We consider the problem of estimating the support of a measure from a finite, independent, sample. The estimators which are considered are constructed based on the empirical Christoffel function. Such estimators have been proposed for the problem of set estimation with heuristic justifications. We carry out a detailed finite sample analysis, that allows us to select the threshold and degree parameters as a function of the sample size. We provide a convergence rate analysis of the resulting support estimation procedure. Our analysis establishes that we may obtain finite sample bounds which are comparable to existing rates for different set estimation procedures. Our results rely on concentration inequalities for the empirical Christoffel function and on estimates of the supremum of the Christoffel-Darboux kernel on sets with smooth boundaries, that can be considered of independent interest.
Keywords: Support estimation, christoffel function, concentration, finite sample, convergence rate
@article{PS_2022__26_1_171_0,
author = {Vu, Mai Trang and Bachoc, Fran\c{c}ois and Pauwels, Edouard},
title = {Rate of convergence for geometric inference based on the empirical {Christoffel} function},
journal = {ESAIM: Probability and Statistics},
pages = {171--207},
year = {2022},
publisher = {EDP-Sciences},
volume = {26},
doi = {10.1051/ps/2022003},
mrnumber = {4387184},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2022003/}
}
TY - JOUR AU - Vu, Mai Trang AU - Bachoc, François AU - Pauwels, Edouard TI - Rate of convergence for geometric inference based on the empirical Christoffel function JO - ESAIM: Probability and Statistics PY - 2022 SP - 171 EP - 207 VL - 26 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2022003/ DO - 10.1051/ps/2022003 LA - en ID - PS_2022__26_1_171_0 ER -
%0 Journal Article %A Vu, Mai Trang %A Bachoc, François %A Pauwels, Edouard %T Rate of convergence for geometric inference based on the empirical Christoffel function %J ESAIM: Probability and Statistics %D 2022 %P 171-207 %V 26 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2022003/ %R 10.1051/ps/2022003 %G en %F PS_2022__26_1_171_0
Vu, Mai Trang; Bachoc, François; Pauwels, Edouard. Rate of convergence for geometric inference based on the empirical Christoffel function. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 171-207. doi: 10.1051/ps/2022003
[1] and , Local convex hull support and boundary estimation. J. Multivar. Anal. 147 (2016) 82–101. | MR | DOI
[2] and , Theoretical foundations and algorithms for outlier ensembles. ACM Sigkdd Explor. Newsl. 17 (2015) 24–47. | DOI
[3] , Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950) 337–404. | MR | Zbl | DOI
[4] and , Differential Geometry: Manifolds, Curves, and Surfaces: Manifolds, Curves, and Surfaces, Vol. 115, Springer Science & Business Media (2012). | Zbl
[5] and , Reproducing kernel Hilbert spaces in probability and statistics. Springer Science & Business Media (2011). | MR | Zbl
[6] , and , Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207 (2011) 1–27. | MR | Zbl | DOI
[7] , and , Exact rates in density support estimation. J. Multivar. Anal. 99 (2008) 2185–2207. | MR | Zbl | DOI
[8] , Asymptotics for the Christoffel function for Jacobi like weights on a ball in . New Zealand J. Math. 23 (1994) 109. | MR | Zbl
[9] , and , On the asymptotics of Christoffel functions for centrally symmetric weight functions on the ball in . Rend. Cir. Mat. 52 (1998) 277–290. | MR | Zbl
[10] , Estimation du support et du contour du support d’une loi de probabilité. Ann. Inst. Henri Poincaré Stat. 12 (1976) 339–364. | MR | Zbl | Numdam
[11] , and , On Poincaré cone property. Ann. Stat. 42 (2014) 255–284. | MR | Zbl | DOI
[12] and , A plug-in approach to support estimation. Ann. Stat. 25 (1997) 2300–2312. | MR | Zbl | DOI
[13] , and , On statistical properties of sets fulfilling rolling-type conditions. Adv. Appl. Prob. 44 (2012) 311–329. | MR | Zbl | DOI
[14] , and , Plug-in estimation of general level sets. Aust. New Zealand J. Stat. 48 (2006) 7–19. | MR | Zbl | DOI
[15] and , On boundary estimation. Adv. Appl. Prob. 36 (2004) 340–354. | MR | Zbl | DOI
[16] and , Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 (1980) 480–488. | MR | Zbl | DOI
[17] and , UCI Machine Learning Repository (2017).
[18] and , Vol. 155 of Orthogonal polynomials of several variables. Cambridge University Press (2014). | MR | Zbl | DOI
[19] , and , On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29 (1983) 551–559. | MR | Zbl | DOI
[20] , Sur un probleme d’estimation géométrique. Publ. Inst. Statist. Univ. Paris 13 (1964) 191–210. | MR | Zbl
[21] , and , HiCS: High contrast subspaces for density-based outlier ranking, in 2012 IEEE 28th international conference on data engineering, IEEE (2012) 1037–1048.
[22] and , Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Can. J. Math. 65 (2013) 600–620. | MR | Zbl | DOI
[23] and , Christoffel functions and universality on the boundary of the ball. Acta Math. Hung. 140 (2013) 117–133. | MR | DOI
[24] and , The empirical Christoffel function with applications in data analysis. Adv. Comput. Math. 45 (2019) 1439–1468. | MR | DOI
[25] and , Asymptotical minimax recovery of sets with smooth boundaries. Ann. Stat. 23 (1995) 502–524. | MR | Zbl | DOI
[26] , , , and , Tractable semi-algebraic approximation using Christoffel-Darboux kernel. Preprint (2019). | arXiv | MR
[27] , A limit theorem for solutions of inequalities. Scand. J. Stat. 25 (1998) 235–242. | MR | Zbl | DOI
[28] and , Adaptation to lowest density regions with application to support recovery. Ann. Stat. 44 (2016) 255–287. | MR | DOI
[29] and , Sorting out typicality with the inverse moment matrix SOS polynomial, in Advances in Neural Information Processing Systems (2016) 190–198.
[30] , and , Data analysis from empirical moments and the Christoffel function. Found. Comput. Math. 21 (2021) 243–273. | MR | DOI
[31] , Bernstein Markov properties and applications, Ph.D. thesis, Dipartimento di Matematica, Università degli Studi di Padova (2016).
[32] , Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Ann. Stat. 23 (1995) 855–881. | MR | Zbl | DOI
[33] and , Über die konvexe Hülle von zufällig gewählten Punkten. Prob. Theory Related Fields 2 (1963) 75–84. | MR | Zbl
[34] and , Optimal rates for plug-in estimators of density level sets. Bernoulli 15 (2009) 1154–1178. | MR | Zbl | DOI
[35] Set estimation under convexity type assumptions. Ann. Inst. Henri Poincaré, Prob. Stat. 43 (2007) 763–774. | MR | Zbl | Numdam | DOI
[36] and , Real analysis, vol. 32. Macmillan New York (1988). | MR
[37] , and , Adaptive Hausdorff estimation of density level sets. Ann. Stat. 37 (2009) 2760–2782. | MR | Zbl | DOI
[38] , Vol. 23 of Orthogonal polynomials. American Mathematical Soc. (1939). | MR | Zbl
[39] , Asymptotics for Christoffel functions for general measures on the real line. J. d’Anal. Math. 81 (2000) 283–303. | MR | Zbl | DOI
[40] , On nonparametric estimation of density level sets. Ann. Stat. 25 (1997) 948–969. | MR | Zbl | DOI
[41] , Introduction to the non-asymptotic analysis of random matrices. Preprint (2010). | arXiv | MR
[42] , Granulometric smoothing. Ann. Stat. 25 (1997) 2273–2299. | MR | Zbl | DOI
[43] , On a generalization of Blaschke’s rolling theorem and the smoothing of surfaces. Math. Methods Appl. Sci. 22 (1999) 301–316. | MR | Zbl | DOI
[44] , Asymptotics of the Christoffel functions on a simplex in . J. Approx. Theory 99 (1999) 122–133. | MR | Zbl | DOI
[45] , Summability of Fourier orthogonal series for Jacobi weight on a ball in . Trans. Am. Math. Soc. 351 (1999) 2439–2458. | MR | Zbl | DOI
Cité par Sources :





