
ESAIM: PS 26 (2022) 171–207 ESAIM: Probability and Statistics
https://doi.org/10.1051/ps/2022003 www.esaim-ps.org

RATE OF CONVERGENCE FOR GEOMETRIC INFERENCE BASED

ON THE EMPIRICAL CHRISTOFFEL FUNCTION

Mai Trang Vu1, François Bachoc1,* and Edouard Pauwels2

Abstract. We consider the problem of estimating the support of a measure from a finite, indepen-
dent, sample. The estimators which are considered are constructed based on the empirical Christoffel
function. Such estimators have been proposed for the problem of set estimation with heuristic justifica-
tions. We carry out a detailed finite sample analysis, that allows us to select the threshold and degree
parameters as a function of the sample size. We provide a convergence rate analysis of the resulting
support estimation procedure. Our analysis establishes that we may obtain finite sample bounds which
are comparable to existing rates for different set estimation procedures. Our results rely on concen-
tration inequalities for the empirical Christoffel function and on estimates of the supremum of the
Christoffel-Darboux kernel on sets with smooth boundaries, that can be considered of independent
interest.
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1. Introduction

Given a measure ν on Rp and under appropriate assumption, the Christoffel function with degree bound
d ∈ N can be defined on Rp as

Λν,d : z 7→ min
degP≤d, P (z)=1

∫
P 2dν,

where the infimum is over all polynomials of degree at most d. The empirical Christoffel function Λµn,d is
associated to an input measure µn, which is a scaled counting measure uniformly supported on a cloud of
data-points. When µn is the empirical measure of an iid sample from µ, Λµn,d can be seen as an estimation of
the population Christoffel function Λµ,d (see [24]). Throughout this work the population measure µ has density
w on an unknown input set S ⊂ Rp.

The (population) Christoffel function Λµ,d itself has a long history of research in the mathematical analysis
literature. Its construction is based on multivariate polynomials of degree at most d and it has strong links to the
theory of orthogonal polynomials. Especially, the asymptotic behavior of the Christoffel function as the degree
d increases provides useful information regarding the support and density of the associated input measure µ.
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Important references in multivariate settings include [8, 9, 22, 23, 44], which concern specific cases of the input
measure µ and set S. These works not only provide valuable information on the asymptotics of the population
Christoffel function as d goes to infinity, but also motivate the usage of this function in statistical contexts,
especially in support recovery. Indeed, [24] provides a thresholding scheme using the Christoffel function which
approximates the compact support S of the measure µ with strong asymptotic guarantees. More precisely, [24]
considers a family of polynomial sublevel sets Sk = {x ∈ Rp : Λµ,dk(x) ≥ γk} with k ∈ N, where the degree dk
increases with k and where the threshold γk is well-chosen between a lower bound of the Christoffel function
inside S and an upper bound outside S. Another thresholding scheme can be found in [26], which provides useful
results on the relation between S and its estimator Sk. The topic of set estimation based on the population
Christoffel function is thus currently a subject of active interest with a large range of applications in machine
learning (see [24, 29]).

In a statistical context, the population Christoffel function Λµ,d is not available and only the empirical
Christoffel function Λµn,d is, based on the observed empirical measure µn. Let us detail results and discussions
presented in [24]. Statistical procedures based on the empirical Christoffel function have three important features:
(i) computations are remarkably simple and involve no optimization procedures, (ii) they scale efficiently with
the number of observations and (iii) the procedures are affine equivariant (affine transformations of their input
data result in affine transformations of their outputs, see Prop. 2.10). Furthermore, when considering a compactly
supported population measure µ as well as its empirical counterpart µn supported on a sample of n vectors
in Rp, drawn independently from µ and when the degree d is fixed, the empirical Christoffel function Λµn,d
converges uniformly to Λµ,d, almost surely with respect to the draw of the random sample. This asymptotic
result is appealing given the strong connections between Λµ,d and the support of µ, which suggest that Λµn,d
could be used for inferring the support of the population measure µ. Yet more precise quantifications on the
relation between sample size n and the degree bound d are required, but [24] does not provide any explicit
way to choose the degree d as a function of n, and does not provide any convergence guaranty for the full
plugin approach based on the empirical Christoffel function Λµn,d, when d depends on n. These shortcomings
constitute one of the main motivations for the present work.

1.1. Contribution

Our contribution is twofold:

1. We adapt the thresholding scheme in [24], using the empirical Christoffel function, by a careful tuning of the
degree d and the threshold γ in the limit of large sample size. This scheme allows to estimate the compact
support S of a measure. Our results include, under regularity assumptions on µ, a quantitative rate of
convergence analysis which was unknown for this estimator. More precisely, we consider the Hausdorff
distance between the original set S and its estimator Sn and between their respective boundaries, as well
as the Lebesgue measure of their symmetric difference. These results rigorously establish the property
that, when n is large enough, these distances decrease to zero with an explicit rate.

2. This analysis relies on results which could be considered of independent interest. First, we provide a
quantitative concentration result regarding the convergence of the empirical Christoffel function to its
population counterpart. Second, this concentration relies on an estimate of the supremum of the Christoffel
Darboux kernel on the support of the underlying measure. We prove that, for a large class of slowly
decaying densities with smooth support boundary, this supremum is at most polynomial in the degree d.
This shows that the considered class of measures is regular in the sense of the Bernstein-Markov property,
see [31] and references therein.

1.2. Comparison with the existing literature on set estimation

Support inference (more generally set estimation) has been a topic of research in the statistics literature for
more than half a century. The main subject of interest is to infer a set (support of an input measure, level set
of an input density function,...) based on samples that are drawn independently from an unknown distribution.
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Introduction and first results on this subject can be found in [20, 33], which motivate a subsequent analysis
of estimators based on convex hulls for convex domains [10] or unions of balls for non-convex sets [16]. More
involved estimators follow, such as the excess mass estimator [32], the plug-in approach based on the use of
density estimators [12, 14, 27] or the R-convex hull of the samples, R being a radius, [35].

Those works also motivated the development of minimax statistical analysis for the set estimation problem.
We might find minimax results for the recovery of sets with (piecewise) smooth boundaries in [25], for the
estimation of smooth or convex density level sets in [40] and for the plug-in approach in [34]. More current
works related to set estimation include local convex hull estimators [1] and cone-convex hulls [11].

We obtain convergence rates both in terms of symmetric difference measure, and Hausdorff distance, which
can be arbitrarily close to n−1/(p+2r+2) where n is the sample size, p is the ambient dimension and r ≥ 0 measures
the speed of decrease of the population density around the boundary of the support (r = 0 corresponds to a
density which is uniformly bounded away from 0).

Our convergence rates hold under the assumption of a ball of fixed radius R rolling inside and outside the
support S. The rolling ball assumption is common [13, 42, 43]. Under this assumption, and in the case r = 0,
[35] showed that the R-convex hull of the samples achieves the rate of convergence n−2/(p+1), for the Hausdorff
distance1 and the symmetric difference measure.

In [15], the Devroye and Wise estimator is shown to have a convergence rate of order (log(n)/n)
1/p

in
Hausdorff distance, under similar geometric assumptions as ours corresponding to the choice r = 0. Later on,
[7] proved for the same estimator, under similar assumptions as ours, a rate which can be arbitrarily close to
n−1/(p+r) for the measure of the symmetric difference for r = 1 and r = 2. Similarly, [37] obtained the same
rate for an histogram based estimator in the context of density level set estimation. Earlier work presented in
[25] proved that n−1/p is minimax optimal for the symmetric difference measure for a special class of piece-wise
C1 boundaries. Recently [28] proved a minimax lower bound on the convergence rate for symmetric difference,
of order n−1/(p+r) for adaptive estimators to unknown r ≤ 2.

Although the rates which we obtain are not optimal, for instance when compared to [35] in the case r = 0,
the dependency in the dimension and speed of decrease of the density seem reasonable in comparison to existing
rates. Let us insist on the fact that our analysis allows to cover a wide range of density decrease regimes and a
variety of divergence measures between sets for which the results for other estimates are not known. A detailed
comparison between all geometric conditions on the support, its boundary and different notions of divergence
between sets is out of reach given the diversity of assumptions in the literature, and as such we only consider a
high level general discussion based on orders of magnitude here.

From a computational point of view, our approach using the empirical Christoffel function has important
advantages. The most important one is that this approach estimates the support of µ by a polynomial sublevel
set, which is conceptually simple to manipulate. As an important illustration example, consider the situation
when one is interested in performing numerical optimization over the estimated support. This situation can
arise when a criterion is to be optimized over a feasible domain, which needs to be estimated from data. In this
optimization case, the fact that the estimated support is a polynomial sublevel set is beneficial, for instance
one can use nonlinear optimization techniques such as Sequential Quadratic Programming (SQP) or barrier
functions. If the support is estimated by an union of balls centered at the observations [16], the estimated
support may be less amenable to numerical optimization. Similarly, the R-convex hull estimator [35] is a set
over which optimization may be challenging.

In terms of numerical implementation, our approach requires to compute and store the inverse of a matrix
of size s(dn) = o(n) (see Sects. 2 and 3) where dn is the selected degree for the sample size n. Then, each input
point can be tested to belong to the estimated support or not, with the cost of evaluating a quadratic form
of size s(dn) and of computing s(dn) monomials in dimension p. In practice, s(dn) is smaller than n (to avoid
rank deficiencies), and in our asymptotic results, dn is selected such that s(dn) = o(n). Hence our approach
relies on reasonably simple and classical computations. In comparison, for instance, computing the R-convex
hull estimator [35] in general dimension p may turn out to be challenging. In dimension p = 2, a point can be

1Similarly as we do, they consider Hausdorff distances both between sets and between their boundaries.
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tested to belong to this set with computational cost O(n log n) [19], but we are not aware of similar efficient
algorithms for larger p.

1.3. Organisation of the paper

Section 2 introduces the notation and definitions which will be used throughout the text, especially the
definition of the population and empirical Christoffel functions and their known properties. In Section 3, we
present our main assumptions as well as our results on support estimation and convergence of the empirical
Christoffel function to the population one. Numerical illustration of the method appears in Section 4 for synthetic
data in dimension 2 and 3 and an outlier detection benchmark in dimension 6. There, we also provide a fully data
driven procedure for choosing the degree d and the threshold γ. Concluding remarks are provided in Section 5.
The proofs are postponed to the appendix. The appendix also contains additional results of interest on upper
and lower bounds on the Christoffel function, outside and inside the support.

2. Preliminaries

2.1. General notation

When µ is a measure on Rp, we denote by suppµ the support of µ. Let f be a measurable function from Rp to
Rp. The push-forward measure of µ by f , denoted by µ#f , is a measure on Rp defined by: µ#f (K) = µ(f−1(K))
for all Borel sets K of Rp. Given an arbitrary (measurable) set S ⊂ Rp, we denote by IntS the interior of S, ∂S
the boundary of S, Sc the complement of S, λ(S) the Lebesgue measure of S, diam(S) the diameter of S (with
respect to the Euclidean distance), λS the Lebesgue measure restricted on S and µS the uniform measure on S
(when λ(S) > 0).

When M is a square matrix, we denote by ‖M‖ the operator norm of M , i.e.

‖M‖ = sup
x 6=0

‖Mx‖2
‖x‖2

= sup
‖x‖2=1

‖Mx‖2.

If in addition, M is symmetric and positive definite, we can define its inverse M−1 and its unique square root
M1/2 which are also symmetric positive definite matrices. We denote by M−1/2 the inverse of the square root
of M , which is also symmetric and positive definite.

For x, y ∈ Rp, we let d(x, y) be the Euclidean norm between x and y. For A ⊂ Rp and x ∈ Rp, let d(x,A) =
infy∈A d(x, y).

We also denote by Br(x) the open Euclidean ball of radius r > 0 and centered at x ∈ Rp while Br(x) is the
associated closed ball. In particular, B denotes the unit Euclidean ball B1(0).

We denote by

ωp :=
2π

p+1
2

Γ
(
p
2 + 1

) (2.1)

the surface area of the p-dimensional unit sphere in Rp+1. We denote by

cr :=
Γ(p/2 + r + 1)

πp/2Γ(r + 1)
(2.2)

the normalization constant of the measure νr whose density is (1−‖z‖22)r on the unit ball B (see e.g. [45], page
2441, (2.2)). For α ∈ R and k ∈ N, the associated binomial coefficient is defined as follows:(

α

k

)
:=

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
.
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Finally, for two positive quantities an and bn depending on the sample size n (and potentially depending
on other constant quantities), we write an ∝ bn when both quantities an/bn and bn/an are upper bounded
uniformly in n. We proceed similarly, for two positive quantities ad and bd depending on a degree bound d but
not on the sample size n (and potentially depending on other constant quantities).

2.2. Problem setting

The following notation and assumptions will be standing throughout the text.

Assumption 2.1.

1. µ is a Borel probability measure on Rp and its support S := supp(µ) is compact with nonempty interior.
2. n ∈ N, n > 0 is fixed and X1, . . . , Xn are independent and identically distributed random vectors with

distribution µ. The corresponding empirical measure is denoted by

µn =
1

n

n∑
i=1

δXi , (2.3)

where δx is the dirac measure at x ∈ Rp.

Using the notation of Assumption 2.1, given the sample (Xi)
n
i=1 our goal is to build an estimator

Sn(X1, . . . , Xn) ⊂ Rp in order to approximate S. We construct a specific kind of estimator Sn based on the
empirical Christoffel function. The rest of this section is dedicated to the presentation of further background
needed to define our estimator. Convergence of our estimator to S using different criteria is described next in
Section 3.

2.3. The Christoffel function

2.3.1. Multivariate polynomials

Polynomials of p variables are indexed by the set Np of multi-indices. For example, given a set of p variables
x = (x1, . . . , xp) and a multi-index α = (α1, . . . , αp) ∈ Np, the monomial xα is given by xα = xα1

1 xα2
2 . . . x

αp
p

which degree is

deg xα = |α| =
p∑
i=1

αi.

The space of polynomials of degree at most d is the linear span of monomials of degree up to d:

Πp
d := span{xα : α ∈ Np, |α| ≤ d}.

The space of polynomials of p variables is

Πp :=
⋃
d∈N

Πp
d.

The degree of a polynomial P ∈ Πp, denoted by degP , is the maximum degree of its monomial associated to
a nonzero coefficient (the null polynomial has degree 0). Note that dim Πp

d =
(
d+p
d

)
. We denote by s(d) the

quantity
(
d+p
d

)
throughout the text.
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2.3.2. Orthonormal polynomials

Since µ satisfies Assumption 2.1 (see also Remark 2.3), we have the following inner product:

〈P,Q〉µ =

∫
Rp

P (x)Q(x)dµ(x),

where P,Q are polynomials. A sequence of orthonormal polynomials with respect to µ is a sequence of polynomials
{Pα : α ∈ I} in Πp such that 〈Pα, Pβ〉µ = δ(α, β) 2 for all α, β ∈ I. The Gram-Schmidt orthonormalization
process guarantees the existence of such an orthonormal sequence. Restricting the degree up to d ∈ N, we
obtain a sequence of orthonormal polynomials {Pj : 1 ≤ j ≤ s(d)}, which is also a basis of Πp

d.

2.3.3. Moment matrix

Now, let {Pj : 1 ≤ j ≤ s(d)} be a basis of Πp
d (not necessarily orthonormal). We denote

vd : Rp −→ Rs(d)

x 7−→ (P1(x), P2(x), . . . , Ps(d)(x))T .

The moment matrix of µ with respect to the basis {Pj}s(d)j=1 is a square matrix of dimension s(d) which is defined
by

Mµ,d =

∫
Rp

vd(x)vd(x)Tdµ(x), (2.4)

where the integral is taken entry-wise. We have the following property of the moment matrix which is useful in
the sequel.

Lemma 2.2. Let P,Q ∈ Πp
d have representations with respect to the basis {Pj : 1 ≤ j ≤ s(d)} of the form:

P =

s(d)∑
j=1

(cP )jPj = cTP vd, Q =

s(d)∑
j=1

(cQ)jPj = cTQvd,

where cP , cQ ∈ Rs(d). Then ∫
Rp

P (x)Q(x)dµ(x) = cTPMµ,dcQ.

Remark 2.3. Mµ,d is a symmetric, positive definite square matrix of dimension s(d). In fact, for any c ∈ Rs(d),

we set Pc =
s(d)∑
j=1

cjPj and by Lemma 2.2, we have

cTMµ,dc =

∫
Rp

Pc(x)2dµ(x) ≥ 0. (2.5)

2δ(α, β) is 1 if α = β, 0 otherwise.
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Since IntS 6= ∅, S is polynomial determining, that is, the equality of two polynomials is implied from their
equality on the support. By combining this fact with (2.5), we obtain that Mµ,d is positive definite.

2.3.4. The Christoffel – Darboux kernel

The space of polynomials of degree at most d along with the inner product defined by µ (Πp
d, 〈. , .〉µ) is then

a finite-dimensional Hilbert space of functions from Rp to R and dim Πp
d = s(d). Moreover, (Πp

d, 〈. , .〉µ) is a
reproducing kernel Hilbert space (RKHS) (see for example [3]). Indeed, we notice that the function P 7→ P (x)
is linear on the space of polynomials and Πp

d is finite-dimensional (hence all norms are equivalent), therefore we
obtain the continuity of this function on (Πp

d, 〈. , .〉µ) for any x ∈ Rp. This property of (Πp
d, 〈. , .〉µ) guarantees

the existence and uniqueness of a reproducing kernel which is defined as follows.

Definition 2.4. The Christoffel – Darboux kernel, denoted by κµ,d, is the reproducing kernel of the RKHS
(Πp

d, 〈. , .〉µ), i.e. for all x ∈ Rp and P ∈ Πp
d, we have κµ,d(x, .) ∈ Πp

d and

〈P, κµ,d(x, .)〉µ =

∫
Rp

P (y)κµ,d(x, y)dµ(y) = P (x).

The two following propositions are explicit formulas for the Christoffel – Darboux kernel. The first one is
its expression as a sum of squares of orthonormal polynomials, while the other is a computation based on the
moment matrix (and does not require an orthonormal basis).

Proposition 2.5 (see e.g. [5], page 7 or [18], page 97, (3.6.3)). Let {Pj}s(d)j=1be an orthonormal basis of Πp
d with

respect to µ. Then for all x, y ∈ Rp

κµ,d(x, y) =

s(d)∑
j=1

Pj(x)Pj(y).

Proposition 2.6 (see e.g. [24], page 7, (3.1)). Let vd = (P1, P2, . . . , Ps(d))
T be a basis of Πp

d and Mµ,d be the
corresponding moment matrix (see (2.4)). For all x, y ∈ Rp, we have

κµ,d(x, y) = vd(x)TM−1µ,dvd(y).

Remark 2.7. By Proposition 2.5,

κµ,d(x, x) =

s(d)∑
j=1

Pj(x)2 ≥ 0,

where {Pj : 1 ≤ j ≤ s(d)} is an orthonormal basis of Πp
d. Moreover, the Pj(x) cannot be all 0 since otherwise,

the polynomial 1 will be 0 at point x, which is impossible. So κµ,d(x, x) > 0 for all x ∈ Rp.

2.3.5. The Christoffel function

Now, we will define the (population) Christoffel function and provide some of its properties which are useful
for the sequel. The fact that the min exists in the next definition follows from e.g. [18], Theorem 3.6.6.

Definition 2.8. Let d ∈ N. The Christoffel function associated to µ and d is the function

Λµ,d : Rp −→ R+
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z 7−→ min

{∫
Rp
P 2dµ : P ∈ Πp

d, P (z) = 1

}
.

The following proposition is an equivalent definition of the Christoffel function, relying on the Christoffel-
Darboux kernel.

Proposition 2.9 (see e.g. [18], Thm. 3.6.6).

Λµ,d(z) =
1

κµ,d(z, z)
.

Above, recall that the Christoffel – Darboux kernel is positive. We now highlight the following properties of
the Christoffel function which will be useful in the sequel. The following proposition guarantees the equivariance
of the Christoffel function by affine transformations.

Proposition 2.10 (see e.g. [29], Lem. 1). Let A be an invertible affine map from Rp to Rp. Recall that µ#A is
the push-forward measure of µ by A. Then for all x ∈ Rp,

Λµ,d(x) = Λµ#A,d(Ax).

The next proposition expresses the monotonicity property of the Christoffel function. It is a direct consequence
of Definition 2.8.

Proposition 2.11. If ν is a Borel measure on Rp, such that ν ≤ µ, in the sense that ν(K) ≤ µ(K) for all
Borel sets K, then for all x ∈ Rp,

Λν,d(x) ≤ Λµ,d(x).

Remark 2.12. All the previous definitions and results extend straightforwardly to the case when µ does not
have unit mass (see Asm. 2.1). This extension is a simple scaling. This is a very slight abuse of notation that
we will some times do without mentioning it (for instance in Prop. 2.11).

2.4. The empirical Christoffel function

The Christoffel function associated to µn (see Asm. 2.1), Λµn,d is called the empirical Christoffel function.
It is to be compared to the population Christoffel function Λµ,d. The convergence of the empirical Christoffel
function towards its population counterpart as n→∞ and for a fixed d has been shown in [24]. Furthermore,
[24] show that, as d → ∞, Λµ,d takes asymptotically much larger values in the support S (polynomial decay)
than outside (exponential decay).

Since Λµ,d is unknown but Λµn,d is observed, our objective is thus, with a careful choice of threshold γ > 0
and degree d ∈ N, as functions of n, to construct a sequence of polynomial sublevel sets

{x ∈ Rp : Λµn,d(x) ≥ γ}

which estimate the support S. It is worth mentioning that the empirical Christoffel function Λµn,d can be
computed using the inversion of a square matrix of size s(d) thanks to Proposition 2.6.

Assuming that n ≥ s(d), and that the empirical moment matrix Mµn,d (see (2.4) with µ replaced by µn)
is invertible (this being true with probability one for example if µ has a density, see for example [30]), by
Propositions 2.5 and 2.9, we have∫

Rp

1

Λµn,d(z)
dµn(z) =

1

n

n∑
i=1

1

Λµn,d(Xi)
=

1

n

n∑
i=1

κµn,d(Xi, Xi) = s(d).
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By Jensen’s inequality, we deduce that in this case 1
n

∑n
i=1 s(d)Λµn,d(Xi) ≥ 1. This holds with equality for two

special values.

– If d = 0, then s(d) = 1 and following Definition 2.8, we have Λµn,d(z) = 1 for all z and so
1
n

∑n
i=1 s(d)Λµn,d(Xi) = 1.

– If s(d) = n, for each i = 1, . . . , n, let Mµn,−i,d be the empirical moment matrix obtained from (2.4) with
µ replaced by µn,−i, the empirical distribution with Xi removed from µn. The matrix Mµn,−i,d is not full
rank so from (2.5) (with µ replaced by µn,−i), there exists a non-zero P ∈ Πp

d such that P (Xj) = 0 for
j 6= i. We have P (Xi) 6= 0 because Mµn,d is invertible and again from (2.5). Then by renormalization of
P , using Definition 2.8 we have Λµn,d(Xi) = 1

n = 1
s(d) so that 1

n

∑n
i=1 s(d)Λµn,d(Xi) = 1.

So the typical value of Λµn,d(Xi) is greater than 1/s(d) with equality in two extreme cases of very small and very
large degree for n fixed. The Christoffel function scaled by s(d) is indeed a key quantity. In typical examples,
s(d)Λµ,d(z) converges as d → ∞ to a product of two terms, one accounting for the geometry of the support
(the so called equilibrium measure from potential theory), one accounting for the density of µ [9, 39, 44]. The
most general multivariate description of this phenomenon is found in [6], the equilibrium measure and density
argument is found in [22]. As discussed above, the limit is zero outside the support of µ.

3. Main results

3.1. Overview

From now on, we consider the case where the probability measure µ has density w with respect to Lebesgue
measure. Our main result is that for a large enough number of observations n, by choosing pertinently a degree
dn ∈ N and a threshold γn > 0 for the empirical Christoffel function Λµn,dn , we obtain a sequence of polynomial
sublevel sets

Sn := {x ∈ Rd : Λµn,dn(x) ≥ γn}

which approximates the support of µ. More explicitly, we show that under smoothness assumptions on S, Sn is
close to S both in Hausdorff distance and Lebesgue measure of their symmetric difference. For any ε ∈ (0, 1),
we obtain an explicit convergence rate of order

n−
1−ε

p+2r+2 , (3.1)

where r measures the speed of decrease of the density of µ, w, close to ∂S, see Assumption 3.5.
Those results are obtained from the following materials:
1. Properties of the population Christoffel function. We provide a lower bound on the Christoffel function

Λµ,d in the interior of the support S and an upper bound in the exterior of S. We also provide a bound on the
supremum of the Christoffel-Darboux kernel κµ,d on S. Those results will be discussed in Appendices B and C.

2. Concentration results for the speed of convergence of the empirical Christoffel function Λµn,d to its pop-
ulation counterpart Λµ,d. This part requires the above mentioned bound on the supremum of the Christoffel –
Darboux kernel. Those results could be of independent interest and will be discussed in Section 3.4 with all the
proofs in Appendix D.

3. We introduce a thresholding scheme using the empirical Christoffel function Λµn,dn as in (3.3) by a careful
tuning of the degree d and the threshold γ in the limit of large sample size n. With this thresholding scheme,
we prove the desired results described in (3.1). The details will be in Section 3.3 with proofs postponed to
Appendix E.
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3.2. Conditions on the support and the density

Throughout the text, we consider a probability measure µ which is supported on S ⊂ Rp and has density
w ≥ 0.

3.2.1. Assumptions on the support S

We first introduce the following definitions, notation and assumptions.

Definition 3.1. Consider a closed set F ⊂ Rp and a constant R > 0. We say that a ball of radius R rolls inside
F if for any x ∈ F , there exists a ball Bx centered at zx of radius R such that x ∈ Bx ⊂ F . If a ball of radius
R rolls inside F c, then we say that a ball of radius R rolls outside F .

Definition 3.2. Consider a closed set F ⊂ Rp. Denote by F ε the ε-extension of F , defined as

F ε = {x ∈ Rp : d(x, F ) ≤ ε}.

We also define the volume function

VF : R+ −→ R+

ε 7−→ λ(F ε),

where we recall that λ(.) denotes the Lebesgue measure of a set.

Assumption 3.3. S ⊂ Rp is a compact set with nonempty interior. Furthermore, there exists R > 0 such that
a ball of radius R rolls inside and outside S.

We will rely on Assumption 3.3, in particular the rolling ball part, for our results and proofs. This latter
assumption is made relatively frequently in the support inference literature, see for instance [15]. It is interpreted
as meaning that the boundary of S is smooth. In particular, it prevents corners in the boundary of S. The case
of sets S with non-smooth boundaries is a future research topic of interest that is not addressed here for the sake
of concision. The following result will be needed when working with the Lebesgue measure of the symmetric
difference, the proof is given in Appendix F.

Lemma 3.4. Let S ⊂ Rp satisfy Assumption 3.3 and let c > 0. Then, there is CS > 0 such that for all 0 < ε < c,

V∂S(ε) ≤ εCS .

Following [43, Theorem 1], there is a geometric sufficient condition for Assumption 3.3. If S ⊂ Rp has finitely
many path-connected components, each with non-empty interior, and is compact, then it satisfies Assumption 3.3
if and only if its boundary ∂S is a C1 submanifold of Rp, of dimension p− 1 and its unit outer pointing normal
vector, n : ∂S → Rp is globally Lipschitz on ∂S, with constant 1/R, that is

‖n(x)− n(y)‖ ≤ 1

R
‖x− y‖, ∀x, y ∈ ∂S.

Note that the norm is that of Rp, the proof of Lemma 3.4 is built on this construction.

3.2.2. Assumption on the density w

Now, for δ > 0, we set

L(δ) := inf{w(x) : x ∈ S, d(x, ∂S) ≥ δ}.
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The next assumption concerns the rate of decay of the density of µ at the boundary of the support S.

Assumption 3.5. The density w : S → R is such that for all δ ≥ 0, we have

L(δ) ≥ Cδr,

where C > 0 and r ≥ 0 are fixed constants (depending only on µ).

3.3. Main results for support estimation

3.3.1. Thresholding scheme

First, we design our n-dependent thresholding scheme using the empirical Christoffel function Λµn,d. This
thresholding scheme depends on the constants R,C, r given by the assumptions on µ (Asms. 3.3 and 3.5). It
also depends on a constant ε ∈ (0, 1) which can be made arbitrarily small (a smaller ε leads to a better rate
of convergence, but possibly worse constants), and on a constant α ∈ (0, 1) which is in principle a small risk
threshold, such that our results hold with probability 1− α.

The n-dependent thresholding scheme relies on a sequence of degrees dn of order

dn ∝ n
1

p+2r+2 , (3.2)

which full expression is given in (A.3) in Appendix A. Recall that ∝ is defined in Section 2.1. Based on dn, we
define a sequence of thresholds γn of order

γn ∝ n−
p(2−ε)+(1−ε)r

p+2r+2 ,

which full expression is given in (A.4) in Appendix A. The thresholding scheme, for support estimation, is then

Sn := {x ∈ Rp : Λµn,dn(x) ≥ γn}. (3.3)

The explicit results for this thresholding scheme will be presented in the next subsections.

3.3.2. Result for the Hausdorff distance between two sets and two boundaries

Recall the definition of the Hausdorff distance between two subsets A,B of Rp:

dH(A,B) = max

(
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

)
.

The following result provides an explicit quantitative rate of convergence for the estimation of S using the
thresholding scheme (3.3) based on the empirical Christoffel function. More explicitly, this estimation of S by
Sn is measured by the Hausdorff distance between them and between their boundaries. Thus, this theorem is
one of the most important results of this paper.

Theorem 3.6. Let S ⊂ Rp satisfy Assumption 3.3 with radius R > 0 and w : S −→ R satisfy Assumption 3.5
with two constants C > 0 and r ≥ 0. Let µ be the measure supported on S with density w with respect to Lebesgue
measure. Then, there is a constant n0 ∈ N (with full expression given in (A.2) in Appendix A) such that for
n ≥ n0, the thresholding scheme (3.3) satisfies with probability at least 1− α that

dH(S, Sn) ≤ δn
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and

dH(∂S, ∂Sn) ≤ δn,

where

δn ∝ n−
1−ε

p+2r+2 ,

with full expression given in (A.5) in Appendix A.

3.3.3. Result for the Lebesgue measure of the symmetric difference between two sets

Recall the definition of the symmetric difference between two subsets A,B of Rp:

A4B = (A \B) ∪ (B \A).

In this section, in order to measure the convergence of the estimator Sn to the true set S, we will use the
Lebesgue measure of their symmetric difference:

(A,B) 7−→ λ(A4B).

The following result, which is a counterpart of Theorem 3.6 for the Lebesgue measure of the symmetric
difference, is the second main result of this paper.

Corollary 3.7. Let S ⊂ Rp satisfy Assumption 3.3 with radius R > 0 and w : S −→ R satisfy Assumption 3.5
with two constants C > 0 and r ≥ 0. Let µ be the measure supported on S with density w with respect to

Lebesgue measure. Consider then δn ∝ n−
1−ε

p+2r+2 as defined in Theorem 3.6. Let CS > 0 be given by Lemma 3.4
with some c such that c > 2 maxn∈N δn. Then, for n ≥ n0, with n0 as in Theorem 3.6, the thresholding scheme
(3.3) satisfies with probability at least 1− α that

λ(S4Sn) ≤ 2CSδn.

Remark 3.8. The order of magnitude of the error for the thresholding scheme (3.3) is n−
1−ε

p+2r+2 for both
the Hausdorff distance between two sets and between their boundaries as well as the Lebesgue measure of
their symmetric difference. Since ε ∈ (0, 1) can be taken arbitrarily small, the rate of convergence is essentially

n−
1

p+2r+2 .

Remark 3.9. The tuning of dn and γn (see (A.3) and (A.4) in Appendix A) depends on the constants C and
r from Assumption 3.5 and on the constant R from Assumption 3.3. In practice, these constants are typically
unknown. In the numerical simulations of Section 4, once dn is selected, γn is taken as large as possible, under
the constraint that the resulting Sn contains all the observed points. We would recommend this choice for γn in
general. In Section 4, we also suggest a simple fully data driven heuristic to select dn, based on considering the
normalized Christoffel function s(d)Λµ,d as a proxy to a “density” (see also Sect. 2.4) and on taking the value of
d which associates the most “mass” to the observations. While the numerical performances of this heuristic are
encouraging, we leave further empirical validation of this selection procedure, and the development of associated
theory, as a topic of future research.

On a theoretical level, the main aim of this paper is to show that it is possible to obtain rates of convergence,
by selecting dn and γn according to the constants C, r and R. For the sake of concision, the situation where
C, r and R are estimated from data is not studied in this paper. Let us nevertheless discuss it briefly here.
First, we remark that if Assumptions 3.5 and 3.3 hold with constants C, r and R, then they hold a fortiori
with constants C ′ < C, r′ > r and R′ < R. Hence, in order to obtain rates of convergence, it is sufficient to
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tune dn and γn based on conservative values of C and R that are overly small and of r that are overly large,
such that Assumptions 3.5 and 3.3 hold. Obtaining conservative values is statistically easier than obtaining the
sharpest possible values of C, r and R such that Assumptions 3.5 and 3.3 hold. Another important question is
adaptivity: obtaining a procedure based on the Christoffel function, with no knowledge of the values of C, r and
R such that Assumptions 3.5 and 3.3 hold, and which yields the same rates of convergence as when knowing
the sharpest values of C, r and R such that Assumptions 3.5 and 3.3 hold.

3.3.4. Sketch of proof of Theorem 3.6

First, we suppose that the estimation of the population Christoffel function by its empirical counterpart can
be controlled. More explicitly, we assume that there exists a constant β < 1 such that for all x ∈ Rp,

|Λµ,d(x)− Λµn,d(x)| ≤ Λµ,d(x)β, (3.4)

or equivalently

(1− β)Λµ,d(x) ≤ Λµn,d(x) ≤ (1 + β)Λµ,d(x). (3.5)

Now we introduce a sequence of polynomial sublevel sets which estimates the support S using the empirical
function Λµn,d where d does not depend on n. For 0 < ε < 1 fixed and for d ∈ N, we define

γd ∝
1

dp(2−ε)+(1−ε)r ,

with full expression given in (A.9) in Appendix A. We then let

Sd,n := {x ∈ Rp : Λµn,d(x) ≥ γd}. (3.6)

The idea of this estimator Sd,n comes from [26], Section 4.1. The difference is that we let 0 < ε < 1 arbitrarily
small for a better rate of convergence (instead of setting ε = 1/2 like in [26]). Moreover, by choosing carefully
the threshold, we obtain an estimator Sd,n such that not only Sd,n is contained in a small enlargement of S
(which has been shown in [26]), but we also have a small enlargement of Sd,n that contains S. The explicit
result is as follows.

Lemma 3.10. Let S be a compact set with non-empty interior, w : S −→ R satisfy Assumption 3.5 with two
constants C > 0, r ≥ 0 and µ be the measure supported on S with density w. Assume that there exists a constant
β < 1 for which (3.4) holds. We define

S1 := {x ∈ Rp : d(x, S) ≤ δ1(d)}

and

S2 := {x ∈ S : d(x, ∂S) ≥ δ2(d, β)},

where δ1(d) ∝ d−(1−ε), δ2(d, β) ∝ d−(1−ε) are defined in (A.6) and (A.7) respectively, in Appendix A. Then the
thresholding scheme (3.6) satisfies that

S2 ⊂ Sd,n ⊂ S1.
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This above relation between S and Sd,n is important since it implies that the difference between S and Sd,n
is controlled by

δd = max
(
δ1(d), δ2(d, β)

)
∝ d−(1−ε). (3.7)

Now, under Assumptions 3.3 and 3.5 and thanks to the concentration results in Section 3.4, we can select dn
such that (3.4) holds with high probability with β = 1/2. Subsequently, we can select a threshold γn that will
optimize the convergence rate of Sn to S. We obtain now the thresholding scheme (3.3) and the result regarding
the Hausdorff distance.

All the proofs’ details are postponed to Appendix E for the sake of clarity.

3.4. A concentration result for the approximation of the Christoffel function by its
empirical counterpart

Let µ be a measure which satisfies Assumption 2.1 and µn be the corresponding empirical measure. We
consider now the speed of convergence of the empirical Christoffel function Λµn,d towards Λµ,d. All the proofs
of the following results will be postponed to Appendix D.

First, we state below a technical lemma which bounds uniformly the quantity |Λµn,d − Λµ,d|/Λµ,d by the
operator norm of a moment-based random matrix.

Lemma 3.11. Let vd = {Pj : 1 ≤ j ≤ s(d)} be a basis of orthonormal polynomials with respect to µ. Denote by
Mµn,d the moment matrix of µn with respect to the basis vd (see Sect. 2.3). Then for all x ∈ Rp, we have∣∣Λµ,d(x)− Λµn,d(x)

∣∣ ≤ Λµ,d(x) ‖Mµn,d − Is(d)‖

where we recall that the norm of s(d)× s(d) matrices is the operator norm.

Note that Is(d) is actually the associated moment matrix of µ with respect to the basis vd. Now, to control
the operator norm of the random matrix Mµn,d − Is(d), we rely on Theorem 5.44 from [41]. The following
theorem makes use of this random matrix result and of Lemma 3.11 to obtain an upper bound for the quantity
|Λµn,d − Λµ,d|/Λµ,d with high probability.

Theorem 3.12. Let µ be a measure which satisfies Assumption 2.1 and µn be the corresponding empirical
measure. Then for all x ∈ Rp and α > 0, we have

∣∣Λµ,d(x)− Λµn,d(x)
∣∣ ≤ Λµ,d(x) max

(√
16m

3n
log

s(d)

α
,

16m

3n
log

s(d)

α

)

with probability at least 1− α, where

m = sup
x∈suppµ

κµ,d(x, x).

Note that in our case, the supremum of the Christoffel – Darboux kernel m has a quantitative upper bound of
order dp+2r+1 which is of independent interest and will be provided in Appendix C. The following corollary is a
consequence of Theorem 3.12 combined with Theorem C.3, and is useful in the tuning of dn for the thresholding
scheme (3.3).

Corollary 3.13. Let S ⊂ Rp satisfy Assumption 3.3 with radius R > 0 and w : S −→ R satisfy Assumption 3.5
with two constants C > 0 and r ≥ 0. Let µ be the measure supported on S with density w with respect to Lebesgue
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measure and µn be the corresponding empirical measure. Then for all d ≥ 2, x ∈ Rp and α > 0, we have

|Λµ,d(x)− Λµn,d(x)|

≤ Λµ,d(x) max

(√
16m(d, p, S, w)

3n
log

s(d)

α
,

16m(d, p, S, w)

3n
log

s(d)

α

)

with probability at least 1− α, where

m(d, p, S, w) ∝ dp+2r+1,

with full expression given in (A.10) in Appendix A.

Remark 3.14. When the dimension p is fixed and n is large, this uniform upper bound in high probability of
|Λµ,d − Λµn,d|/Λµ,d is of order

√
dp+2r+1/n, up to multiplicative log(d) factors.

4. Numerical illustration

4.1. A heuristic to tune d and γ

For a given fixed d, an easy heuristic is to select γ > 0 such that Λµn,d(Xi) ≥ γ for all i = 1, . . . , n. Indeed
we have Xi ∈ supp(µ) for i = 1, . . . , n almost surely so that if this constraint is not satisfied, our estimate will
inevitably miss a portion of the support. The proposed heuristic for γ is to choose the largest such γ which is
the minimal value of Λµn,d(Xi) for i = 1 . . . n.

As for the choice of d, following the discussion in Section 2.4, assuming that n ≥ s(d), we have

– 1
n

∑n
i=1 s(d)Λµn,d(Xi) ≥ 1,

– the inequality holds with equality in two extreme cases, when d = 0 or d is such that s(d) = n.

Choosing values of d such that s(d) > n would result in lack of invertibility for the moment matrix so we consider
dmin = 1 and dmax the largest value of d such that s(d) < n. We will restrict the choice of d in {dmin, . . . , dmax}.

As described in Section 2.4, the term s(d)Λµ,d(·) has asymptotically positive values on the support of µ and
zero value outside. Our heuristic is to consider this term as a proxy to a “density” and take the value of d which
associates the most “mass” to the observations. All in all, we have the following

d̂n = arg max
s(d)<n

1

n

n∑
i=1

s(d)Λµn,d(Xi)

γ̂n = min
i=1,...,n

Λµn,d̂n(Xi)

Ŝn = {x ∈ Rp : Λµn,d̂n(x) ≥ γ̂n}.

This procedure has the advantage to be fully data driven. It provides a reasonable choice for the parameters as
illustrated with numerical simulations in the present section. A detailed study of this heuristic is beyond the
scope of the present paper but constitutes an interesting question for future research.

4.2. Empirical comparison with the Devroye-Wise estimator

4.2.1. Devroye-Wise estimator

The estimator proposed by [16], which we will denote by DW, is simply a union of balls, given r > 0,

Ŝn,r = ∪ni=1B̄r(Xi).
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In order to define this estimator, one needs to choose the radius r. We will consider a data driven heuristic for
this purpose: choose r by leave-one-out. This corresponds to choose the smallest r > 0 such that for all i, Xi is
contained in the DW estimator evaluated on the same dataset with Xi removed. This yields

r̂n = max
i=1,...,n

min
j 6=i
‖Xj −Xi‖.

Finally, for completeness, we will also consider an optimal choice of r, given a target support S, we will estimate

r ∈ arg min
t

vol(Ŝn,t∆S),

where the symmetric difference volume is estimated by Monte-Carlo simulation and the minimum is found by
discrete search. Note that this procedure requires to know the target set S so it is not implementable in practice,
we will consider it for the sake of investigation only. This allows to have an estimate of the best performance
achievable by the DW estimator for a given sample dataset. We will denote by DW(LO) the Devroye-Wise
estimator with leave-one-out estimated r = r̂n and by DW(OPT) the same estimator with optimal r.

4.2.2. Quantitative comparison in dimension 2 and 3

Given the dimension p, we consider the polynomial

P (x) =

p∑
j=1

x4j −
2

3

p∑
j=1

x2j ,

and choose as targets some sublevel sets of P with different thresholds, resulting in different shapes contained
in the unit box [−1, 1]p. The samples will be obtained from the uniform distribution over these target sets. We
compare the performances of the proposed empirical Christoffel method with data driven parameter estimates,
referred to as CD, and the performances of DW(LO) and DW(OPT), the Devroye-Wise estimator with leave-
one-out or optimized choice of radius r. For each method we measure the volume of the symmetric difference
with the target set using a Monte-Carlo sample of size 105. We vary n and consider dimensions p = 2 and p = 3
and different sublevel set thresholds for P .

The obtained results are shown in Figure 1. The boxplots represent ten repetitions of the same experiment
(sampling uniformly from the considered sublevel set). Two comments are in order regarding these results.
First it is clear that, in this experimental setting, the proposed CD estimator consistently outperforms the
DW(LO) estimator, and empirically leads to smaller symmetric difference volumes. Note that both approaches
are fully data driven. Second, the estimator DW(OPT) corresponds to the best possible choice of radius r for
the Devroye-Wise estimator. This shows that there is a good margin of improvement regarding the estimation of
the radius r, beyond our proposed leave-one-out approach. Yet, the CD estimator (which is purely data driven)
is consistently performing at least as good as DW(OPT), and in some situations outperforms DW(OPT) by a
significant margin.

These results suggest that the proposed CD estimator constitutes a competitive alternative compared to
the Devroye-Wise estimator independently of parameter estimation. Indeed, we propose a fully data driven
procedure which does not perform worse than DW(OPT) which is an empirical estimate of the best result
achievable by the Devroye-Wise estimator on this problem. The next section illustrates the sublevel set estimates
obtained in the bivariate case.

4.2.3. Representation in the plane

The target sublevel set and estimated set in dimension 2 are depicted in Figures 2 for the leave-one-out radius
estimate and in Figure 3 for the optimal radius. In both cases the CD estimated set is also shown. The densities
considered are uniform on the chosen polynomial sublevel set which has a smooth boundary. Recall that CD
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Figure 1. Comparison of [16] (DW) and the proposed Christoffel-Darboux (CD) estimators.
Note that the first line corresponds to the setting of Figures 2 and 3. The radius is estimated by
leave-one-out for DW(LO) or chosen as the optimal value for DW(OPT) (see main text). The
Figure represents a Monte-Carlo estimate of the volume of symmetric difference (105 samples).
Boxplots represent 10 repetitions.

and DW(LO) are fully data driven while DW(OPT) requires knowledge of the target set which is intractable in
practice.

The results presented in Figures 2 and 3 correspond to the first line of Figure 1 in dimension 2. These results
illustrate the fact that both CD and DW(LO) are able to identify the support set as well as its boundary and
topological features correctly for large enough sample sizes. For DW(OPT) in Figure 3, although the radius
minimizes the volume of the symmetric difference with the target set, the estimator contains many spurious
holes (more than for DW(LO)), even for large values of n, illustrating the limitations of the symmetric difference
volume as metric of quality for set estimation.

4.3. Empirical convergence rate estimation

We consider the experiment reported in Figure 1 and limit ourselves to dimension 2 because the three
dimensional case is much harder especially for DW(LO). For each threshold level, we empirically estimate the
slope of decrease of the volume of the symmetric difference as a function of n in logarithmic space (by taking
the slope between the medians for the two largest values of n in Fig. 1). Our theory predicts that for CD, this
slope should be asymptotically at least −0.25. Furthermore, the slope predicted for the DW estimator is of
order −0.5, which is −1/p. We obtain the following results.

Threshold -0.03 -0.09 -0.13
CD -0.31 - 0.55 -0.56

DW(LO) 0.26 -0.45 -0.53
DW(OPT) -0.43 -0.43 -0.41

Except for the first threshold which is the hardest (it has a tiny hole), all slopes are close to −0.5, DW(OPT)
being the most consistent. This experiment thus suggests that the additional term +2 in the denominator for
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Figure 2. Experiment on synthetic data in the plane. The sample points are drawn uniformly
on a polynomial sublevel set (Target in red). We represent the Devroye-Wise estimator with
radius estimated by leave-one-out, DW(LO), and the proposed CD method. This corresponds
to the first line of Figure 1.

our estimator (Thm. 3.6 and Cor. 3.7) could possibly be removed. We believe that this requires to completely
change our proof strategy, switching from a worst case analysis (Appendix C and proof of Thm. 3.12, for which
tools from orthogonal polynomials and approximation theory allow to have good estimates) to an average case
analysis, with possibly improved rates, but for which approximation theoretic tools are not available, to the
best of our knowledge. We leave this investigation for future research.

4.4. Outlier detection on benchmark dataset

We consider a thyroid disease dataset obtained from UCI repository [17]. This is a classification benchmark
which contains 3772 examples with three classes, normal, hyperfunctioning and subnormal classes. The hyper-
functioning class contains 93 examples considered as outliers. Each example has 6 numerical descriptors so the
effective dimension is 6. This dataset was used in [2, 21] to benchmark outlier detection methods.

We adopt the following procedure, for each concurrent method.

– Split the dataset randomly into a training set of normal examples and a test set with half malfunctioning
cases and half normal examples.

– Estimate the support of the training set. This is done by computing a function for which a sublevel set
represents the support, for example the Christoffel function or a kernel density estimate, and thresholding
to a chosen value to obtain a set.

– On the test set predict outlyingness for half of the data for which the estimated function is most below
the chosen threshold value on the support. Not that in this case, the threshold value is not important,
only the order and rank of function value on the test set matters.
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Figure 3. Same as Figure 2, but the DW estimator is considered with radius minimising the
volume of the symmetric difference with the target set. Although this is optimal, the estimated
set DW(OPT) contains many spurious holes, even for larger values of n.

Figure 4. Experiment on the thyroid dataset. The dataset and experiments are described in
the main text. We compare Christoffel function and kernel density estimation (KDE) to detect
malfunctioning cases in a test set, based on a training set containing only normal cases. For
each method, the middle line shows the median and the ribbons show quantiles for 10 random
train test splits.

The results are displayed in Figure 4. We compare the Christoffel function with varying degree to kernel
density estimators using Laplace or Gaussian kernels with various bandwidth. These results suggest that on this
benchmark, the Christoffel function performs favorably and is more stable with respect to the choice of tuning
parameter compared to kernel density estimators.
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5. Conclusion

We have provided a detailed quantitative finite sample analysis of support estimation based on the empirical
Christoffel function. We have obtained a sample-size-dependent choice of the degree d, together with errors
bounds for the corresponding support inference procedure. An interest of our results is that support inference
based on the empirical Christoffel function is computationally and conceptually attractive, as we illustrate
in Section 4. These procedures have recently been subject to active developments, but there are only weak
theoretical guarantees.

Our error rates are, generally speaking, slightly worse than convergence rates obtained by concurrent support
inference methods. Differences in rates relate to the fact that our proofs are based on tools and developments
from different fields, in particular matrix concentration inequalities, non-parametric statistics, geometry and
orthonormal polynomials. Furthermore, our setting is quite general, in terms of assumptions on the unknown
support and on the divergences between sets. In future work, it would be interesting to see if our proofs could be
refined to obtain slightly sharper bounds, potentially in more specific settings (see also Sect. 4.3). Alternatively,
it would be interesting to see if lower bounds can be provided specifically for estimation procedures based on
the empirical Christoffel function, paving the way to a minimax theory for this approach. Finally it would be
relevant to investigate theoretical performance of the data-driven degree bound selection method proposed in
the numerical section.

Other problems of interest remain open. In particular, it would be interesting to extend our results to the
case of supports with non-smooth boundaries. It would also be valuable to provide a quantitative analysis of
the case where the underlying measure is supported on a manifold with smaller dimension than the ambient
space.

Appendix A. Full expressions of quantities in the main text

Below, recall that R is given in Assumption 3.3, C, r are given in Assumption 3.5 and cr, ωp are defined in
(2.2) and (2.1) respectively. We let

Cp,r,α :=
4r+2

3

[
2p+1cr

(
e

p+ 2r + 1

)p+2r+1

exp((p+ 2r + 1)2) (A.1)

+
4p(p+ 2)(p+ 3)(p+ 8)

24ωp

(
e

p

)p
exp(p2)

] (
p+ p(1− log p) + p2 − logα

)
.

We use the notation

Ep,r,ε (d, β)

:=

(
(1 + β)(p+ 2)(p+ 3)(p+ 8)

3C(1− β)ωp

) 1
p+r
(

3p(2− ε) + 3(1− ε)r
2εe

) p(2−ε)+(1−ε)r
ε(p+r)

(
e1+

p
d

p

) p
p+r

,

for all d ∈ N∗ and β ∈ [0, 1(. Note that Ep,r,ε(d, β) is a bounded and decreasing function of d. We then write

Dp,S,w,ε := max

(
2,

(
diam(S)

R
+ 1

) 1
1−ε

,

(
2

R
Ep,r,ε

(
1,

1

2

)) 1
1−ε
)
.

Then n0 in Theorem 3.6 is defined as

n0 :=
4(Dp,S,w,ε + 1)p+2r+2Cp,r,α

CRp+r
. (A.2)
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The sequence of degrees dn in Section 3.3.1 is given by

dn :=

⌊(
CRp+r

4Cp,r,α
n

) 1
p+2r+2

⌋
(A.3)

and the sequence of thresholds γn in Section 3.3.1 is given by

γn := 12

(
3p(2− ε) + 3(1− ε)r

2εe

) p(2−ε)+(1−ε)r
ε 1

d
p(2−ε)+(1−ε)r
n

. (A.4)

In Theorem 3.6, δn is given by

δn := max

(
diam(S)

d1−εn − 1
,

2

d1−εn

(
(p+ 2)(p+ 3)(p+ 8)

Cωp

) 1
p+r

(A.5)

×
(

3p(2− ε) + 3(1− ε)r
2εe

) p(2−ε)+(1−ε)r
ε(p+r)

(
e1+

p
dn

p

) p
p+r )

.

In Lemma 3.10, δ1(d) and δ2(d, β) are given by

δ1(d) :=
diam(S)

d1−ε − 1
(A.6)

and

δ2(d, β) :=
2

d1−ε
Ep,r,ε (d, β) . (A.7)

Observe that we can rewrite δn as:

δn = max

(
δ1(dn), δ2

(
dn,

1

2

))
. (A.8)

In Section 3.3.4, γd is given by

γd := 8(1 + β)

(
3p(2− ε) + 3(1− ε)r

2εe

) p(2−ε)+(1−ε)r
ε 1

dp(2−ε)+(1−ε)r .
(A.9)

Finally, in Corollary 3.13, m(d, p, S, w) is given by

m(d, p, S, w) :=
4p+rs(d)

CωpRp+r
(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)

(d+ 1)(d+ 2)(d+ 3)
(A.10)

+
2p+2rcr
CRp+r

[
2

(
p+ d+ 2r + 1

d

)
−
(
p+ d+ 2r

d

)]
.

Appendix B. Bounds on the Christoffel function

The following results provide a lower bound on the Christoffel function Λµ,d inside the support S and an
upper bound outside S. These bounds are similar to those in Sections 6.3.1 and 6.3.2 of [24] and will be useful
in the next proofs.
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B.1 Upper bound on the Christoffel function outside S

In this section, we consider a probability measure µ which satisfies Assumption 2.1. Now, to exhibit an upper
bound on the Christoffel function outside S, we first provide a refinement of the “needle polynomial” which has
been introduced in [22].

Lemma B.1 (see e.g. [24], Lem. 6.3). For any d ∈ N∗ and δ ∈ (0, 1), there exists a p-variate polynomial Q of
degree 2d such that Q(0) = 1, |Q| ≤ 1 on the unit ball B and |Q| ≤ 21−δd on B \Bδ(0).

Lemma B.2. Let δ > 0 and x /∈ S such that d(x, S) ≥ δ. Then, for any d ∈ N∗ we have

Λµ,d(x) ≤ 23−
δd

δ+diam(S) .

Proof. First, we will prove Lemma B.2 with x /∈ S such that d(x, S) = δ. In this case, S ⊂ T := Bδ+diam(S)(x) \
Bδ(x). Indeed, for any y ∈ S, d(x, y) ≤ d(x, S) + diam(S) = δ+ diam(S). On the other hand, if y ∈ Bδ(x), then
d(x, S) ≤ d(x, y) < δ which is a contradiction.
Now, let A be the affine transformation which maps Bδ+diam(S)(x) to the unit ball B and µ#A be the

push-forward measure of µ by A. Then suppµ#A = A(S) ⊂ A(T ) = B \ Bδ′(0) where δ′ = δ
δ+diam(S) and

by Proposition 2.10, we have

Λµ,d(x) = Λµ#A,d(0).

Next, we apply Lemma B.1 to k ∈ N∗ and δ′ ∈ (0, 1), we obtain a polynomial Q of degree 2k such that Q(0) = 1
and |Q| ≤ 21−δ

′k on B \Bδ′(0), which implies that |Q| ≤ 21−δ
′k on suppµ#A. Thus

Λµ#A,2k(0) = min


∫
Rp

P 2dµ#A : P ∈ Πp
2k, P (z) = 1


≤
∫
Rp

Q2dµ#A =

∫
suppµ#A

Q2dµ#A

≤ 22(1−δ
′k) ≤ 23−δ

′2k.

Then we have for any k ∈ N∗

Λµ,2k(x) ≤ 23−δ
′2k.

Now, the definition of the Christoffel function in Definition 2.8 makes sure that

Λµ,2k+1(x) ≤ ΛµS ,2k(x) ≤ 22(1−δ
′k) ≤ 22(1−δ

′k)+1−δ′ ≤ 23−δ
′(2k+1).

By combining both cases d = 2k and d = 2k + 1, we have

Λµ,d(x) ≤ 23−δ
′d.

Finally, since 23−δ
′d = 23−

δd
δ+diam(S) is a decreasing function of δ, we have for all x such that d(x, S) ≥ δ,

Λµ,d(x) ≤ 23−
d(x,S)d

d(x,S)+diam(S) ≤ 23−
δd

δ+diam(S) .
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B.2 Lower bound on the Christoffel function inside S

We now consider a compact set S with non-empty interior, a density w satisfying Assumption 3.5 with two
constants C > 0, r ≥ 0 and the measure µ supported on S with density w.

Lemma B.3. Let δ > 0 and x ∈ S such that d(x, ∂S) ≥ δ. Then for any d ≥ 2 we have

Λµ,d(x) ≥ Cωp δ
p+r

2p+r
1

s(d)

(d+ 1)(d+ 2)(d+ 3)

(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)
.

Proof. First, we will prove that the closed ball Bδ/2(x) ⊂ {x ∈ S : d(x, ∂S) ≥ δ/2} ⊂ S. Indeed, if z ∈ Bδ/2(x),
i.e. dist(x, z) ≤ δ/2, then

d(z, ∂S) ≥ d(x, ∂S)− d(x, z) ≥ δ − δ/2 = δ/2.

We have

Λµ,d(x) = min


∫
Rp

P 2(z)dµ(z) : P ∈ Πp
d, P (x) = 1


= min


∫
S

P 2(z)w(z)dz : P ∈ Πp
d, P (x) = 1


≥ min


∫

Bδ/2(x)

P 2(z)dµ(z) : P ∈ Πp
d, P (x) = 1


≥ L

(
δ

2

)
min


∫

Bδ/2(x)

P 2(z)dz : P ∈ Πp
d, P (x) = 1


≥ C

(
δ

2

)r
min


∫
Rp

P 2(z)dλBδ/2(x)(z) : P ∈ Πp
d, P (x) = 1


= C

(
δ

2

)r
ΛλBδ/2(x),d

(x),

where the third inequality comes from Assumption 3.5. Now we have

ΛλBδ/2(x),d
(x) = λ

(
Bδ/2(x)

)
ΛµBδ/2(x),d

(x) = λ
(
Bδ/2(x)

)
ΛµB ,d(0)

=
λ
(
Bδ/2(x)

)
λ(B)

ΛµB ,d(0) =

(
δ

2

)p
ΛµB ,d(0)

≥
(
δ

2

)p
ωp
s(d)

(d+ 1)(d+ 2)(d+ 3)

(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)
,

where the first and third equality come from the monotonicity of the Christoffel function, the second equality
comes from its affine equivariance and the last inequality is Lemma 6.1 in [24], which is obtained when d ≥ 2.
Then, by combining the above arguments, we have the lower bound result.
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Appendix C. Supremum of the Christoffel – Darboux kernel
on S

In this section, we consider a set S satisfying Assumption 3.3 with radius R > 0 and a density w satisfying
Assumption 3.5 with two constants C > 0, r ≥ 0. Let µ be the measure supported on S with density w. First,
we have the following upper bound of the Christoffel – Darboux kernel κµ,d inside the support S, which is a
direct consequence of Lemma B.3.

Corollary C.1. Let us consider x ∈ S such that d(x, ∂S) ≥ R/2. Then

κµ,d(x, x) ≤ 4p+rs(d)

CωpRp+r
(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)

(d+ 1)(d+ 2)(d+ 3)
.

Proof. We apply Lemma B.3 with δ = R/2 and we use the fact that κµ,d(x, x) = 1/Λµ,d(x).

Next, for the points which stay near the boundary of S, we will rely on Theorem 3.1 from [45] which provides
an explicit formula for the Christoffel – Darboux kernel associated to a measure with Jacobi-like weight on the
unit Euclidean ball. The following lemma provides an upper bound near the boundary.

Lemma C.2. Given x ∈ S such that d(x, ∂S) ≤ R/2, we have

κµ,d(x, x) ≤ 2p+2rcr
CRp+r

[
2

(
p+ d+ 2r + 1

d

)
−
(
p+ d+ 2r

d

)]
,

where cr is defined in (2.2).

Proof. By Assumption 3.3 there exists a point zx ∈ S such that x ∈ BR(zx) ⊂ S. We set ε = ‖x − zx‖2, then
ε ≤ R and

ε ≥ d(zx, ∂S)− d(x, ∂S) ≥ R−R/2 = R/2.

Evidently, x is on the boundary of the closed ball Bε(zx) ⊂ S. Moreover, for all y ∈ Bε(zx), we have

d(y, ∂S) ≥ d(y, ∂Bε(zx)) = ε− ‖y − zx‖2 ≥ 0.

Now, by Assumption 3.5, we have for all y ∈ Bε(zx):

w(y) ≥ C (ε− ‖y − zx‖2)
r ≥ C (ε− ‖y − zx‖2)

r

(
ε+ ‖y − zx‖2

2ε

)r
=

C

(2ε)r
(
ε2 − ‖y − zx‖22

)r
.

We have

Λµ,d(x) = min


∫
Rp

P 2(y)dµ(y) : P ∈ Πp
d, P (x) = 1


= min


∫
S

P 2(y)w(y)dy : P ∈ Πp
d, P (x) = 1


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≥ min


∫

Bε(zx)

P 2(y)w(y)dy : P ∈ Πp
d, P (x) = 1


≥ C

(2ε)r
min


∫

Bε(zx)

P 2(y)
(
ε2 − ‖y − zx‖22

)r
dy : P ∈ Πp

d, P (x) = 1

 .

Now, by changing the variable z =
y − zx
ε

and setting Q(z) = P (zx + εz), we have

∫
Bε(zx)

P 2(y)
(
ε2 − ‖y − zx‖22

)r
dy =

∫
B

P 2(zx + εz)(ε2 − ε2‖z‖22)rεpdz

= εp+2r

∫
B

Q2(z)(1− ‖z‖22)rdz,

where Q is a polynomial with degree at most d and Q
(
x−zx
ε

)
= P (x) = 1. We set x̃ = x−zx

ε ∈ ∂B since

x ∈ ∂Bε(zx). Now we have

Λµ,d(x) ≥ Cεp+2r

(2ε)r
min


∫
B

Q2(z)(1− ‖z‖22)rdz : Q ∈ Πp
d, Q(x̃) = 1


=
Cεp+r

2rcr
min


∫
B

Q2(z) cr(1− ‖z‖22)rdz : Q ∈ Πp
d, Q(x̃) = 1


=
Cεp+r

2rcr
Λνr,d(x̃),

where we recall that cr =
Γ(p/2 + r + 1)

πp/2Γ(r + 1)
is the normalization constant of the measure νr which density is

(1− ‖z‖22)r on the unit ball B. Then, by taking the inverse, we have

κµ,d(x, x) ≤ 2rcr
Cεp+r

κνr,d(x̃, x̃).

Now, to compute κνr,d(x̃, x̃), we use Theorem 3.1 in [45] with µ = r + 1
2 and we obtain that

κνr,d(x̃, x̃) =

d∑
k=0

k + r + 1
2 + p−1

2

r + 1
2 + p−1

2

π∫
0

C
(r+ 1

2+
p−1
2 )

k

(
〈x̃, x̃〉+

√
1− ‖x̃‖22

√
1− ‖x̃‖22 cosψ

)

× (sinψ)2(r+
1
2 )−1dψ

/ π∫
0

(sinψ)2(r+
1
2 )−1dψ

=

d∑
k=0

k + p
2 + r

p
2 + r

C
( p2+r)
k (1),
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where the C
(β)
k ’s are the classical Gegenbauer polynomials, which are orthogonal polynomials on [−1, 1] with

respect to the weight function (1− x2)β−1/2. In particular, by [38, p.81, (4.7.3)], we have

C
( p2+r)
k (1) =

(
p+ k + 2r − 1

k

)
,

where we recall that the binomial coefficient for α ∈ R and k ∈ N is defined as:(
α

k

)
:=

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
.

Hence

κνr,d(x̃, x̃) =

d∑
k=0

k + p
2 + r

p
2 + r

C
( p2+r)
k (1) =

d∑
k=0

k + p
2 + r

p
2 + r

(
p+ k + 2r − 1

k

)

=

d∑
k=0

2k + p+ 2r

p+ 2r

(p+ k + 2r − 1)(p+ k + 2r − 2) . . . (p+ 2r)

k!

=

d∑
k=0

(
2(k + p+ 2r)

p+ 2r
− 1

)
(p+ k + 2r − 1)(p+ k + 2r − 2) . . . (p+ 2r)

k!

= 2

d∑
k=0

(p+ k + 2r)(p+ k + 2r − 1) . . . (p+ 2r + 1)

k!
−
(
p+ k + 2r − 1

k

)

= 2

d∑
k=0

(
p+ k + 2r

k

)
−

d∑
k=0

(
p+ k + 2r − 1

k

)
= 2

(
p+ d+ 2r + 1

d

)
−
(
p+ d+ 2r

d

)
.

We finally have

κµ,d(x, x) ≤ 2rcr
Cεp+r

[
2

(
p+ d+ 2r + 1

d

)
−
(
p+ d+ 2r

d

)]
,

and the result follows by using the fact that ε ≥ R/2.

By combining Corollary C.1 and Lemma C.2, we have the following theorem regarding the supremum of the
Christoffel – Darboux kernel.

Theorem C.3. Let S ⊂ Rp satisfies Assumption 3.3 with radius R > 0 and w : S −→ R satisfies Assumption 3.5
with two constants C > 0 and r ≥ 0. Let µ be the measure supported on S with density w with respect to Lebesgue
measure. We have for any d ≥ 2,

sup
x∈S

κµ,d(x, x) ≤ m(d, p, S, w),

where m(d, p, S, w) in (A.10) is of order dp+2r+1 when p is fixed.
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Appendix D. Proof of the concentration results

Proof of Lemma 3.11. For all x ∈ Rp, we have∣∣Λµ,d(x)− Λµn,d(x)
∣∣ = Λµ,d(x)Λµn,d(x)

∣∣κµ,d(x, x)− κµn,d(x, x)
∣∣

= Λµ,d(x)Λµn,d(x)
∣∣∣vd(x)T

(
Is(d) −M−1µn,d

)
vd(x)

∣∣∣
= Λµ,d(x)Λµn,d(x)

∣∣∣vd(x)T
(
M
−1/2
µn,d

)T (
Mµn,d − Is(d)

)
M
−1/2
µn,d

vd(x)
∣∣∣

= Λµ,d(x)Λµn,d(x)
∣∣∣ (M−1/2µn,d

vd(x)
)T (

Mµn,d − Is(d)
)
M
−1/2
µn,d

vd(x)
∣∣∣

≤ Λµ,d(x)Λµn,d(x)
(
M
−1/2
µn,d

vd(x)
)T

M
−1/2
µn,d

vd(x) ‖Mµn,d − Is(d)‖

= Λµ,d(x)Λµn,d(x)vd(x)TM−1µn,dvd(x) ‖Mµn,d − Is(d)‖
= Λµ,d(x)Λµn,d(x)κµn,d(x, x) ‖Mµn,d − Is(d)‖
= Λµ,d(x) ‖Mµn,d − Is(d)‖,

where the third equality comes from the fact that Mµn,d is symmetric and positive definite, which implies that

M
−1/2
µn,d

exists and is also symmetric; while the inequality can be seen as

∣∣zTAz∣∣ ≤ zT z‖A‖,
with z = M

−1/2
µn,d

vd(x) ∈ Rs(d) and A = Mµn,d − Is(d) ∈ Rs(d)×s(d). This inequality can be proved as below:

∣∣zTAz∣∣ = 〈z,Az〉 ≤ ‖z‖2 ‖Az‖2 ≤ ‖z‖2‖A‖ ‖z‖2 = zT z‖A‖,

where the first inequality is Cauchy-Schwarz and the second one comes from the definition of operator norm.

Proof of Theorem 3.12. Let vd = {Pj : 1 ≤ j ≤ s(d)} be a system of orthonormal polynomials with respect to
µ and Mµn,d be the moment matrix of µn with respect to vd. We apply Theorem 5.44 in [41] to

A =

 P1(X1) . . . Ps(d)(X1)
. . . . . .

P1(Xn) . . . Ps(d)(Xn)

 ,
which is a n× s(d) random matrix whose rows Ak =

(
P1(Xk), . . . , Ps(d)(Xk)

)
are independent random vectors

in Rs(d) with the common second moment matrix Σ = E[ATkAk] = Is(d). We have

1

n
ATA = Mµn,d,

thus ∥∥∥∥ 1

n
ATA− Σ

∥∥∥∥ = ‖Mµn,d − Is(d)‖.

If we can obtain an almost sure bound on the rows of Ak, then Theorem 5.44 in [41] provides an upper bound
for ‖Mµn − Is(d)‖, and then, by Lemma 3.11, an upper bound for |Λµ,d(x) − Λµn,d(x)| with high probability.
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Let us check the boundedness condition of the rows Ak. We have

‖Ak‖22 =

s(d)∑
j=1

Pj(Xk)2 = κµ,d(Xk, Xk) =
1

Λµ,d(Xk)
.

A natural upper bound for this will be

sup
x∈suppµ

s(d)∑
j=1

Pj(x)2 = sup
x∈suppµ

κµ,d(x, x) := m,

which is finite since x 7→
∑s(d)
j=1 Pj(x)2 is continuous and suppµ is a compact set. Now, by Theorem 5.44 in [41],

for all t ≥ 0, with probability at least 1− s(d). exp(−3t2/16), we have

‖Mµn,d − Is(d)‖ ≤ max

(
t

√
m

n
,
t2m

n

)
.

We choose α = s(d). exp(−3t2/16), which means t =

√
16

3
log

s(d)

α
, and we have

‖Mµn,d − Is(d)‖ ≤ max

(√
16m

3n
log

s(d)

α
,

16m

3n
log

s(d)

α

)

with probability at least 1− α. Then by lemma 3.11,

∣∣Λµ,d(x)− Λµn,d(x)
∣∣ ≤ Λµ,d(x) max

(√
16m

3n
log

s(d)

α
,

16m

3n
log

s(d)

α

)

with probability at least 1− α.

Appendix E. Proofs of the main results regarding support
estimation

E.1 Proof of Lemma 3.10

First, we introduce some inequalities which will be useful in the proof of Lemma 3.10.

Lemma E.1 (see e.g. [24], Lem. 6.5). For any m,n ∈ N∗, we have(
m+ n

m

)
≤ mn

( e
n

)n
exp

(
n2

m

)
.

Lemma E.2 (see e.g [26], Lem. 5). For any q > 0, we have

min
x>0

[log(2)x− 2q log(x)] = 2q

(
1− log

(
2q

log(2)

))
≥ 2q(1− log(3q)).
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Lemma E.3. For any d ∈ N, 0 < ε < 1 and q > 0, we have

23−d
ε

≤ 8(3q)2q

e2qd2qε
.

Proof. We have

23−d
ε

≤ 8(3q)2q

e2qd2qε

⇔ (3− dε) log(2) ≤ 3 log(2) + 2q log(3q)− 2q − 2qε log(d)

⇔ 2q(1− log(3q)) ≤ log(2)dε − 2q log(dε),

which holds true by applying Lemma E.2 to x = dε > 0.

Proof of Lemma 3.10. The inclusion Sd,n ⊂ S1 can be proved for a more general thresholding scheme, where
we define for any d ∈ N and any q ∈ N such that 2qε > p: γd :=

8(1 + β)(3q)2q

e2qd2qε

Sd,n := {x ∈ Rp : Λµn,d(x) ≥ γd}.
(E.1)

Indeed, if x /∈ S1, i.e. d(x, S) > δ1(d) =
diam(S)

d1−ε − 1
, we apply Lemma B.2, then Lemma E.3 and we have

Λµ,d(x) < 2
3− δ1(d)d

δ1(d)+diam(S) = 23−d
ε

≤ 8(3q)2q

e2qd2qε
.

Since Λµn,d(x) ≤ (1 + β)Λµ,d(x) by (3.5), we obtain that

Λµn,d(x) ≤ 8(1 + β)(3q)2q

e2qd2qε
= γd,

which means that x /∈ Sd,n and we can deduce the result by contraposition.

By choosing q = p(2−ε)+(1−ε)r
2ε in the scheme (E.1), we obtain our thresholding scheme (3.6) and the result

Sd,n ⊂ S1 follows.
Now, if x ∈ S2, i.e. x ∈ S and d(x, ∂S) ≥ δ2(d, β), then by Lemmas B.3 and E.1, we have

Λµ,d(x) ≥ Cωp (δ2(d, β))p+r

2p+r
1

s(d)

(d+ 1)(d+ 2)(d+ 3)

(d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)

≥ Cωp(δ2(d, β))p+r

2p+rdp
(
e

p

)p
exp

(
p2

d

) 24

(p+ 2)(p+ 3)(p+ 8)

=
Cωp

2p+rdp
(
e

p

)p
exp

(
p2

d

) 24

(p+ 2)(p+ 3)(p+ 8)

2p+r

d(1−ε)(p+r)

× (1 + β)(p+ 2)(p+ 3)(p+ 8)

3C(1− β)ωp

(
3p(2− ε) + 3(1− ε)r

2εe

) p(2−ε)+(1−ε)r
ε

(
e1+

p
d

p

)p
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=
8(1 + β)

1− β

(
3p(2− ε) + 3(1− ε)r

2εe

) p(2−ε)+(1−ε)r
ε 1

dp(2−ε)+(1−ε)r .

Since Λµn,d(x) ≥ (1− β)Λµ,d(x) by (3.5), we have Λµn,d(x) ≥ γd, which means that x ∈ Sd,n.

E.2 Proof of Theorem 3.6

First, we have the following lemma which highlights an important property of a set S which satisfies
Assumption 3.3.

Lemma E.4. Let S ⊂ Rp satisfies Assumption 3.3 with radius R > 0. Given δ1, δ2 > 0, we set

S1 := {x ∈ Rp : d(x, S) ≤ δ1}

and

S2 := {x ∈ S : d(x, ∂S) ≥ δ2}.

Suppose that there exists a closed set S̃ ⊂ Rp such that

S2 ⊂ S̃ ⊂ S1. (E.2)

If we have in addition that δ := max(δ1, δ2) ≤ R, then

dH(S, S̃) ≤ δ

and

dH(∂S, ∂S̃) ≤ δ.

Proof. We will begin with the Hausdorff distance between two sets S and S̃:

dH(S, S̃) = max

(
sup
x∈S̃

d(x, S), sup
x∈S

d(x, S̃)

)
.

Given x ∈ S̃, then by (E.2), x ∈ S1, i.e. d(x, S) ≤ δ1 ≤ δ. Hence

sup
x∈S̃

d(x, S) ≤ δ. (E.3)

Given now x ∈ S. Since S2 ⊂ S̃, we have d(x, S̃) ≤ d(x, S2). By Assumption 3.3 and since δ2 ≤ R, there
exists zx ∈ S such that x ∈ Bδ2(zx) ⊂ S. Hence ‖x− zx‖2 ≤ δ2 and d(zx, ∂S) ≥ δ2. We have now zx ∈ S2 and
d(x, S2) ≤ ‖x− zx‖2 ≤ δ2. Then d(x, S̃) ≤ δ2 ≤ δ and

sup
x∈S

d(x, S̃) ≤ δ. (E.4)
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By combining (E.3) and (E.4), we have dH(S, S̃) ≤ δ. Now, we continue with the Hausdorff distance between
two boundaries:

dH(∂S, ∂S̃) = max

(
sup
x∈∂S̃

d(x, ∂S), sup
x∈∂S

d(x, ∂S̃)

)
.

Consider x ∈ ∂S̃. We will consider two cases where x ∈ S and x /∈ S separately. If x /∈ S, then d(x, ∂S) =
d(x, S) ≤ δ by (E.3) since x ∈ ∂S̃ ⊂ S̃. Now, consider x ∈ S ∩ ∂S̃. Note that since S2 ⊂ S̃, IntS2 ⊂ Int S̃, which
implies that IntS2 ∩ ∂S̃ = ∅. Now when x ∈ ∂S̃, we have x /∈ IntS2 = {x ∈ S : d(x, ∂S) > δ2}. By combining
with the fact that x ∈ S, we have d(x, ∂S) ≤ δ2 ≤ δ. Hence

sup
x∈∂S̃

d(x, ∂S) ≤ δ. (E.5)

Consider now x ∈ ∂S. We also consider two cases where x ∈ S̃ and x /∈ S̃ separately. If x /∈ S̃, then d(x, ∂S̃) =
d(x, S̃) ≤ δ by (E.4) since x ∈ ∂S ⊂ S. Given now x ∈ S̃ ∩ ∂S. Note that since S̃ ⊂ S1 and x ∈ S̃, we have
d(x, ∂S̃) ≤ d(x, ∂S1) = d(x, (S1)c). When x ∈ ∂S, x ∈ Sc. By Assumption 3.3 and since δ1 ≤ R, there exists
yx ∈ Sc such that x ∈ Bδ1(yx) ⊂ Sc. Hence ‖x − yx‖2 ≤ δ1 and d(yx, ∂S) = d(yx, ∂Sc) ≥ δ1. We have now
yx ∈ (S1)c and d(x, (S1)c) ≤ ‖x− yx‖2 ≤ δ1. Then d(x, ∂S̃) ≤ δ1 ≤ δ. Now we have

sup
x∈∂S

d(x, ∂S̃) ≤ δ. (E.6)

By combining (E.5) and (E.6), we obtain that dH(∂S, ∂S̃) ≤ δ.

Now, by combining the bounds on S which have been shown in Lemma 3.10 with the previous property of S,
we obtain a result concerning the Hausdorff distance between two sets and two boundaries for the thresholding
scheme (3.6).

Lemma E.5. Under the assumptions and definitions of Lemma 3.10, we suppose in addition that S satisfies
Assumption 3.3 with radius R > 0. Recall δd in (3.7). For any d > 1 large enough such that δd ≤ R, the
thresholding scheme (3.6) satisfies that

dH(S, Sd,n) ≤ δd

and

dH(∂S, ∂Sd,n) ≤ δd.

Proof. We use Lemma 3.10, then apply Lemma E.4 with S̃ = Sd,n, δ1 = δ1(d), δ2 = δ2(d, β) under the
assumption that δd = max

(
δ1(d), δ2(d, β)

)
≤ R.

The proof of Theorem 3.6 follows by combining Lemma E.5 with the concentration result in Corollary 3.13.

Proof of Theorem 3.6. By Corollary 3.13, we have with probability at least 1− α,

|Λµ,dn(x)− Λµn,dn(x)| ≤ Λµ,dn(x) max

(√
16m(dn, p, S, w)

3n
log

s(dn)

α
,

16m(dn, p, S, w)

3n
log

s(dn)

α

)
,
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where

m(dn, p, S, w) =
4p+rs(dn)

CωpRp+r
(dn + p+ 1)(dn + p+ 2)(2dn + p+ 6)

(dn + 1)(dn + 2)(dn + 3)

+
2p+2rcr
CRp+r

[
2

(
p+ dn + 2r + 1

p+ 2r + 1

)
−
(
p+ dn + 2r

p+ 2r

)]
.

Note that

2p+2rcr
CRp+r

[
2

(
p+ dn + 2r + 1

p+ 2r + 1

)
−
(
p+ dn + 2r

p+ 2r

)]
≤ 2p+2r+1cr

CRp+r

(
p+ dn + 2r + 1

p+ 2r + 1

)
≤ 2p+2r+1cr

CRp+r
dp+2r+1
n

(
e

p+ 2r + 1

)p+2r+1

exp((p+ 2r + 1)2)

and

4p+rs(dn)

CωpRp+r
(dn + p+ 1)(dn + p+ 2)(2dn + p+ 6)

(dn + 1)(dn + 2)(dn + 3)

≤ 4p+r

CωpRp+r
dpn

(
e

p

)p
exp(p2)

(p+ 2)(p+ 3)(p+ 8)

24

≤ 4p+r

CωpRp+r
dp+2r+1
n

(
e

p

)p
exp(p2)

(p+ 2)(p+ 3)(p+ 8)

24
,

where the inequalities come from Lemma E.1 and the fact that the function

d 7→ (d+ p+ 1)(d+ p+ 2)(2d+ p+ 6)

(d+ 1)(d+ 2)(d+ 3)

is decreasing. Hence

16m(dn, p, S, w)

3n
≤ 4r+2

3nCRp+r
dp+2r+1
n

[
2p+1cr

(
e

p+ 2r + 1

)p+2r+1

exp((p+ 2r + 1)2)

+
4p(p+ 2)(p+ 3)(p+ 8)

24ωp

(
e

p

)p
exp(p2)

]
.

On the other hand,

log
s(dn)

α
≤ log

[
dpn

(
e

p

)p
exp

(
p2

dn

)]
− logα = p log dn + p(1− log p) +

p2

dn
− logα

≤ pdn + p(1− log p) + p2 − logα

≤ dn
(
p+ p(1− log p) + p2 − logα

)
.

Then

16m(dn, p, S, w)

3n
log

s(dn)

α
≤ dp+2r+2

n

nCRp+r
Cp,r,α,
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where Cp,r,α is in (A.1). Since dn =

⌊(
CRp+r

4Cp,r,α
n

) 1
p+2r+2

⌋
, then dn ≤

(
CRp+r

4Cp,r,α
n

) 1
p+2r+2

, which implies that

dp+2r+2
n

nCRp+r
Cp,r,α ≤

1

4

and

max

(√
16m(dn, p, S, w)

3n
log

s(dn)

α
,

16m(dn, p, S, w)

3n
log

s(dn)

α

)
≤ 1

2
.

Now we obtain with probability at least 1− α,

|Λµ,dn(x)− Λµn,dn(x)| ≤ 1

2
Λµ,dn(x).

We set

δ1n := δ1(dn),

δ2n := δ2

(
dn,

1

2

)
and thus we have from (A.8)

δn = max(δ1n, δ
2
n).

Recall that we have set

Dp,S,w,ε = max

(
2,

(
diam(S)

R
+ 1

) 1
1−ε

,

(
2

R
Ep,r,ε

(
1,

1

2

)) 1
1−ε
)
.

Then, for n ≥ n0 =
4(Dp,S,w,ε + 1)p+2r+2Cp,r,α

CRp+r
, dn =

⌊(
CRp+r

4Cp,r,α
n

) 1
p+2r+2

⌋
≥ Dp,S,w,ε. Hence dn ≥ 2 > 1.

Furthermore,

δ1n =
diam(S)

d1−εn − 1
≤ diam(S)

D1−ε
p,S,w,ε − 1

≤ diam(S)

diam(S)

R
+ 1− 1

≤ R

and

δ2n =
2

d1−εn

Ep,r,ε

(
dn,

1

2

)
≤ 2

D1−ε
p,S,w,ε

Ep,r,ε

(
dn,

1

2

)
≤ 2

2

R
Ep,r,ε

(
1,

1

2

)Ep,r,ε(dn, 1

2

)
≤ R,
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which implies that δn = max(δ1n, δ
2
n) ≤ R.

Now, all the assumptions of Lemma E.5 hold with probability at least 1− α and we obtain the threshold γn
along with the estimator Sn such that

dH(S, Sn) ≤ δn

and

dH(∂S, ∂Sn) ≤ δn.

E.3 Proof of Corollary 3.7

Proof of Corollary 3.7. For any two sets A and B of Rp, it is well-known that

A4B ⊂ (∂A)dH(A,B) ∪ (∂B)dH(A,B).

Thus we have, from Theorem 3.6, for n ≥ n0 and with probability at least 1− α,

S4Sn ⊂ (∂S)dH(S,Sn) ∪ (∂Sn)dH(S,Sn)

⊂ (∂S)δn ∪ (∂Sn)δn

⊂ (∂S)δn ∪ (∂S)dH(∂S,∂Sn)+δn

⊂ (∂S)δn ∪ (∂S)2δn

= (∂S)2δn .

Hence from Lemma 3.4, we obtain

λ(S4Sn) ≤ 2CSδn.

Appendix F. Proof of Lemma 3.4

Proof of Lemma 3.4. First we remark that for a compact set S if a ball of radius R rolls freely inside S, then
S has finitely many path-connected components. Indeed S is contained in a big ball, and each path-connected
component contains at least a small ball so that the number of connected components is at most the volume
ratio of the two balls.

Using [43, Theorem 1], we know that ∂S is an embedded compact differentiable manifold of dimension p− 1
with outer pointing unit normal n being 1/R Lipschitz, for any x, y ∈ ∂S

‖n(x)− n(y)‖ ≤ ‖x− y‖
R

. (F.1)

Indeed, [43] uses the notion of submanifold of Euclidean space in [4, Chapter 2] which corresponds to embedded
differentiable manifolds. The manifold is compact as a compact subset of Rp.

Fix c > ε > 0. For any z ∈ Rp, with d(z, ∂S) ≤ ε, z is of the form x + αn(x) with x realizing the minimal
distance to z on ∂S and |α| = d(z, ∂S) ≤ ε. Indeed, the function x 7→ ‖x− z‖2 is smooth and its differential on
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∂S (seen as a manifold), corresponds to the projection of the gradient on the tangent space. Minimizers have
null differential, that is x− z orthogonal to the tangent space ∂S, or co-linear to the normal vector n(x).

Reciprocally, each z ∈ Rp of this form is at distance at most ε to ∂S so that

∂Sε = {x+ αn(x), x ∈ ∂S, |α| ≤ ε}.

Since ∂S is a compact embedded differentiable manifold of dimension p − 1, there exists a family of bounded
open subsets U1, . . . , Ul ⊂ Rp−1 and Lipschitz diffeomorphisms φ1, . . . , φl such that

∂S = ∪li=1φi(Ui).

Indeed [4, Theorem 2.1.2] ensures that for every x ∈ ∂S, there is an open neighborhood U of Rp−1 and φ : U → Rp
and an open ball B ⊂ Rp centered at x, such that φ(U) = B ∩ ∂S and φ is a C1 homeomorphism onto its image.
Reducing B if necessary, φ can be taken to be Lipschitz. By compactness, ∂S can be covered by finitely many
balls of this form which gives the desired family (Borel-Lebesgue property).

Set ψi : Ui × [−c, c]→ ∂Sc, such that ψi(u, α) = φi(u) + αn(φi(u)). We have therefore that

∂Sε = ∪li=1ψi(Ui × [−ε, ε]).

Each ψi is Lipschitz on Ui × [c, c], say with constant L. Using λm to denote the Lebesgue measure over m
dimensional Euclidean space, we obtain using Lemma F.1

λp(∂S
ε) ≤

l∑
i=1

λp(ψi(Ui × [−ε, ε]))

≤ Lp
l∑
i=1

λp(Ui × (−ε, ε))

= 2Lpε

l∑
i=1

λp−1(Ui),

which is the desired result.

Lemma F.1. Let F : Rp → Rp be L-Lipschitz, then for any measurable set A,

λ(F (A)) ≤ Lpλ(A).

Proof. The measurability of F (A) is given in [36, Proposition 18, Chapter 20].
Recall that for any measurable set S ⊂ Rp,

λ(S) = inf
{Ri}i∈N

∑
i∈N

λ(Ri) (F.2)

where the infimum is taken over all covers of S by hyper-rectangles [36, Section 20.2]. For any δ > 0, any
hyperrectangle E can be covered by finitely many balls {Bi}i∈J such that

∑
i∈J λ(Bi) ≤ λ(E) + δ. This implies

that the infimum in (F.2) can be taken over countable unions of balls.
As a consequence, for any ε > 0, there exists a countable collection of balls {Bi}i∈N covering A such that

λ(A) + ε ≥
∑
i∈N

λ(Bi).
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The family {F (Bi)}i∈N forms a covering of F (A). The image of a ball of radius r by an L-Lipschitz function
is contained in a ball of radius Lr and therefore for each i ∈ N, we have λ(F (Bi)) ≤ Lpλ(Bi). Putting things
together, we have

λ(F (A)) ≤
∑
i∈N

λ(F (Bi)) ≤ Lp
∑
i∈N

λ(Bi) ≤ Lp(λ(A) + ε).

Since ε > 0 was arbitrary, the result holds.
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