Exact tail asymptotics for a three-dimensional Brownian-driven tandem queue with intermediate inputs
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 26-68

In this paper, we consider a three-dimensional Brownian-driven tandem queue with intermediate inputs, which corresponds to a three-dimensional semimartingale reflecting Brownian motion whose reflection matrix is triangular. For this three-node tandem queue, no closed form formula is known, not only for its stationary distribution but also for the corresponding transform. We are interested in exact tail asymptotics for stationary distributions. By generalizing the kernel method, and using extreme value theory and copula, we obtain exact tail asymptotics for the marginal stationary distribution of the buffer content in the third buffer and for the joint stationary distribution.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2021018
Classification : 60K25
Keywords: Brownian-driven tandem queue, stationary distribution, exact tail asymptotics, kernel method, extreme value theory
@article{PS_2022__26_1_26_0,
     author = {Dai, Hongshuai and Dawson, Donald A. and Zhao, Yiqiang Q.},
     title = {Exact tail asymptotics for a three-dimensional {Brownian-driven} tandem queue with intermediate inputs},
     journal = {ESAIM: Probability and Statistics},
     pages = {26--68},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2021018},
     mrnumber = {4363454},
     zbl = {1495.60081},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021018/}
}
TY  - JOUR
AU  - Dai, Hongshuai
AU  - Dawson, Donald A.
AU  - Zhao, Yiqiang Q.
TI  - Exact tail asymptotics for a three-dimensional Brownian-driven tandem queue with intermediate inputs
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 26
EP  - 68
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021018/
DO  - 10.1051/ps/2021018
LA  - en
ID  - PS_2022__26_1_26_0
ER  - 
%0 Journal Article
%A Dai, Hongshuai
%A Dawson, Donald A.
%A Zhao, Yiqiang Q.
%T Exact tail asymptotics for a three-dimensional Brownian-driven tandem queue with intermediate inputs
%J ESAIM: Probability and Statistics
%D 2022
%P 26-68
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021018/
%R 10.1051/ps/2021018
%G en
%F PS_2022__26_1_26_0
Dai, Hongshuai; Dawson, Donald A.; Zhao, Yiqiang Q. Exact tail asymptotics for a three-dimensional Brownian-driven tandem queue with intermediate inputs. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 26-68. doi: 10.1051/ps/2021018

[1] F. Avram, J.G. Dai and J.J. Hasenbein, Explicit solutions for variational problems in the quadrant. Queueing Syst. 37 (2001) 259–289. | MR | Zbl | DOI

[2] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions of generating trees. Discrete Math. 246 (2002) 29–55. | MR | Zbl | DOI

[3] M. Bousquet-Mélou, Walks in the quarter plane: Kreweras’ algebraic model. Ann. Appl. Probab. 15 (2005) 1451–1491. | MR | Zbl | DOI

[4] V. Bhaskar and P. Lallement, Modeling a supply chain using a network of queues. Appl. Math. Model. 34 (2010) 2074–2088. | MR | Zbl | DOI

[5] H.S. Dai, D.A. Dawson and Y.Q. Zhao, Kernel method for stationary tails: from discrete to continuous, in Asymptotic Laws and Methods in Stochastics, edited by D.A. Dawson, R. Kulik, M. Ould Haye, B. Szyszkowicz, Y.Q. Zhao (2015) 297–327. | MR | Zbl | DOI

[6] J.G. Dai and J.M. Harrison, Reflecting Brownian motion in an orthant: Numerical methods for steady-state analysis. Ann. Appl. Prob. 2 (1992) 65–86. | MR | Zbl

[7] J.G. Dai and M. Miyazawa, Reflecting Brownian motion in two dimensions: exact asymptotics for the stationary distribution. Stoch. Syst. 1 (2011) 146–208. | MR | Zbl | DOI

[8] K. Debicki, M. Mandjes and M. Van Uitert, A tandem queue with Lévy input: a new representation of the downstream queue length. Prob. Eng. Inform. Sci. 21 (2007) 83–107. | MR | Zbl | DOI

[9] P. Dupuis and K. Ramanan, A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stoch. Process. Appl. 98 (2002) 253–287. | MR | Zbl | DOI

[10] G. Fayolle, R. Iasnogorodski and V. Malyshev, Random Walks in the Quarter-Plane, second ed. Springer, New York (2017). | DOI

[11] S. Franceschi and I. Kurkova, Asymptotic expansion of stationary distribution for reflected Brownian motion in the quarter plane via analytic approach. Stoch. Syst. 7 (2017) 32–94. | MR | Zbl | DOI

[12] G. Giambene, Queuing Theory and Telecommunications. Springer, Boston (2014). | DOI

[13] M.K. Govil and M. Fu, Queueing theory in manufacturing: a survey. J. Manufactur. Syst. 18 (1999) 214–240. | DOI

[14] J.M. Harrison and J.J. Hasenbein, Reflected Brownian motion in the quadrant: Tail behavior of the stationary distribution. Queu. Syst. 61 (2009) 113–138. | MR | Zbl | DOI

[15] J. Harrison and M. Reiman, On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41 (1981) 345–361. | MR | Zbl | DOI

[16] J. Harrison and M. Reiman, Reflected Brownian motion on an orthant. Ann. Probab. 9 (1981) 302–308. | MR | Zbl | DOI

[17] J.M. Harrison and R.J. Williams, Brownian models of open queueing networks with homogeneous customer populations. Stochastic 22 (1987) 77–115. | MR | Zbl | DOI

[18] T. Konstantopoulous, G. Last and S.J. Lin, On a class of Lévy stochastic networks. Queu. Syst. 46 (2004) 409–437. | MR | Zbl | DOI

[19] G.R. Lawlor, L’Hôspital’s rule for multivariable functions. Am. Math. Monthly 127 (2020) 717–725. | MR | Zbl | DOI

[20] H. Li and Y.Q. Zhao, Tail asymptotics for a generalized two-dimensional queueing model – a kernel method. Queu. Syst. 69 (2011) 77–100. | MR | Zbl | DOI

[21] H. Li and Y.Q. Zhao, A kernel method for exact tail asymptotics-random walks in the quarter plane. Queu. Models Serv. Manag. 1 (2018) 95–129.

[22] P. Lieshout and M. Mandjes, Tandem Brownian queues. Math. Methods Oper. Res. 66 (2007) 275–298. | MR | Zbl | DOI

[23] P. Lieshout and M. Mandjes, Asymptotic analysis of Lévy-driven tandem queues. Queu. Syst. 60 (2008) 203–226. | MR | Zbl | DOI

[24] M. Mandjes, Packet models revisited: tandem and priority systems. Queu. Syst. 47 (2004) 363–377. | MR | Zbl | DOI

[25] K. Majewski, Large deviations of the steady state distribution of reflected processes with applications to queueing systems. Queu. Syst. 29 (1998) 351–381. | MR | Zbl | DOI

[26] A.I. Markushevich, Theory of Functions of A Complex Variable. Vol. I.II.III, English ed. Chelsea Publishing Co., New York (1977). | MR | Zbl

[27] M. Miyazawa and T. Rolski, Tail asymptotics for a Lévy-driven tandem queue with an intermediate input. Queu. Syst. 63 (2009) 323–353. | MR | Zbl | DOI

[28] R. Narasimhan, Several Complex Variables. The University of Chicago Press, Chicago and London (1964). | MR | Zbl

[29] T. Robertazzi, Computer Networks and Systems — Queueing Theory and Performance Evaluation, third ed. Springer, New York (2000). | MR | Zbl

[30] S.I. Resnick, Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987). | MR | Zbl | DOI

[31] V. Schmitz, Copulas and Stochastic Processes. Ph.D thesis: Achen University, 2003.

[32] S. Varadhan and R. Williams, Brownian motion in a wedge with oblique reflection. Commun. Pure Appl. Math. 38 (1985) 405–443. | MR | Zbl | DOI

[33] R. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge. Ann. Probab. 13 (1985) 758–778. | MR | Zbl | DOI

[34] R.J. Williams, Semimartingale reflecting Brownian motions in the orthant. In “IMA Volumes in Mathematics and Its Applications, Volume 71”, edited by F.R. Kelly, R.J. Williams (1995) 125–137. | MR | Zbl

[35] R.J. Williams, On the approximation of queueing networks in heavy traffic. In “ Stochastic Networks: Theory and Applications,” edited by F.P. Kelly, S. Zachary, I. Ziedins (1996) 35–56. | Zbl

[36] W. Whitt, Stochastic-Process Limits. Springer, New York (2002). | MR | Zbl | DOI

[37] Y.Q. Zhao, Kernel method-an analytic approach for tail asymptotics in stationary probabilities of 2-dimensional queueing systems. Preprint (2021). | arXiv | MR | Zbl

Cité par Sources :