decreasing for ¢ > p/2 — 1 and ||u||* > 403(p/2 — 1), so that:

1ol = lul? [ 1 p/2t 1
A A A

A

2 ||pe” Lo e
< R - .
< Forarsr o (07 0
This finally yields the claimed result:

2D e (=t 4 e exp (=2 (/2 — AT
F(p/2)0§(27f0§)”2/2 4(7?\ (2m02)n/2 202 F

< ot (piy +1) o0 (=gl 2= 141,

p(A[0)

IN
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Lemma C.5 ([11], Lem. 1). Let p < q be two integers. Then, for any differentiable map f : RP — R? and any
compact subset K of RP, there exists a constant A\ depending only on p and q such that

1 q
logm ———— dA < A (Su Df|l + 2) Diam(K) .
/RQ\f(K) & A4, f(K)) Kpll fll (K)

Lemma C.6. Assume hypotheses H1, H3. We have

Epc, L“ép (log p(A | o))*} < too.
sup.

Proof. For an observation A and all § € ©, we have:

p(A[0) =E[p(A] X, )]

1 1 )
—E|———exp(—s5 A=A X
[(O—e\/ﬂ)nz eXP( 203 ” |F>:|
1

1 2

Where R, denotes the set of n x n matrices with rank less than p. This inequality remains true for § € ©*°,
as both sides extends continuously to ©>°. Hence for all § € ©°°:

<

logp(A | 0) < —n”log(0.V/27) — 5 5 d(A, Ry’ (C3)
1
< —n?log(o.V2rm) — Fd(A’ Rnp)?. (C.4)

€

This quantity is maximized for 02 = ;d(A, R,,;,)?. Which gives, taking the positive part, up to a finite additive
constant a:

(logp(A | 0))* < a+n?log™ (d(AlR)> . (C.5)

We now want to apply Lemma C.5 to integrate over A. To that end, we need to parameterize R,, with a
map from a lower dimensional space. The naive mapping R? x R"*? — R,,,, mapping (A, X) to A - X does not
work directly, as it is not “coercive”, in the sense that (A, X) can go to infinity with A - X possibly staying
bounded. This problem is overcome by restricting the X domain of the map (A, X) — A - X to a set of points
close to Vpp.

Let f:R"™P x RP — R"*" defined by f(U,v) = v-U = UDiag(v)U". Then R,, = f(Vn, x RP). We have
furthermore D fy,(H,w) = UDiag(v)H " + HDiag(v)U " + UDiag(w)U ", so

1D foo(H)lly < 21Ul 1oll o 1E Nl + U5 oo -

Hence the operator norm of the differential (for the matrix operator norm) satisfies || D fy |, < Cnyp ||(U, )17
(with C),, a generic product of norm equivalence constants, whose definition may implicitly vary depending on
the equation).
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Let 8 €]0,1]. Since V,,;, is a compact subset of R"*?, There exists X1,..., Xy € Vy, such that the union of
Frobenius balls UL | Bp(X},, 8) covers V,,,. In particular, we have

f ((UFZB(X5, B)) X RP)) = Ry
Let (h,t) € [1,H] x ZP: we define By as B(Xp, 8) X Boo(t,1/2). Hypothesis H1 gives np + p < n?, hence

Lemma C.5 applies to f. We get:

2
]_ n
log" —————-dA <A (su Df| + 2> Diam(B
/an\f(Bht) & d(A, f(Bw)) B;}?H £l (Bnt)

S/\< sup Cnp(U»v)II?Hr?) (vVn+5)

(U,v)EBn¢

n2
2
< (anp It +0np)™ (as |Ullp < [ Xnllp+8<Vp+1).

A

With ayy, bnp constants depending only on n and p. Let Dy = Uhe[[lyH]MItHOOSTBht‘ We have:

H
1/d(A, f(Dr)) = 1/d(A, f(U, 1/d(A, f(U,
[HAID) = p, WAAIGN S, D S, AT
H
<D > 1/d(A, f(Bu)-
h=1t|| ,<T

Hence, since the sets f(B;) have zero Lebesgue measure in R"*"(as np + p < n?):

P(A)dA

N ] H T
/le‘)g G0 F(Dpy) P A =20

h=17=1 ¢,

H T 5
anp tlloo +bnp)™  max _ P(A).
23 3 (ol bl PO

Lt

/ 10g+ ;
Rnxw\f(Bht) d(A,f(Bht))

I AN

Now, if A is such that d(A, f(By:)) < 1, we have ||A — f(X,t)||p < 1+ Cyp/2. Furthermore, since the columns
of X}, are orthonormal we have || f(X4,t)||, = |||/, so that d(A, f(Br)) <1 = ||A|lp =2 Cupllt]lo —1—
Chp/2 > (|t — 1) for some ¢ > 0. Hence

1 2
logt ————P(A4)dA < H(anpj + bpp)™ max P(A
/l;nxn g d(A7 f(DT)) ( ) - Z Z . ( pj p) d(Avf(Bht))Sl ( )

T
<SG+ D H(anyj +bap)”  sup  P(A).
1Al >e(i-1)

Since P has an exponentially decaying tail beyond some compact set (Hypothesis H3), this sum converges

to a finite value. Since the sequence (log™ (d(A, f(Dr))™")) ey is non-negative non-decreasing with limit



ASYMPTOTIC ANALYSIS OF A MATRIX LATENT DECOMPOSITION MODEL 237

log™* (d(A, Rnp)_l), Fatou’s lemma gives:

1
< liminf log* (——— ) P(da .
—THBRO/RW o8 <d(A,f(DT))> (d4) < +oo

Thus we finally get the desired result with equation (C.5):

E |(log p(A | 6))+} <a+n? /}Rnxn log™ <d(A,1Rnp)> P(dA) < +00.

Lemma C.7. We have:

1. P(dA) almost-surely, for any sequence ), € O such that limy_, o 0 € O\ O,

kginoo logp(A | 0)) = —c0.

2. For any sequence 0y, € O such that limy_, 1 0 € 0> \ ©%,

lim Epa) [logp(A | 0k)] = —occ.

k—+oo

8. The mapping 0 — Epa)llogp(A | 0)] is continuous on O and ©° # @.
Proof. We prove the three points consecutively.

1. Let (6;) € ©> a sequence such that 0., = limg_, o 0 € O\ ©. By definition,
0>\ 0% = {(M,s,u,0x,0:) | s €[0,+00]” and (o) = +00 or 0. € {0,+00} or u=00)}.

We treat the cases separately, depending on the limits oy, 0. € {0,¢ > 0,00} and p € RP U {co}.

(a) o) — 00,0, — ¢: then, by Lemma C.2, logp(A | §) = —o0

(b) If 0. — +00 or 0. — 0. We can use Lemma C.4: since A has density with respect to the Lebesgue

measure, | A # ||p|l /2 almost surely, so that logp(A | §) - —oc0 as 0. — +o00 or g, — 0.
(¢) If p = oo and (op = ¢,0. = cor oy — 0,0, — ¢): Lemma C.4 grants that logp(A | §) — —o0.
2. Let (Ax) € ©> a sequence such that O = limg_, 100 O € O\ 0. Let fr(A) = p(A | 0;). We proved

above that, almost surely, fx(A) — —oc.
Let m < 0. We have 1, (4)>m — 0 almost surely, hence Epqa)[fx(A)1, (4)>m] — 0 as k — +o0.

Ep@aa)[fr(A)] = Epaa) [fr(A) 11 a)y<m] + E[fe(A)1f, (a)>m] . §+ m+o(1).

— 400
Therefore limsupy, | o Epaa)[fe(A)] < m for all m < 0, hence

lim Epallogp(A | 0Or)] = —c0.

k——+oo

3. Let z > 0. Lemma C.3 shows that log p(A | 0) is continuous over S, = {0 € O | o, € [z,1/x],05 < 1/z},
which is a compact set. It is therefore bounded, which implies that 6 — Epa)[log p(A | #)] is continuous
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over S, for every x, hence continuous over ©°°. Furthermore, suppose that ©%° is empty. Then any
maximizing sequence 6 is such that limoy — 400 or limo. € {0,400}, which contradicts the point
proved above. Therefore ©%° # @.

O

Lemma C.8. For every neighborhood V' of IL,,, Span(V NV,,,,) = R™"*P. Furthermore, the set {X —1I,,, | X € V'}
also spans R™*P,

Proof. The tangent vectors at I, write H = (g) with AT = —A. The proof relies on a second-order expansion
of the Cayley retraction map at I,,. Following [29], we define the Cayley transform on this tangent space as a

. A -BT
function of K = (BT 0 )

Cr(H)= (I, + K)(I, — K) " 'I,,, .

Furthermore, if a n x n matrix K is sufficiently small, we have (I,, + K)~! = I, — K + K? + O(K?3). Taking

B =0, we get:
cA A
CI(O>—Inp:5<O> +O(52).

We can thus get linear combinations of elements of V,, arbitrarily close to elements of the form (’3) with
AT = —A. Taking A = 0 similarly leads to:

0 —2¢2BTB
() -t (557) o)

As with A, we obtain a linear combination (CI (533) - Inp) /e arbitrarily close to matrices of the form (g) with
B € R("=P)*P_Furthermore, still taking A = 0, we obtain:

0 0 —4¢2B'B
Cy <EB>+CI (—EB)2Inp ( 0 )+O(€3).

.
We can thus get linear combinations close to elements of the form (B OB ) This is sufficient to get all matrices

with a symmetric upper part, as any symmetric matrix can be obtained as a weighted sum of rank one matrices
of the form (z,0,...,0)T € R("=P)XP (1 € RP).

As a consequence, there are linear combinations converging to any matrix (g% by combining symmetric and
skew-symmetric components for A, and the term for B. In particular, we obtain linear combinations arbitrarily
close to a basis of R™*P which thus also span the entire space. O

Lemma C.9. The restricted model p(A | 0) is identifiable on ©'9.

Proof. The parameters oy,0. and p can be identified as in Theorem 3.1. It thus remains to identify F =
MDiag(s) from the distribution of A - X. Here, the argument gets much simpler than for the full model: since
X is constrained in Ay, the mapping (A, X) — X - X is injective over the whole support of latent variables.
Therefore, the changes of variable using the formula of [53] directly give access to the density of X over Ag
(with the same argument as the one used to obtain f)(X) for the full model).

By the hypothesis we made when introducing the restricted model, the maximum of (X, F) over V,, is
reached in Ag: this point, which can thus be identified, gives the value of M, the normalized columns of F' (we
recall that we introduced the decomposition F' = MDiag(s)).
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We use the gradient of p(X | 0) to identify the concentration parameters (s;). Since the function is defined
over V,,, we only have access to the projection of its gradient onto the tangent spaces. If we denote by G(X)
the Euclidean gradient, the projected manifold gradient writes: Gy (X) = G(X) — XG(X)T X [21]. In the case
of the function p(X | ), the manifold gradient thus is: Gy (X) = $(X | 0)(F — XF T X). As a consequence, the
function A(X) = F — XF T X is known over Ag. Coherently, we have h(M) = MDiag(s) — MDiag(s)M "M = 0.
We will use the first-order variations of h(X) around M allow to retrieve s.

These variations are retrieved by using the Cayley transform on tangent vectors at M (any other smooth
retraction map could be used here). As reminded in Appendix A, such tangent vectors H € ThV,, write as
H=MA+ M, B, with AT = —A. Denoting K = HM T — MH", the Cayley transform at M is defined by:

Cu(H) = (In+ K)(I, — K)"'M € V.
In particular, as in Lemma C.8, it satisfies Cps(eH) = M + ¢H + O(£?). This gives:

h(Car(eH)) = F — Cy(H)F T Cyp(eH)
=F—(M+eH)F'(M+cH) + O(?)
=F—-MF'"M—-eHF"M —cMF"H 4 O(?)
=0

= —e(MA + M, B)Diag(s) + eMDiag(s)M " (MA+ M, B) + O(¢?)

= —eM [Diag(s)A 4 ADiag(s)] — eM | BDiag(s) + O(¢?).
Taking B = 0 and normalizing by e, we obtain the value of M[Diag(s)A + ADiag(s)] for every p x p skew-
symmetric matrix A, which gives Diag(s)A + ADiag(s) when multiplying by M ". For every i, j, taking for A the

matrix with A;; = —Aj; = 1 and zeros everywhere else gives the value of s; 4 s;. This gives an over-determined
system of equations which allows identifying the s;’s. O

Lemma C.10. If the empirical data distribution is given by P(A) = p(A | by), then condition (5.1) for the
asymptotic normality theorem of [54] is satisfied by the restricted model on a neighborhood of 6.

Proof. We are looking for a function L : R™*" — R, with E[L(A)?] < +oo and such that, for §; and 6
sufficiently close to 6y,

[log p(A | 1) —log p(A | 02)| < L(A) [|01 — 2| -
Transposed to the restricted model, Lemma C.1 gives the marginalized expression:

i 1 o211 . 1 1 1 )
logp(A | 0) = log @) Par o7 | T 202 ||A||F*R [l )" +1og . TF) exp ( (X, F)p + 257 [pax|™) [dX].
€ € 0 p

For two parameters 6, and 65, all terms apart from the integral over Ay are bounded by (C + ||A||§7) 161 — 02|,
with C' a constant depending on the neighborhood around 6y. Let h(6, A, X) = exp ((X, Fyp+ 5 H”QAX’D
Denoting

2 2 2
Mo, 4 = max|jpax|” < o (A% /o2 + llpll” /o),
we have:

1 2
h(9+d9,A,X) = exp <<X,F+dF>F + W HMAXH>
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2
dap

p

lax | + O((L + [|A] ) [|d0]*)

= (0,4, %) (1+0((1 + | 4]13) el .

where the O notation contains constants depending on 6y and the size of its neighborhood. As a consequence:

log [ h(02 A, X) [dX] — log / W6y, A, X) [AX] = O((1 + | A]%) 16 — 6u])) .
Ag A

Finally, the Lipschitz condition (5.1) is satisfied by L(A4) = C(1+ ||AH§;) Furthermore, by Lemma C.4, p(A | )

admits second order moments, so that E[L(A4)?] < +o0. O
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