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EXACT TAIL ASYMPTOTICS FOR A THREE-DIMENSIONAL
BROWNIAN-DRIVEN TANDEM QUEUE WITH INTERMEDIATE
INPUTS

HonGsHUAT DA1b2*®, DONALD A. DAWSON? AND YIQIANG Q. ZHAO?

Abstract. In this paper, we consider a three-dimensional Brownian-driven tandem queue with inter-
mediate inputs, which corresponds to a three-dimensional semimartingale reflecting Brownian motion
whose reflection matrix is triangular. For this three-node tandem queue, no closed form formula is
known, not only for its stationary distribution but also for the corresponding transform. We are inter-
ested in exact tail asymptotics for stationary distributions. By generalizing the kernel method, and
using extreme value theory and copula, we obtain exact tail asymptotics for the marginal stationary
distribution of the buffer content in the third buffer and for the joint stationary distribution.
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1. INTRODUCTION

Traffic engineering greatly benefits from models that are capable of accurately describing and predicting the
performance of the system. The network nodes are usually modeled as queues, and queueing theory can be used
to analyze the performance of these nodes. However, most studies address performance issues for single-node
models. The single-node models can offer valuable insights, but are an oversimplification of reality, since traffic
streams usually traverse concatenations of nodes (rather than just a single node). In this paper, we consider
a tandem queueing model. Tandem queues consist of a very important type of queueing systems, which have
numerous applications in many fields, including manufacturing, telecommunications, computer network manage-
ment, supply network management, health care among others. For example, tandem queues are perfect models
for manufacturing (product) assembly lines (say a car or aircraft product/assembly line), where intermediate
inputs represent various parts or components arrived to different stages of the assembly line; in telecommu-
nications, information (with the form of emails, documents, live conversations, videos, internet requests, and
many others) is often partitioned into packets, which are transmitted, through routers, over telecommunication
networks according to QoS criteria. The whole path is a model of a tandem queue, where intermediate inputs
are traffic of other sources arrived to routers. More applications either in the above mentioned or other areas can
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also be easily found (for example, see Bhaskar and Lallement [4], Giambene [12], Govil and Fu [13], Robertazzi
129)).

Typical queues possess a “discrete” nature largely due to the discrete nature of the number of customers
and the number of servers. Therefore, a direct modeling usually gives us a stochastic (often Markovian) process
with a discrete state space. However, processes with continuous states have become a standard tool in queueing
modeling and analysis since, for example: (1) empirical evidences from measurement studies suggest that in many
cases, network traffic can be approximated by Gaussian processes, e.g., Brownian motions. In fact, under some
very general conditions, input processes of a broad class of (short-range dependent) network traffic converge to
Brownian motions (for example, see Whitt [36]); and (2) Semimartingale reflecting Brownian motions (SRBM)
are often used to approximate the behavior of open networks under heavy traffic conditions. See, for example,
Harrison and Williams [17] and Williams [35].

All above considerations underscore the importance of analyzing tandem queues with Brownian inputs.
Closely related to our work in this paper, Mandjes [24] studied a two-node Brownian-driven tandem queue
without intermediate inputs and got the joint distribution function of the first queue and the total queue length,
whereas Debicki et al. [8] focused on the stationary distribution of the second queue. Miyazawa and Rolski
[27] obtained exact tail asymptotics for marginal distributions of a two-dimensional Brownian-driven tandem
queues with intermediate Brownian inputs, and also tried to discuss higher-dimensional cases. However only the
stationary equation was obtained in terms of moment generating functions, and tail asymptotic properties for
the marginal stationary distributions were left for future work.

One can expect that as the model becomes more general, exact solution becomes less possible. In this case,
tail asymptotic properties and approximations become more important. Exact tail asymptotics of stationary
distributions of two-dimensional SRBM have been studied intensively. For example, Dai et al. [5] studied exact
tail asymptotics for boundary measures of a two-dimensional SRBM. Dai and Miyazawa [7] obtained exact tail
asymptotics for marginal stationary distributions of a two-dimensional SRBM. Franceschi and Kurkova [11]
obtained the asymptotic expansion of the stationary distribution density along all paths. We note that all afore-
mentioned results are only for two-dimensional SRBM, and we could not find results on higher (>3)-dimensional
cases, except for some very special cases. In fact, dealing with asymptotics of the stationary distribution in 3-
dimension is always very challenging. Motivated by these, we consider a three-dimensional Brownian-driven
tandem queue with intermediate inputs and discuss the exact tail behavior, not only for marginal stationary
distributions, but also for the joint stationary distribution. This queueing system is a special SRBM since its
reflection matrix is triangular. In this work, we successfully derive exact tail aysmptotics for the marginal sta-
tionary distribution of the third buffer content, since exact tail asymptotic results for the first two buffer contents
can be obtained directly from results for two-dimensional SRBM. Furthermore, we present exact asymptotic
properties for the joint stationary distribution. For exact tail asymptotic properties of the marginal stationary
distributions, we extend the kernel method (which is available for two-dimensional cases) and show how to reduce
a three-dimensional problem to a two-dimensional one. Roughly speaking, the kernel function corresponding to
our model is a ternary function (see Egs. (2.13) and (3.1)). In view of the kernel method, a binary alternative
is constructed (see Eq. (3.9)). Then the kernel method is applied to study the binary alternative. Significant
efforts will be made in this direction. Based on the exact tail asymptotics for the marginal distributions, we
further obtain exact tail asymptotic properties of the joint distribution. However, for this purpose, the kernel
method is not a proper method. Instead, we apply extreme value theory to study upper tail dependence for the
joint stationary distribution (see Lem. 5.6), and then apply copula to get exact tail asymptotic properties of
the joint stationary distribution (see Thm. 5.8).

The rest of this paper is organized as follows: In Section 2, a three-dimensional Brownian-driven tandem
queue with intermediate inputs is introduced. To apply the kernel method for asymptotic properties for the
marginal stationary distribution of the buffer content in the third buffer, we study the kernel equation and
the analytic continuation of moment generating functions in Section 3. Asymptotic results for the unknown
functions and the tail asymptotic results for the marginal distributions are presented in Section 4. In Section 5,
we study exact asymptotic properties of the joint stationary distribution using extreme value theory and copula.
The final section contributes to concluding remarks and discussions.
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FI1GURE 1. A tandem queue with 3 nodes.

Before we conclude the introduction, it is worthwhile to point out that on one hand, we anticipate that the
tools developed in this paper could be useful in analyzing a general d-dimensional SRBM (for example, for the
rough decay rate), but on the other hand, one has to overcome more technical challenges for a more general
case (with non-triangular reflection matrix, or with dimension d > 3). More detailed discussions are provided
in the last section.

2. MODEL AND PRELIMINARIES

In this section, we introduce a three-dimensional Brownian-driven tandem queue with intermediate inputs
and establish a stationary equation satisfied by stationary probabilities. This tandem queue has three nodes,
numbered as 1, 2, 3, each of which has an exogenous input process and a constant processing rate. Outflow from
the node 1 goes to node 2, and the outflow from node 2 goes to node 3. Finally, outflow from node 3 leaves the
system (see Fig. 1). We assume that the exogenous inputs are independent Brownian processes of the form:

Xi(t) = Mt + By(t), i = 1,2,3, (2.1)

where \; > 0 is a positive constant, and B;(t) is a Brownian motion with variance ¢? and no drift. Denote the
processing rate at node @ by ¢; > 0. Let L;(t) be the buffer content at node 4 at time ¢ > 0 for ¢ = 1,2, 3, which
are formally defined as

~
=
—
~
=

I

Ll(O) + X1 (t) — Clt + Yl (t), (22)
LL(O) + X,‘(t) +ci1t —cit — }/i—l(t) + Yi(t), 1> 2, (23)

~
<.
~—~
o~
~—

Il

where the local time Y;(t) is a regulator at node i, that is, a minimal nondecreasing process for L;(t) to be
nonnegative.

In this paper, all vectors are supposed to be column vectors. For a vector v, we write v’ to denote the
transpose of it. To simplify the notation, let

L(t) = (La(t), La(t), Ls (1)), Y () = (Ya (1), Ya(t), Ya(1)),

and

X(t) = B(t) + At, (2.4)
where A = (A1 —c1, Ao +¢1 —c2, A3+ 2 — 03) and B(t) = (B 5(t), B(t ))/ It is obvious that {X(t)} is a
R3-valued Brownian motion with mean vector A. Then (2 2) an ( ) can be rewritten as

L(t) = X(t) + RY (t) + L(0), (2.5)
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where
1 0 0
R=|-1 1 0f. (2.6)
0 —1 1

Namely, L(t) is a generated by a reflection mapping from net flow processes X (t) with reflection matrix R.

Remark 2.1. Here we point out that the reflection matrix R is triangular. In this sense, our model is degenerate.
This triangular structure of the reflection matrix R is crucial for us to carry out analytic continuation and find
dominant singularities in Section 3.

Without any difficulty, we can obtain that the tandem queue {L(¢)} has a stationary distribution if and only
if

J
D Ai<e, 1<j<3. (2.7)

i=1

Moreover, by Harrison and Williams [17], we can get that the stationary distribution of {L(¢)} is unique.
Throughout this paper, we denote this stationary distribution by m. In order to simplify the discussion, we
refine the stability condition (2.7) to assume that

A <ecp,and A\ +¢1 < Ci, ©=2,3. (28)

Remark 2.2. From the proofs of the main results of this paper, it is clear that under the more general stability
condition (2.7), we can use the same argument to discuss tail asymptotics. The only difference is that we need
to discuss possible relationships between the parameters \; and ¢;, i = 1,2, 3, before we use the arguments in
the proofs in this paper. For each of the possible relationships, we repeat the method applied in this paper to
study tail asymptotics.

We are interested in the asymptotic tail behavior of the stationary distribution. Recall that a positive function
g(x) is said to have exact tail asymptotic h(z), if

tim 90 _
z—o0 h(x)

Our main aim is to find exact tail asymptotics for various stationary distributions. Moment generating functions

will play an important role in determining these exact tail asymptotics. We first introduce moment generating

functions for stationary distributions. Let L = (Ly, Lo, L3)’ be the stationary random vector with stationary

distribution 7. The moment generating function ¢(-) for L is given by:

p(x,y,2) = E[e*LrTvbat=ls] for any (z,y,2)" € R®. (2.9)
We apply the kernel method to study tail asymptotics for marginal stationary distributions. In order to apply
the kernel method, we need to establish a relationship between the moment generating function ¢(-) for the

stationary distribution 7 and the moment generating functions for the boundary measures defined below. For
any Borel set A C Z(R3), we define the boundary measures V;(-), i = 1,2, 3, by

1
Vi(4) :]Ew{/o IipweaydYi(u)|. (2.10)
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Moreover, due to Harrison and Williams [17], we obtain that the density functions for V;, i = 1,2, 3, exist. Then,
their moment generating functions are defined by

1
oi(z,y,2) = / eV, (dh) = E[/ el WAy (u)|, i=1,2,3, (2.11)
R% 0

where w = (z,y,2)’ € R® and (w, ) denotes the inner product of vectors w and 6.
The following lemma is a particular case of Theorem 4 in Konstantopoulous, Last and Lin [18].

Lemma 2.3. For each (x,y,2) € R3 with ¢(x,y,2) < oo and ¢;(x,y,2) < 00, i = 1,2,3, we have

H(.’L’, Y, Z)(b(il?, Y, Z) = Hl(xa y)¢1($, Y, Z) + HQ(y7 Z)¢2($7 Y, Z) + H3(Z)¢3(£U, Y, Z), (212)
where
H(z,y,z) = —%(Jfﬂ + 0§y2 + 0?2)22)
+(Cl — )\1)$ + (Cg — Ay — C1)y + (03 — A3 — 02)2, (213)
Hi(z,y) =x—y, (2.14)
Hy(y,z) =y -z, (2.15)
Hs3(z) =z (2.16)

Proof of Lemma 2.3. To make the paper self-contained, here we apply the It6’s formula to prove this lemma
directly. Let C?(R?) be the set of all functions from R? to R with continuous second-order partial derivatives.
Let f(0) € C?(R?), then by Itd’s formula

0
FL() - F(L0) = 304, 2 wan+ S / i (L)Y

=1 1,7=1

+¥/ gg_(L( Z / . ae (w))du, (2.17)

where 7;; is the (j,4)-th entry of the reflection matrix R = (rj;)3x3. Take the expectation at the both sides of
(2.17) for t = 1, given that L(0) follows the stationary distribution, and denote this expectation by E. Then,
as long as all expectations are finite, we have

3

ZA E, / 8f( L(u))du| + > E /lr,,af(L(u))dY.(u) +1§:U2E /1 0°f (L(u))du| =0
0 G2 Lo 700 g T oeides o
(2.18)
Therefore, taking f(0) = exp{61z + Oy + 03z} with ¢(z,y,2) < o and ¢;(z,y,2) < o0, ¢ = 1,2,3, in
equation (2.18) completes the the proof of this lemma. O
From Lemma 2.3, we can prove the following lemma.
Lemma 2.4. For1 < j <3, we have
J
$;(0,0,0) =E[Y;(1)] =c; — > _A; > 0. (2.19)

i=1
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Before we prove this lemma, we first introduce the following notation for convenience:
co =0 and ¢y = 0.

Proof of Lemma 2.4. From (2.11), we get that (2.12) makes sense for w € {(z,y,2)" : 2 <0,y < 0 and z < 0}.
Let w = (0,2,,0) with z; < 0. From (2.12), we get

((Cj — /\j — Cj_l) — %U‘?Ij)(b(o,l'j,()) = —(bj_l(O,a:j,O) + (ﬁj(O,.ﬁj,O). (2.20)

Letting x; go to 0 in (2.20), we get that the left-hand side of equation (2.20) equals to

cj— Aj —¢j—1, (2.21)
since ¢(0,0,0) = 1. Hence,
(¢ = A — ¢j-1) + 6;-1(0,0,0) = ¢,(0,0,0). (2:22)
Let 7 = 1. Then, one can easily get that
$1(0,0,0) = ¢1 — A1 (2.23)
By (2.22) and (2.23), the proof is completed. O

In general, it is difficult or impossible to obtain the explicit expression for the stationary distribution 7, or
its moment generating function. Hence, our focus is on its tail asymptotics. There are a few available methods
for studying tail asymptotics, for example, in terms of large deviations and boundary value problems. In this
paper, we study tail asymptotics of the marginal distribution P(Lg < z) via the kernel method introduced by
Li and Zhao [20] and asymptotic properties of the joint stationary distribution by extreme value theory and
copula.

Remark 2.5. The kernel method introduced by Li and Zhao [20] is an analytic method for studying stationary
tail behaviour of two-dimensional queueing systems. This method is a combination of analytic continuation and
asymptotic analysis of complex functions. For more information about this method, refer the readers to the
survey paper [37]. Here we also note that the term “kernel method” has also been used by others, for example,
Banderier et al. [2], Bousquet-Mélou [3] among others. The kernel method in [2, 3] continued the work of Fayolle
et al. [10] and is used to solve one-dimensional unknown probability sequences (or functions) first through the
kernel equation and then joint probability. Their methods focus on a complete determination of the unknown
function and therefore involve much more work. The kernel method used here only requires the location of the
dominant singularity of the unknown function and the asymptotic property at the dominant singularity.

At the end of this section, we recall the Tauberian-like Theorem for moment generating functions introduced
in Dai, et al. [5]. Let g be the L-transformation of a nonnegative, continuous and integrable function f on
[0, c0), i.e.,

7o) = [ e

Then, g(s) is analytic on the left half-plane. Let C denote the complex plane. Moreover, for a point zg € C and
0 > 0, define

Gs(z0) = {z € C: 2z # 2, | arg(z — 20)| > 6}, (2.24)
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where arg(z) € (—m, m) is the principal part of the argument of a complex number z. The following lemma
comes from Dai et al. [5].

Lemma 2.6. (Tauberian-like Theorem) Assume that §(z) satisfies the following conditions:

(1) The left-most singularity of §(z) is ag with cg > 0. Furthermore, we assume that as z — ay,
9(2) ~ (g — 2)

for a real number X\ ¢ {0, —1,-2,...};
(2) g(2) is analytic on G (o) for some 6o € (0, 3l;
(3) g(2) is bounded on Gg () for some 6, > 0.

Then, ast — oo,

Ft) ~ et

t)\—l
I'(A)’

(2.25)

where T'(+) is the Gamma function.

3. KERNEL EQUATION, DOMINANT SINGULARITIES AND ANALYTIC
CONTINUATION

In this paper, we apply the kernel method to study tail asymptotics for the marginal stationary measure
P(Ls < z). The original kernel method applies easily to one-dimensional problems, and for two-dimensional
problems (or random walks in the quarter plane), we refer the readers to Li and Zhao [21]. The problem of
interest in this paper is a three-dimensional problem. Significant efforts are required in order to apply the kernel
method to our problem, which will be addressed in this and the next sections before we can use the Tauberian-like
Theorem (see Lem. 2.6) to connect the asymptotic properties of the unknown function and the corresponding tail
asymptotic properties of P(Ls < z). Specifically, since ¢(0,0, z) is the transformation function for the marginal
stationary measure for L3, we need to study analytic properties of the moment generating function ¢(0,0, z).
In this section, we address analytic continuation and defer the singularity analysis in the next section.

3.1. Kernel equation and branch points

To study analytic properties of the moment generating functions, we first focus on the kernel equation and
the corresponding branch points. For this purpose, we consider the kernel equation:

H(z,y,2) =0, (3.1)

which is critical in our analysis.

Since tail asymptotics for P(Ls < z) is our focus, we first treat z in (x,y,z)" € R3 as a variable. Inspired
by the procedure of applying the kernel method, for example, see Li and Zhao [20, 21], we first construct the
relationship between z and «, y. The kernel equation in (3.1) defines an implicit function z in variables x and
y when we only consider non-negative values for z.

In view of the kernel method for the bivariate case, we locate the maximum 2™** of z on H(z,y,z) = 0. In
order to do it, taking the derivative with respect to z at the both sides of (3.1) yields

0
(—205—)\3—02—%03)0—;—}—(—xa%—)\l—co—&—cl):O. (3.2)
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Let

0z
5 =0, (3.3)

and solve the system of equations (3.2) and (3.3), and then we have

C1—/\1—Co

ymax = 3.4
. 3 (3.49)
Similarly, take the derivative with respect to y,

0z

— =0, 3.5

o (35)
to obtain

Coy — )\2 — C1
Yomex = ——2 L, (3.6)

03

It is easy to check that at the point (xzmax, yzmax), z attains the maximum value z™**. From (3.4) and (3.6),
we can get that on the point (2 max,y,max, 2™%¥), the coordinates x and y satisfy

&L ymax = klyzmax7 (3.7)
where

(Cl — Al — CQ)CT%

kl - (62 - /\2 — 61)0%'

(3.8)

Remark 3.1. Without loss of generality, we assume that k; # 1 in the rest of this paper. For the special case
k1 = 1, the discussion can be carried out by using the same idea, which is much simpler than the general case
due to the fact that when &y = 1, the terms including k1 — 1 in most equations will disappear.

From the above arguments, we obtain the maximum 2™%* on the plane H(k1y,y,2) = 0. Now, we consider
the new equation:

From (2.8) and (3.1), we can easily know that (3.9) defines an ellipse. Thus, for fixed z, there are two solutions
to (3.9) for y, which are given:

c1— M1 Cy— g —c1) — Az
o) = R 510

and

(Cl — )\1)161 + (02 — Ay — 01) + A(Z)
(07k? + 03)

Yiax1(2) = , (3.11)
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where

2 1
Az) = ((cl - /\1)k1 + g — Ay — c1> + 2(0’%19% + 05) ( - §a§z2 + (3 — A3 — CQ)Z). (3.12)

Moreover, these two solutions are distinct except if A(z) = 0. We call a point z a branch point if A(z) = 0. For
branch points, we have the following properties.

Lemma 3.2.

X

(i) A(z) has two real zeros, one of which is 2™, and the other is denoted by z™". Moreover, they satisfy

2N () < g, (3.13)

(ii) A(z) > 0 in (™7, 2M%%) and A(2) < 0 in (—oo, 2™0) U (2™M8*, co).

Proof. From (3.12), we obtain

A(0) = (Z(q - c,;_l)k,;)2 >0, (3.14)

where k> = 1 and ¢y = 0. On the other hand,

2
> otkl > 0. (3.15)
1=1

From (3.14) and (3.15), we get (3.13).
By properties of quadratic functions, we can get that (ii) holds. The proof of the lemma is completed now. [J

max

Remark 3.3. From Lemma 3.2, we can evaluate z and 2™, Specifically, we have

€3 — A3 —C2

2
3

\/(U% + U%)Q(Cs — X3 — )2+ 03(01k? 4+ 03)((c1 — A)kr +c2 — Ao — 01)2

max __

+ o3(o?k? + 03) 7 (310
and
min _ G3—As—c2
= 22
- \/(af + 05)2(03 — A3 = c2)? + 03(01k? + 03) (1 = Aa)ks + ez = Aa — 01)2 (3.17)

o3(01k? 4 03)

In order to use the Tauberian-like Theorem, we consider the analytic continuation of the moment generating
functions in the complex plane C. The function \/A(z) plays an important role in the process of the analytic
continuation. Hence, we first study its analytic continuation. By Lemma 3.2, \/A(z) is well defined for z €
[zmin | zmax] Moreover, it is a multi-valued function in the complex plane. For convenience, in the sequel, \/A(z)
denotes the principal branch, that is A(z) = A(Re(z)) for z € (2™, 2m3%)_In the following, we continue /A(z)
to the cut plane C\ {(—o0, 2™"] U [z™** c0)}. In fact, we have
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Lemma 3.4. \/A(z) is analytic in the cut plane C\ {(—o0, 2™™] U [z™** c0)}.

The proof of Lemma 3.4 is standard. For example, see Dai and Miyazawa [7], and Dai, et al. [5]. Here we
omit the proof.

Corollary 3.5. Both Yiax0(2) and Yiax,1(2) are analytic in the cut plane C\ {(—oo, Zmin] |y [pmax, oo)}

Symmetrically, we can treat the kernel equation in (3.9) as a quadratic function in z, and obtain the parallel
results to those in Lemmas 3.2 and 3.4, and Corollary 3.5, respectively. We list them below. Before stating them,
we first introduce the following notation. Define

2 2
_ 1
— 2 2 2 21,2
Aly) = (es = A = A2)* +203 (y D" = A = com )i = 5 §‘_1: o2?). (3.18)

i=1

For fixed y, there are two solutions to (3.9), which are given by

(cs — X3 — c2) + VA(y) (3.19)

Zmax =
1(y) o2
and
s — ) — VA
Fmasoly) = B2 =) W) (3.20)

o3

Similarly to Lemmas 3.2 and 3.4, and Corollary 3.5, we have:

Lemma 3.6.

n max

(i) A(y) has two real zeros, denoted by y™® and y™¥, respectively, satisfying

min

Yyt <0 <y, (3.21)
(ii) A(y) > 0 in (y™*, y™*) and A(y) < 0 in (—oo, y™) U (y™*, oo).
(ii1) Zmax.0(y) are analytic in the cut plane C\ {(—oo,y™"] U [y™a*, c0)}.

In order to get the analytic continuation of the moment generating functions, we need some technical lemmas.
For the function Yiax,0(2), we have the following properties.

Lemma 3.7. For Yy ax0(z), we have

(i) Re(Ymax,0(2)) < Ymax,0(Re(2)) for Re(z) € (2™, 2max).
(1) Re(Ymax,0(2)) < y™ for z € Gs,(2™>) N {z € C: 2™" < Re(z)} with some & € [0, ).

max

Proof.  Since 2™ and z are two zeros of A(z) =0, we have

A(z) = (Z afk3> 02(z — Z2M) (2 _ ), (3.22)

It follows from (3.10) and (3.22) that

Re (Ymax,O(z)) - Ymax,O(Re(z)) =
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X {\/(Re(z) —min) (;max _ Re(z)) — Re<\/(z —min) (pmax _ z))} . (3.23)

By (3.23), in order to prove case (i), we only need to show

\/(Re(z) - zmi“) (zmax - Re(z)) - Re(\/(z — pmin)(gmax _ z)) <0. (3.24)

We also note that (Re(z) — 2™") and (2™* — Re(z)) are real parts of (z — 2™%) and (2™2* — 2), respectively,

since z™™ and 2™ are real. Therefore,
(Re(2) — 2™™) = |z — 2™ cos (wmin(2)),
(zmax - Re(z)) = |2™* — 2] cos (wmax(z)).
So,

Nl=

V(Re(2) — zmim) (zmax — Re(2)) = /]z — zmin||zmax ] (cos (wanin(2)) cos (wmax(z))> . (3.25)
Similarly, we have

(z — zmin)(zmax —z)=|z— zmi“||zmax — z|exp {i(wmax(z) + wmin(z))}.

Thus,
V(z — zmin) (zmax — 2) = /|z — pmin|[gmax — ] exp{iwma"(z) —;—wmin(z) 1.
Hence,
n - wmax(z) + wmin(Z)
Re(\/(z — pmin)(zmax _ z)) = /]z — zmin||zmax _ 2| cos ( 5 ). (3.26)
Since for Re(z) € (z™in, zmax)
T
wWimax(2) € (=5 0), (3.27)
Wimin(2) € (0, g), (3.28)
wmax(z) + wmin(z) ™ T
: €(-1 1) (3.29)
From (3.25) to (3.29), in order to prove (3.24), we only need to prove
1 .
(cos (wmin(2)) cos (wmax(z))) * < cos (wmax(z) —Qi—wmm(z) ), (3.30)

which directly follows from the proof of the inequality (6.2) in Dai and Miyazawa [7].
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Next, we prove case (ii). We first assume that ™" < Re(z) < 2™2*, From (3.10) and Lemma 3.2, we have

m

Yy = YmaX,O (Z

max ZQZ (/\l —C; — Ci—l)ki
) = = , (3.31)

Zi:l 022 k1,2

since A(z™**) = 0. From (3.31) and case (i), in order to prove case (ii), we only need to show

2
—1(ci — A —cim1)ki
Zz:l(c y Zkzc 1) S ymax. (332)
> iz 07k;

It follows from (3.18) and Lemma 3.6 that

2
1 (N —ci —ci1)k
2z (Ni — ¢ = i) < yme (3.33)

2 2 21.2 =
Zi:l o; k;

Hence, (3.32) follows from (3.33).
Finally, we assume that Re(z) > z™**. As 6 — T, we have that

Re(z) — 2™M#%, (3.34)

It follows from Lemma 3.6, (3.33) and (3.34) that we can find dp € [0, T) such that case (ii) holds. The proof
of the lemma is completed. O

3.2. Dominant singularities and analytic continuation

The analytic continuation of the moment generating function ¢2(0,0,2) plays an important role in our
analysis, which is the focus in this subsection. In order to carry out this, we need the following technical lemma.

Lemma 3.8. For the moment generating functions ¢;(-), i = 1,2, 3, we have

(i) ¢1(0,y, z) is finite on some region {(y,z)" :y < €,z < €} with € > 0;
(ii) ¢2(0,0,z) is finite on some region {z : z < €} with € > 0;
(iii) ¢2(x,0, 2) is finite on some region {(x,z) : z < €,x < €} with € > 0;
(iv) ¢3(0,y,0) is finite on some region {y :y < €} with € > 0.

Proof. We first prove case (i). In order to prove it, we first prove
1
E| / VL4V, (u)] < oo (3.35)
0
for some y > 0, and
1
E[ / ezL3<“>dY1(u)} < 0 (3.36)
0

for some z > 0.
In fact,

[ 4y, )] = 61(0,1:0) (3.3
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which suggests that we may restrict our analysis to the two-dimensional tandem queue { (L1 (t), Lo (t)) /} with the

two nodes 1 and 2. We note that (L1(t), Lg(t))/ is not affected by L3(t). Hence, (3.35) follows straightforwardly
from Dai, et al. [5].
Next, we prove (3.36). Since Y] is a regulator,

1 1
E[/ eZL3(“)dY1(u)} _ IE[/ ea:Ll(u)—i-OLz(u)—‘rst(u)le(u):| = ¢1(x,0, 2). (3.38)
0 0

By (3.38) and (2.12), we get that the left-hand side of (3.36) satisfies
H(x,0,2)p(x,0,2) = x61(0,0, 2) — 2¢2(x, 0, 2) + z¢3(x,0,0). (3.39)
Next, we study this system on the plane y = 0. We first consider the ellipse defined by
H(z,0,z) =0. (3.40)
For the point (x, z)" on this ellipse, we have
291(0,0,2) — z¢a2(x,0, 2) + z¢3(x,0,0) = 0. (3.41)

For fixed x, we can find two solutions to (3.40) for z. Denote one of these two solutions by

(03 — )\3 — CQ) — \/(03 — )\3 — 62)2 + 20'32)( — %0’%1’2 + (Cl — )\1)%)

Zo(x) = 5 (3.42)
03

Using the same method as in the proof of Lemma 3.2, we can get that Zy(z) is well-defined in [z™®, z™max]
with 2™ < 0 < 2™ and

Al(xmin) _ Al(xmax) _ 0,
where

1
Al((E) = (Cg — )\3 — 02)2 + 20’%( — *J%’E2 + (Cl - )\1).%)

2
Hence, from (3.41) and (3.42), we have
2¢1(0,0, Zo(x)) — Zo(x)$2(,0, Zo(x)) + Zo(x)¢3(x,0,0) = 0, (3.43)
that is,
Zo(2)p3(,0,0) = Zo(z)¢2(,0, Zo(x)) — 261 (0,0, Zo(z)). (3.44)

Hence, Zy(x)d3(x,0,0) is finite if and only if the right-hand side of (3.44) is finite. On the other hand, from
(3.42), we obtain that for x € [z™, 0),

z = Zo(x) > 0, (3.45)
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and
¢3(x,0,0) < o0. (3.46)
From (3.45) and (3.46), we obtain that
$1(0,0, Zy(x)) < o0, (3.47)

since 0o > Zo(x)¢2(z,0, Zo(x)) > 0 and —x¢1(0,0, Zo(x)) > 0. Therefore (3.36) holds. On the other hand,
noting that e¥%2(®) > 0 and e*3(*) > 0, we have

evEa(w+2La(u) _ gyLa(u)golalu) o % (ezmu) n ezst(u))’ (3.48)
since a? + b? > 2ab for any a,b > 0. Finally, we have

1
#1(0,y, 2) :]E[/ eyLz(u)—&-st(u)le(u)}
0

< %(E[ /1 ezyu(u)dyl(u)} n ]E[ / ! 622L3(u>dy1(u)D. (3.49)

0 0

Combining (3.35), (3.36) and (3.49), we get that for some y > 0 and z > 0

d)l(oaya Z) < 0.

Next, we prove case (ii). Since
1
$2(0,0,2) = IE[ / eOLﬂ“HzLB(“)dYQ(u)} (3.50)
0

we can consider the problem on the plane = 0. It follows from (2.12) that
H(0,y,2)6(0,y,2) = —y$1(0,y, 2) + (y — 2)$2(0,0, 2) + 2¢3(0, 9, 0). (3.51)
Then,
H(0,y,2)=0 (3.52)

defines an ellipse. For every fixed y, define

(3 — A3 —¢2) — \/(63 — A3 — )+ 20%( - %0%3/2 +(cg — Ay — cl)y)

2
03

Zoly) = (3.53)

Then, (3.53) is a solution to equation (3.52). Similarly to Lemma 3.2, Zy(y) is well-defined on some region [a, b]
with @ < 0 and b > 0. It follows from (3.51) and (3.53) that

(y — Zo(y)) 92(0,0, 2) = y1 (0,9, Zo(y)) — Zo(y)$3(0,y,0). (3.54)
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Furthermore, from (3.53), we obtain that for y € {y: a <y < 0}
Zo(y) > 0. (3.55)
Hence, by case (i) and (3.55), we can choose y < 0 such that z = Zy(y) > 0 and
$1(0,, Zo(y)) < oo. (3.56)
It is also worthy noting that for y < 0,
¢3(0,y,0) < oo. (3.57)
Case (ii) now follows from (3.54) to (3.57).

Finally, we can use the same ideal as for cases (i) and (ii) to show cases (iii) and (iv). This completes the
proof of the lemma. O

For the continuation of the function ¢5(0,0, z), we need another technical tool.

Lemma 3.9. Let f(x1,22) be a probability density function on R2. For a real variable X, define G\ =
fRi eIN@1HAT2 £ (00 a0 Yda with g(\) being a bounded and continuously differentiable real function, and

75 =sup{A > 0: G(\) < oo} (3.58)

Then, the complex variable function G(z) is analytic on {z € C: Re(z) < 75}

Proof. We use the Vitali’s Theorem to prove it. In fact, we have

J

For convenience, define

eg(A)zlJr)‘mf(xl,zg)d:rld:rg = / eIN=1 gy [/ 6AI2f(¢17$2)d$2] (3.59)
0 0

2
+

F(z,x1) = /000 e f (11, x9)dxs. (3.60)

Since f(x1,x2) is a density function, we can get that F'(z,21) is analytic on the region {z € C: Re(z) < 75} for
any x1 € Ry. Let

F(\z1) = e9NTR(N 1), (3.61)
Now, it is obvious that F'(\,z1) satisfies the conditions of the Vitali’s Theorem (see, for example, Markushevich
[26]) on the region {z € C: Re(z) < 74}. Then, the lemma holds. O
Remark 3.10. From Lemma 3.9,

(i) From (3.58), one can see that the convergence parameter 75 is unique;
(i) If G(z) is singular at some zo € C, then we must have G(z) = oo for z € (Re(z), ).

Remark 3.11. It follows from Lemmas 3.8 and 3.9 that

(i) ¢2(0,0, 2) is finite on some region {z : Re(z) < €} with € > 0, which implies that the convergence parameter
T$(0,0,2) 18 greater than 0.
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(ii) ¢3(0,y,0) is finite on some region {y : Re(y) < €} with € > 0, which implies that the convergence parameter
T45(0,y,0) 18 greater than 0.

The next lemma enables us to express ¢2(0,0, z) in terms of the other moment generating functions.

Lemma 3.12. ¢5(0,0,2) can be analytically continued to the region z € {z : Re(z) < €} with € > 0, and

¢2(klymax70(z)7 07 Z)
11—k
¢3(k1Ymax,0(z)a Ymax,O(z)a 0) ¢3 (Oa 07 Y;nax,O(z))

T b)) Yon () —2) 7 w2 = 2) (3.62)

¢2(0707 Z) =

Proof. From Corollary 3.5 and (2.12), we get that

¢1 (klymax,()(z)v Ymax,0(2)7 Z)

_ P2 (kIYmax,O (Z)7 0, Z) (Ymax,O(z) - Z) + 2¢3 (klymax,0(2)7 Ymax,O(z)a O) (3 63)
B (kl - 1)Ymax,0(z) . ’

On the other hand, equation (3.52) defines an ellipse. For fixed z, there are two solutions to (3.52) for y. Define

Cco— Ao —c1) — /A (2
YO(Z) _ ( 2 2 1)0-2 H(O,y, )( )’ (3.64)
2

where
1
AH(O,y,z)(Z) = (CQ — )\2 — 01)2 + 20’%((03 — )\3 — CQ)Z — 50522).

Using the same method as in the proof of Lemma 3.4, we can get that Yy(z) is analytic in the cut plane
C\ {(—o0, zmin] U [2™8% | 50)}, where

Af(0,y,2)(Z™™) = Ap(o,y,) (™) =0
with
ZUn < < Zmex
By (3.51) and (3.64), we can find a region such that

¢1(O,Y0(Z),Z) _ ¢2(07072)(Y0(Z) YO’?)Z; Zd)g(O,Yb(Z),O) (365)

Next, we study the relationship between Yy(z) and Yjax,0(2z) for z > 0. We note that both the two ellipses
defined by (3.9) and (3.52), respectively, pass the origin (0,0)" and

1
H(kly7y7 Z) = H(O7yvz) - gk%U%yQ + (Cl - )‘l)kly

= H(0,y,z)+ Gl(y), (3.66)
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where
~ 1
Gy) = *gk%U%yz + (c1 — \)kry.

We should note that

G(y) > 0 if and only if y € |0, 2(0331@31)} (3.67)
From (3.64), we obtain that for z € [0, 2(03%5_02)]
Yo(2) <0. (3.68)
From (3.66) and (3.68), we get that for z € (0, @)
H(k1Yy(2),Yo(2),2) < 0. (3.69)
On the other hand, from (3.10) and (3.64), we have, for 0 < z < 2(03707)‘;702),
Yo(2) < 0 and Yinax,0(z) < 0.
Thus,
Yinaxo(2) > Yo(2) (3.70)

93

It follows from Lemma 3.8, (3.63), (3.65) and (3.70) that

for z € (0, 72(037’\23762)).

Qsl (0, Ymax,O(Z)7 Z) _ ¢2 (Oa 07 Z) (Ymax70(z})/_ Zi(‘z)z¢3 (07 Ymax70(z)a 0)

_ ¢2 (klymax,[)(z)v 07 Z) (Ymax,O(z) - Z) + Z¢3(klymax,0(z)7 YmaX,O(Z)» 0)
N (kl - I)Ymax,O(z) ’

where we use the principle of analytic continuation of several complex variables functions (see, for example,
Narasimhan [28]). Therefore

¢2(k1Ymax,0(Z)7 Oa Z)

¢2(05 07 Z) = 1_ kl
Y, Y, Y,
+z¢3(k1 max,0(2>7 max,O(Z)a 0) N Z(ZSB(O’ max,O(Z)7 O) (371)
(1 - kl)(Ymax,O(z) - Z) (Ymax,O(Z) - Z)
for Re (z) < e with some € > 0. The proof is completed. O

We continue to address analytic continuation of the function ¢2(0,0, z). From Lemma 3.9, there exists only
one dominant singularity. We denote it by z4om. We first characterize the dominant singularity z4om of ¢2(0, 0, 2).
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For convenience, let

¢3(k1y7 Y, O)

2(k1y,y, 2)
(1— k1) '

F(y) = T

- ¢3(ana O) and D(yv Z) = ¢2(0,% Z) -
Moreover, let

G(2) = D(Ymax,0(2),2) and G(y) = D(y, Zmax.0(y))-

From Lemma 3.12, we have:

Lemma 3.13. F(y) can be analytically continued to a region {y : Re(y) < €} with € >0, and

) = S5t )

We introduce the following notation.

(b? (0> 07 Z) = ¢2(k1Ymax,0(Z)7 0> Z)

43

(3.72)

(3.73)

(3.74)

Next, we first study the relationship between the convergence parameters of ¢2(0,0, z), gﬁg((), 0,z) and G(z). In

fact, we have:

Lemma 3.14. For the convergence parameters 74,, 75, and 7¢ of $2(0,0, 2), (%2(0, 0, 2) and G(z), respectively,

we have
TG =Ty =T,
Proof. We first show
Tgo = T4,
By Lemma 3.8, we just need to focus on z > 0. By (2.11), we get that if Yinax,0(2) > 0, then
Thy = F%
if Yiax,0(z) <0, then
Thy < T

since Li(u) > 0, Ly(u) >0, z > 0 and k; > 0.
In order to prove (3.76), we first locate the dominant singularity z4om. From (3.62), we have

$2(0,0,2) — ¢2(k1YTi<v(;€(lz)a 0,2)

- ¢3(k1Ymax70(z)7 Ymax,O(z)7 O) ¢3 (0; Ymax,O(z)a 0) )

(= k) Va0 (2) —2)  (Ymaeo(2) — 2)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)
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We observe from (3.10) and (3.12) that

Ymax,o(W) ~ 0. (3.80)
From Lemma 2.4, we get
2(es — A3 — ¢2) 2
@(o,o,a—%) = ¢3(0,0,0) = c3 7;&_ (3.81)

Hence, from Lemma 3.9 and (3.81), we get

2(03 — )\3 — CQ)
Ty > —O'g .

For z € (W, 2™Ma%) " one can easily get that
3

Yinax.0(2) > 0. (3.82)
Therefore,
Ty = Tj,- (3.83)

However, from (3.71), we must have (3.76).
Next, we prove (3.75). From (3.62) and (3.76), it is obvious that

Tgp < 275 (3.84)

If 74, = 2™, then, from (3.71), it must be the dominant singularity of G(z). Next, we assume 74, € (0, 2™*¥).

From (2.11) and (3.82), we have that for w <z < phmex

3

QZ)Z(Oa Oa Z) - ¢2 (07 Knax,0(2)7 Z) = ¢2(klymax,0(z)v Oa Z) - ¢2(07 Oa Z)

:/ (eklx/maX,O(z)wl — ]_)ezw?’%(d:r)
R

2,

It is worth noting that, from Lemma 3.9, (3.76) and (3.85), we have

il
(elemax,o(z)Il _ 1)[/‘2(dx) > 0. (3.85)

3
+

lim ¢2(0,0,2) = lim ¢2(0,0,2) = co. (3.86)

2Ty 2= Tgq

If 74, is not the dominant singularity of G(z), then G(z) is analytic around 74,. So, G(z) is bounded in a
neighbourhood of a. By (3.72) and (3.74),

~

gf)g(o, 0, Z) = (1 - k1)¢2(O,Ymax7o(z), Z) - (1 — kl)G(Z)
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Hence,

¢2(0, O7 Z) — (]52(0, Ymax70(z), Z) = —]411@2(0, Ymax,o(z), Z) — (1 — kl)G(Z) (387)

From the maximum modulus principle, Lemma 3.9 and (3.87), we obtain that for some region {z : 0 < |z — | <

€}

¢2 (07 Oa Z) - ¢2 (07 YmaX,O<Z)a Z) < 07 (388)
since k1 > 0. It is obvious that (3.85) contradicts to (3.88). Hence the lemma holds. O
Remark 3.15. From the proof of Lemma 3.14, we have the following important fact

Tgp < 275 (3.89)

Next, we study the convergence parameter 7. In fact, we have:

Lemma 3.16. If 2© € (0, 2™ is the dominant singularity of G(z), then G(y) is analytic at the point y° :=
Zmax,O(ZG)'
Proof. From (3.20), we obtain that the zero y* of Zyax 0(y) is

2
y* = ZZizl(Ci i Cifl)_ (3.90)
E?:1 o7k?
From (3.10) and Lemma 3.1, we get
2
) . i — X\ — Cie -
Ymax,O(me) — }/max,O(ZmaX) _ Zz:l(c @ 1) — ym. (391)

Combining (3.90) and (3.91), we obtain that

g <y’ (3.92)

It follows from (3.18) and (3.20) that for y € (0, y*)

Zmax,0(y) <0 (3.93)
From (3.10), one can easily get that Y,ax 0(2) is increasing on [2(53%5762), z™2x] Hence

Y <g" <y (3.94)
From (3.93) and (3.94), we obtain that

Zimax0(y’) < 0. (3.95)
Therefore ¢2(0,0,2) is analytic at the point 2% := Zyax0(y°). From (3.72), in order to prove the lemma, we

only need to show that ¢2(k1y,0, Zmax,0(y)) is analytic at y°. From (3.95), we must have

Zmax1 (y°) = 26, (3.96)
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It follows from Lemma 3.14 that ¢a(k1Ymax,0(2),0,2) is analytic at 20. It follows from (3.10) and (3.91) that

Zmax,O(yO) = zO.

From the above arguments, we can get that the lemma holds. O

The zero of Yinax,0(z) — # is critical for us to prove Lemma 3.17 below. Hence, we demonstrate how to evaluate
it. Let f(z) = (Ymax,o(z) — z) (Ymax71(z) — z) Then we have

f(Z) = YmaX,O(Z)Ymax,l(Z) - Z(Ymax,l(z) + Ymax,O(Z)) + 22~ (397)

It follows from (3.8) and (3.10) that

Hence, the non-zero root of Yiax0(z) — 2 =0 is

Z?:1(Ci —Xi —ci—1)ki

zF =2 3.98
S, o o
Lemma 3.17. If 7 € (W, 2™M3%) then 1¢ is the zero z* of Yinax,0(2) — 2.
3
Proof. From (3.62), we obtain that
z
G(Z) = F(Ymax,o(z))~ (399)

Ymax,O(z) -z

Hence, in order to prove our result, we only need to show F(Yimax0(2)) is analytic on {z : Re(z) < z* + €} with
small enough € > 0. From (3.20), we have

Ymax,O(Z*) - Z*~ (3100)
Next, we show that
Yinax,0(2") # y". (3.101)

Since Yinax,0(2) is increasing on (2(0377?762), z™mex] by (3.92),
93

Yinax,0(2") < y". (3.102)

Finally, it follows from Lemma 3.16 that G(y) is analytic at the point Yax0(2*). From the above arguments
and (3.73), we complete the proof of the lemma. O

Remark 3.18. From (3.89) and Lemma 3.17, we have that

2(cs — A3 —
oy > W (3.103)

From Lemma 3.17 and (3.103), we have:
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y axis

y-z=0

z axis

max

H(ky,y,z)=0

X

FIGURE 2. Nlustration for 2™, 2* and 2™,

Lemma 3.19. If the convergence parameter 74, is less than 2™, then

S0 (e — N — ek
S0 o2k2 '

T¢2:2

To apply the Tauberian-like Theorem to connect the asymptotic property of ¢2(0,0, z) to the corresponding
tail asymptotic property of the boundary measure Vs, we need to continue the function ¢»(0,0, 2) further to a
larger domain except a neighbourhood of the dominant singularity zgom. By Lemma 3.9, there is exactly one
dominant singularity for ¢2(0,0, z). By Lemma 3.17, there are two candidates for the dominant singularity zgom
of ¢2(0,0, 2):

(1) A pole, i.e.., the zero z* of Yijax.0(2) — z; or
(2) the branch point z™?*.

An illustration for 2™, z* and 2™ is presented in Fig. 2.

For each of these two cases, we show that the unknown function ¢2(0,0, z) satisfies the analytic continuation
condition required by the Tauberian-like Theorem.

Lemma 3.20. If zgom < 2™**, then there exists an € > 0 such that ¢2(0,0, 2) is analytic for Re(z) < zgom + €

except for z = zgom and for each a > 0

sup |92(0,0, 2)| < oo, (3.104)
z ¢ Ba(zdom)
Re(2) < zgom + €

where By (24om) = {2 € C: |z — z4om| < a}.

Proof. From Lemma 3.17, we see that if zgom < 2™, then zgom is a pole of the function ¢2(0,0, z). Hence,
#2(0,0, 2) is analytic for Re(z) < zgom + € except for z = zgom. It remains to show (3.104) for each a > 0. In
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such a case, Zgom is a pole of ¢2(0,0, z). It follows from Lemma 3.17 that zgem is a zero of Yiax0(2) — 2. So

1
sup — <. (3.105)

P ¢ Ba(zdom) YmaX,O(z) -z
Re(z) < zgom + €

On the other hand, from (3.10), we get that

Yinax,1(2%) — 2" #0. (3.106)
From (3.97),
2(z* — 2)z
f(z) = ST (3.107)

From (3.99) and (3.107), we obtain that

QZ(Knax,l(z) - Z)F v, 2)) = 2(Ymax71(z) — Z) Py ). 5108
[EI AT FE TR R (3109

From (3.102) and (3.108), we have that for Re(z) < zdom + €,

G(z) =

F(Ymax0(2)) < oc. (3.109)

Finally, we can easily get that
ke — 1 < 0. (3.110)
Equations (3.105) to (3.110) yield (3.104). The proof is completed. O

Lemma 3.21. If zgom = 2™, then ¢2(0,0, 2) is analytic in Gs,(2™*), where &g is chosen in Lemma 3.7 and
Gs is defined by (2.24). Moreover, for each a > 0,

sup |$2(0,0, 2)| < oo.
z € Gg, (2™M>)

Proof. We first show that ¢2(0,0, z) is analytic on z € Gg, (2™**). It follows from Lemma 3.9 that ¢2(0,0, z) is
analytic for Re(z) < Zgom. Furthermore, by (3.81), we have zgon, > 0. Hence, in order to prove the lemma, it
suffices to show that ¢3(0,0, z) is analytic on z € G4, (z™**) N {z € C: Re(z) > 0}.

Since zgom = 2™, from Lemma 3.17, we must have z* > 2™, We first assume that

2 <2 (3.111)

Combining (3.92) and Lemma 3.16, we have that F(Ynax0(z)) is analytic at Gs,(2™**) . Hence, from (3.99)
and Corollary 3.5, we can get the lemma.

Next, we assume that z™#* = z*. The proof of this case is the combination of the proof of Lemma 3.20 and
that of the case (3.111). So, we omit the details of the proof here. O
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4. SINGULARITY ANALYSIS OF ¢(0,0,z) AND EXACT TAIL ASYMPTOTICS
FOR MARGINAL DISTRIBUTIONS

From the arguments in the previous section, we are ready to present asymptotic properties of the function
2(0,0, 2). Before stating these properties, we first present a technical lemma, which plays an important role in
finding the tail asymptotics of the marginal distribution P(L3 < z).

Lemma 4.1. ¢(0,0,2) and ¢2(0,0, z) have the same singularities.
Proof. Let w = (0,0, z)". Then,

1
H(0,0,2) = —50322 + (c3 — A3 — 2)z. (4.1)

Since Y3(t) only increases at times ¢ for which L3(t) = 0, we have that for any (x,vy, z)’ € R3,

¢3($7ya Z) = ¢3($,y70).

Then, by (2.12) and (2.19),

3
H(0,0,2)$(0,0,2) = —2¢2(0,0,2) + z(c5 — Y _ \i). (4.2)
i=1
From (3.103), we get that
2ca — Aa —
b2 (0707 Hea—da—ca) 23 CQ)) < +oo.
03
Letting » = 22272 in (4.2), we obtain
3
2(e3 — A3 — ¢2) >
3~ A3 — 82
s (0, 0, 03) == A (4.3)

Therefore, by (4.2) and (4.3),

¢2 (07 07 M) - ¢2(Oa 07 Z)

2
0,0,2) = %
g ) —302z+ (c3 — A3 — ¢2)

(4.4)

2(c3—Az—c2)
o3
proof of this lemma is completed. O

By (4.3) and (4.4), one can easily conclude that z = is a removable singularity of ¢(0,0, z). The

Based on Lemma 4.1, the asymptotic properties of ¢2(0, 0, z) lead to corresponding properties of the function
#(0,0, z). Then, the application of the Tauberian-like Theorem gives the exact tail asymptotics for the marginal
distribution of Ls.

From Lemmas 3.14 and 3.17, we can get that zg4,., is either z* or 2™#*. In order to obtain tail asymptotics
for the marginal L3, we need to study asymptotic properties of the moment generating function ¢4 at the point
Zdom- We first present asymptotic properties of G(z) defined in (3.72) at the point zgom.
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Lemma 4.2. For the function G(z), we have:

(i) If zgom = 2% < 2™ then zqom 1s a simple pole of G(z), and

2 me - FYmax
i (s — 2)G(z) = et Caom) — Zdom) P Yo Caom)), (4.5)
Z—Zdom Zi:l o k?

(i1) If zgom = 2™ < z*, then zqom s a branch point of G(z). Moreover

lim G(Zdom) — G(Z) ~ 2y 2 F(gm) + F’(gm). (4 6)
Z—Zdom v Rdom — R om _Zr/‘(llax 1(y ) Zdom — :Ijm ’ '
(i53) If Zgom = 2™ = 2*, then zqom s a pole of G(z), and
F YmaX om om 2k2
bm V=26 (z) = L maxo(dom)) 2 (Sic1 02h?). (4.7)

Z—Zdom \/(212:1 U?k?)d% (Zdom _ Zmin)

Proof. We first prove case (i). From Lemma 3.17, in such a situation, zgem is the zero of Ha(Ymax0(2),2) =
Yinax,0(2) — z. (4.5) follows from (3.108), since zgom = 2*.

Next, we prove case (ii). From Lemma 3.16, (3.91) and (3.92), we get that F'(z) is analytic at the point §™.
Hence,

F(Yinax,0(2)) = F(§™) + F'(§™) (Ymax,0(2) = §™) + o([Ymax,0(2) = §™1). (4.8)

It follows from (3.99) that

(oo~ 07 757 7)
— Z((Kﬂax,O(z) - gm) - (:l]m — Z))
(Ymax70(2) — :[7’”)2 — (gm — 2)2

G(Z) = F(Ymax,O(z))

F(Ymax,O(z))' (49)

From (4.8) and (4.9),

F(gm)z(ymax,o(z) —g™)
(Ymax,o(z) _ gﬂL)Q _ (gﬁL _ 2)2
(g2 P P o)~ 7
(Vnaxo() = )" = (77 = 2)°

G(z) =

0(‘Ymax,0(z) - ~mD (410)

Next, we consider the term Yiax 0(2) — §™. From Lemma 3.6 and (3.92) that Zyax,1(y) is analytic at the point
y™. Hence

Zmasx1(Y) = Znax 1 (§™) + Zinax 1 (0™ (y = §7)

2Zrl‘x/1ax1(~m)(y_gm)2 +o(ly = g™%). (4.11)
Since Zmax,1(y) takes the maximum at the point §™ on [y™in, ymax],
Ziax (™) = 0. (4.12)
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On the other hand, from (3.20) and (3.92),

Zmax,l(y) - Zmax,l(ym) < 0

From (4.11), (4.12) and (4.13),

jr -y = \/2(Zmax AT) ~ Fnas ) +o(ly—g™)).

Y -
Zlfrllax 1 (ym)

Similar to (3.96), we have that for z close to z™®*

Ymax,O(Z) =Y and Zmax,l(y) =z

Combining (4.14) and (4.15), we obtain that

~ 1
ym_Ymax,O( )_ _’_0(‘Z_Zmax|2).

Zr/rllax 1 (ym)

~ 1 1
ym - Ymax,O( ) 2% — 2 A [ o (~m) Z// maxl 2 )
T “max, 1

From (4.10) and (4.16), we obtain that

B e F(ym max maxF )

m de
I (=m)
l Zmdx 1
z)2

SrrEE I

Hence,

[N

+(zmax _

Combining (4.10) and (4.16), we obtain that

o GE™ - GE) )+ F' (™)
Zg)lglrgax ymax — _Z// m Zmax _ y :

Finally, we prove case (iii). Due to Lemmas 3.2 and 3.17, we obtain that

H2 (YmaX,O(Zmax)v Zmax) = 07
and
A=) = 0,

Hence,

z
/Zmax — ZWF(YmaX’O (Z))

51

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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2a/pmax _ o
B \/7 max) »max F(Ymaxﬁo(z)) (421)
112(}/max,0(2>7 Z) — HQ(Ymax,O(z )7 z )

From (3.91), (3.92) and (4.19), F(z) is analytic at §™ = Yinax,0(2™**). Therefore,

F Ym « max max 2_ 2k2
lim /Zmax — Z#F(Ymax,o(z)) — ( a ,O(z ))Z (szl 0 ) ) (422)

o Y 02) = 2 (L, o22)03 (e — i)

O

We are now in the position to obtain asymptotic properties of ¢2(0, 0, z) and bo (0,0, z) around the dominant
singularity zqom-

Lemma 4.3. For the asymptotic behavior of $2(0,0,2) and ¢2(0,0,z) around the dominant singularity Zqom,
we have:

(1) If zdom = 2* < 2™, then

iim (Zdom — 2)$2(0,0,2) = C1(2dom,), (4.23)
1im (zdom — 2)2(0,0,2) = Ca(2dom); (4.24)
Z—7Zdom

(ii) If zdom = 2™ < 2*, then

. ¢2(0,072dom) - ¢2(07072)

1 = om)» 4.2
zﬁlzglom v Zdom — 2 Cs(Zdom) (4.25)

lim (ZASQ(OvOaZdom) - &2(07032)

Z—Zdom (Zdom _ Z)

= C4(Zdom); (426)

(iil) If zgom = 2™ = 2*, then

lm v/ (Zdom — 2)#2(0,0,2) = C5(2dom), (4.27)

Z—Zdom
z—l>lzr(ril V (Zdom - Z)(£2(07 0, Z) = Cﬁ(zdom)~ (428)
Here Ci(zd4om ), = 1,...,6, are non-zero constants.

Proof. Here, we only prove case (i), other cases can be proved in the same fashion. It follows from (3.103) that

we only need focus on z € (2(%%2_62), z™2%) From (3.10), we get that

(2(03 — A3 —c2)

Yinax(z) > 0 for all z €
g3

| ) (4.29)
Combining (2.11) and (4.29), we get

¢2(0,O7Z) 2 ¢2(0a052) (430)
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for any z € (2%,2”‘”). If case (i) would not hold, then, from Lemmas 3.9, 3.14 and 4.2, we should
have

C1(z") = Cy(2") = 0. (4.31)
If k1 > 1, then from (4.30) we have

1 k1

G(Z) = ¢2(07072) + (232(070,2) 2 (7252(0,0,2). (432)
kp—1 ki —1
From (4.31) and (4.32), we get that
lim (2" — 2)G(z) = o0, (4.33)
z—z*
which contradicts to Lemma 4.2.
On the other hand, if 0 < k1 < 1, then from (4.30), we have
1 - ki -
G(Z) = (Z)Q(0,0,Z) + ¢2(07072) < ¢2(0707z)' (434)
k1—1 kp—1
Under this, it is easy to check that
e —
G(z) < Ofor z € (2(0307302), ), (4.35)
3
Hence, from Lemma 4.2, we get that
—00 < lim*(z* —2)G(z) < 0. (4.36)
However, from (4.30) and (4.34), we have
lim (z* — 2)G(z) = —o0, (4.37)

Z—>z*

which contradicts to (4.36). From above arguments, (4.23) and (4.24) are proved.
Now we show that C;(z*), ¢ = 1,2, are non-zero. It follows from (4.5), (4.30) and (4.32) that Ca(2*) # 0.
Now we assume that C;(z*) = 0. Then from (3.74) and the definition of V() given in (2.10), we have

52(0,0,2) = /]1133 exp {lemaX’O(z)xl + ng}vz(dx)
< ;(/Ri exp {2k1 Yinax,0(2)z1 } Va(dz) + /]R3+ exp {22333}1/2(dx))

< %(/R exp {2k1 Yiax,0(2)z1 } Vo (d(22)) + /]RS exp {2233} V2 (d(2x))>, (4.38)

3
+ +
Hence, as z — z*, from (4.24) and (4.38), we have

Co(=") < %(Zg(z*) + %Cl(z*), (4.39)
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where

Ca(z*) = lim (2" — 2) /]Ra exp {2k1YmaX’(](2)$1}V2 (d(2x))

Z—rz*
T

On the other hand, it is obvious that

/]R3 exp {ZlemaX’O(z)xl}VQ (d(2x))

+

< / exp {ZlemaX,o(z)xl + 22963}V2 (d(2x)) (4.40)
=
By (4.40), letting z — z* yields

Co(2%) < Oa(2%). (4.41)

Hence, (4.39) and (4.41) contradict to Cy(z*) = 0 and C3(z*) # 0. From above arguments, we get that C;(z*) >
0, 7 =1,2. The proof of this lemma is completed. O

From Lemmas 4.1 and 4.3, we can easily obtain asymptotic behavior of ¢(0,0, z). In fact, we have:

Lemma 4.4. For the moment generating function ¢(0,0,z), a total of three types of asymptotics exists as z
approaches to zgom, based on the detailed property of Zgom :

Case 1: If zgom = 2" < 2™®* then

lim  (2gom — 2)9(0,0,2) = K1(Zdom); (4.42)

Z—Zdom

Case 2: If zgom = 2™ < z*, then

i 200 zaom) Z90.0.2) _ g (4.43)

Z—Zdom v Zdom — 2

Case 3: If zgom = 2" = 2™, then

lim  Zdaom — 26(0,0,2) = K3(240m), (4.44)

Z—Zdom

where Ki(Zgom), 1 = 1,2, 3, are non-zero constants depending on Zgom .

It is clear that the asymptotic behavior of the function ¢(0,0,2) at its dominant singularity zqm, depends
on the value of z4p,, which is equal to z* or/and z™*. In practice, it is important to compare the values of z*
and z™?*, In fact, we have the following lemma.

Lemma 4.5. z* ezists in (0, 2] if and only if Vinax,0(2™?*) > 2™,

Proof. If 2™ = z* one can easily see that the lemma holds. Next, we assume z™®* #£ z*. From (3.10), we

obtain that Yihax0(2) is increasing on (Q(Cz'#f‘_”)7 2™ax] We first assume that z* exists in (0, 2™**). Since

0 < 2" = Yiax,0(2"),
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we have
s Az dsme) (4.45)
93
Therefore
§ 1= YVinax,0(2™) > Yinax,0(2"). (4.46)

On the other hand, we note that the line Hy(y, 2) = 2z — y = 0 intersects the ellipse H (ky,y, z) = 0 at one point
except for the point (0, 0)’. From (3.98), we know that the point (Yimax,0(2*), 2*)’ is the other intersection point
of Hy(y,z) =0 and H(k1y,y,z) = 0. Hence, we must have

grax > Fmax, (4.47)
Next, we assume
grax > gmax, (4.48)

We prove that z* belongs to (0, z™#). From (4.48), we obtain that the point (™, z™**)" is above the line
!
Hs(y,z) = 0. From (3.10), we get that the point (Ymaxyo(g(cr)‘f’*c?) ), 2(037)‘237620 is below the line Hy(y, 2) =

93 93

0. On the other hand, Y ax,0(2) is continuous on ( . By the above arguments, one can get that
the lemma holds. O

2(c3—A3—c2) max
a'g y % )

Remark 4.6. From the proof to Lemma 4.5, we can conclude that if z* exists, it is unique, which can be
evaluated according to Lemma 3.19.

From Lemmas 2.6, 3.20, 3.21, 4.1 and 4.4, we have the following main result of this section:

Theorem 4.7. For the marginal stationary distribution P{Ls > z}, we have the following tail asymptotic
properties for large z:

Case 1: If zgom = 2" < 2™, then
P{L3 >z} ~ Kle_zd‘""z;
Case 2: If zgom = 2™ < z*, then
P{Ls > z} ~ Kyem#tom? 573,
Case 3: If zgom = 2" = 2™, then
P{L3 >z} ~ Kye 2dom? ;3

where Ki, v =1,2,3, are non-zero constants.
Proof. Cases (1) and (3) are direct consequences of Lemmas 3.20, 3.21, 4.1, 4.4 and 2.6.

Next, we prove case (2). From (4.43), we have

092 _ R, Caom). (4.49)

lim \/Zdom—_z(b(o’ 0, Zdom) - ¢(

Z—rZdom Zdom — <
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On the other hand, it follows from Dai and Harrison [6] that the density function f(x) of the marginal distribution
P(L3 < z) exists. From Dai and Miyazawa [7], we get that

¢(0, 07 Zdom) - ¢(03 07 Z)

Zdom — %

is the moment generating function of the density function

flx) = e Fdom?® /OO e®dom™ f(u)du. (4.50)

Therefore, from Lemma 2.6 and (4.49), we have

Fl) ~ K (2dom)u™2 e~ om®. (4.51)

where K is a constant depending on zgom-
From (4.50) and (4.51), we obtain that as © — oo

/ 2o f(u)du ~ K (2gom )z 2. (4.52)
That is
X Zdomu d
lim ¢ fludu (4.53)
T—00 K(Zdom)xig
At the same time, we note that
lim e®dom™ f(y)du = 0, and lim IA((zdom)x*% = 0. (4.54)
By (4.53), (4.54) and L'Héspital’s Rule, we obtain that
X Zdomu d 2 Zdom T
Lo et fldu | 2ement ) (4.55)
T—00 K(Zdom)$7§ T—00 K(zdom)w7§
That is
F(@) ~ K1 (zgom)e *tom a5, (4.56)
where K7 is a constant. From (4.56), we conclude that case (2) holds. O

5. TAIL BEHAVIOURS OF JOINT STATIONARY DISTRIBUTIONS

In this section, we study the tail behavior of the joint stationary distribution 7. It should be pointed out
that the extension of the kernel method presented in previous sections for tail asymptotics of the marginal
distribution of L3 is not valid for the tail asympotics of the joint distribution. Instead, we propose a new idea
for the main result in this section based on extreme value theory and copula. Before stating the main result, we
first introduce the domain of attraction of some extreme value distribution function Gpa(-).
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Definition 5.1. (Domain of Attraction) Assume that {X, = (X,(Ll), . 7Xy(Ld))’} are i.i.d. multivariate ran-
dom vectors with common distribution F (1) and the marginal distributions FZ()7 i1 =1,...,d. If there exist
normalizing constants ag) > 0 and bgf) eR,1<i<d,n>1such that asn — oo

M(Z) _ b(l) ' )
P{% <z 1<i< d} Sy (ag)xu) B0, gl @ +b§;l>)

— GDA(x(l), e ,x(d)),

where the maximum M7(Li) =Vi X ,gi) are the componentwise maxima, then we call the distribution function

Gpa(-) a multivariate extreme value distribution function, and F is in the domain of attraction of G'p4(-). We
denote this by F' € D(Gpa).

For convenience, we let Fi;(z,y, z) denote the joint stationary distribution function of {L(¢)} and F;, i = 1,2, 3,
denote the stationary distribution function of the i-th buffer content process. From Dai and Miyazawa ([7],
Thms. 2.2 and 2.3), and Theorem 4.7, we can easily get the following lemma.

Lemma 5.2. For any i € {1,2,3}, we have
1 — Fi(x) ~ C;exp{—ajz}zti, (5.1)

where «; is the dominant singularity of the moment generating function of the marginal distribution F;, C; is a

non-zero constant, and p; € {0, —%, f% .

From Lemma 5.2, we can get that

Lemma 5.3. For any i € {1,2,3}, we have
Fi(z) € D(G1(x)),
where
Gi(x) = exp{—e™"}. (5.2)

Proof. From Dai and Harrison [6], F;, ¢ = 1,2, 3, have continuous densities. It straightforwardly follows from
(5.1) and L’Héspital’s Rule that as x — oo,

F/(z) ~ a;C; exp{—a;z} ", (5.3)
since 1 — F;(x) — 0 and C; exp{—a;z}z" — 0, as x — co. Moreover, it is obvious that
C; >0, foralli=1,2,3. (5.4)

For large enough 2 > 0, due to (5.3), we have

(2

Fl(z) = 0;C; exp{—az}a" + 0(a;C; exp{—a;z}a'), as x — oo, (5.5)
where o(-) denotes small oh as  — oo. Now, we consider the existence of the second-order derivative F}'(z)

of the function F;(z) and the asymptotic equivalence of F/'(z), as  — co. Let ¢;(z) = o;C; exp{—ayz}zti for
convenience. Then we can rewrite the equation (5.5) as

F{(z) = gi(z) + o(gi(x)), = — oo. (5.6)



58 H. DAI ET AL.

To reach our aim, we first discuss some properties of the function g;(x). For any large enough u > R, fixed, we
first show that

o(gi(z)) — o(gi(w)) ~ ou(gi(z) — gi(w)), as & — u, (5.7)
where 0,(-) denotes the small oh as  — u.
Note that
lim g;(2) = gi(w). (5.8)
It is obvious that as z — u
gi(x)/gi(u) — 1 and gi(u)/gi(x) — 1. (5.9)

Moreover, since F}(z) and g;(x) are both continuous, from (5.6) and (5.8), as * — u
o(9i(x)) — o(gi(u))/g(u) — 0 and o(gi(x)) — o(gi(u))/gi(x) — 0. (5.10)
We first assume that x > u. From (5.9) and (5.10), for any € > 0, there exists § > 0 such that for all z —u < §
(1 =€)gi(u) < gi(z) < (1 + €)gi(u), (5.11)
and
o(gi(x)) — o(gi(u)) < *gi(u). (5.12)
From (5.10), (5.11) and (5.12), we have

o(gi(u)) — o(gi(x)) _ olgi(u)) _ €gi(u)
gi(u) — gi(z) = €gi(u) = €gi(u)

<e (5.13)

Below we assume that z < u, then from (5.9), for any small enough € > 0, there exists § > 0 such that for
allu —x <6

(1= €)gi(z) < gi(u) < (1 + €)gi(x), (5.14)
and
o(gi(u)) — o(gi(z)) < € gi(z). (5.15)
Hence, from (5.15) and (5.14),

o(gi(x)) — o(gi(u)) (9i(z))

0
< <. 5.16
o) gl = eln) (510
From (5.13) and (5.16), we can get (5.7).
From (5.6) and (5.7), we have that as u — oo
1o () — g () — g
o E) < Bl ) i) oulae) — () 5

T—Uu r— U T—u Tr—Uu T—Uu r—Uu
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Hence, for larg enough x € Ry, F/(z) exists. Furthermore, from (5.17), one can easily verify that

. " _
$1eréo F/'(z)=0. (5.18)
Then, by (5.3) and L’Hospital’s Rule
F{'(x) ~ —aiCi exp{—azz}at. (5.19)

It follows from the asymptotic equivalence (5.3) and (5.19) that

F'(z) (1 — Fy(=))

lim SR ) (5.20)
T—00 (FZ,(J}))
Then, it follows from Proposition 1.1 in Resnick [30] that F; € D(Gy). O

In the previous section, we obtained exact tail asymptotic properties of the marginal distributions. Now,
based on these results, we can study the upper tail dependence for the joint stationary distribution. Before
stating the tail dependent result for the joint stationary distribution, we introduce a technical lemma.

Lemma 5.4. Suppose that {Xn = (X}(Ll), X,(,Q), )A(,(LB))/} are i.i.d. random vectors in R3 with a common joint
neN

continuous distribution F(-), and the marginal distributions Fl(), i =1,2,3. Moreover, we assume that Fi(),
i =1,2,3, are all in the domain of attraction of some univariate extreme value distribution G1(-), i.e.., there
exist as) and bsf) such that as n — oo

En (aﬁf)x + bgf)) — Gy(x).

Then, the following are equivalent:

(1) F is in the domain of attraction of a product measure, that is,
F"{ag)x(i) +0\0 i =1,2, 3} -1, Gy (.Z‘(i)) = G(x1, 0, 23); (5.21)
(2) For any 1 <i<j<3,

lim P{X(i) >t X0) > t}/(l — Fy(t)) =0, (5.22)

t—o0

where q € {i,7}.

By a slight modification of the proof of Proposition 5.27 in Resnick [30], we can prove the above lemma.
Hence, we omit the detail here.

Remark 5.5. By Proposition 5.24 in Resnick [30], the asymptotic independence in (5.21) can be reduced to
two-dimensional case. Moreover, the bivariate asymptotic independence could be seen from the tail behaviour
of X and XU). Hence, one can see the equivalence between (5.21) and (5.22) intuitively.

For the joint stationary distribution function Fy(-), we have the following tail dependence.
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Lemma 5.6. The joint stationary distribution function Fy(-) is asymptotically independent, that is, there exist
an (i, o) and by (pi, 0, i =1,2,3, such that

Fﬁ(an(ui,ai)x(i) + by (i, ), i = 1,2,3) — H?:lGl(x(i)), asn — oo,

where G1(z) is given by (5.2).

To prove Lemma 5.6, we first introduce the inverse (left continuous) H* of a function H by
H* (y) = inf{s : H(s) > y}.

Proof. Here, we will use (5.22), an equivalent statement, to prove this lemma. Without loss of generality, we
assume that L(0) follows the stationary distribution 7. Hence for any ¢ € Ry and (z,y,2)" € R},

P{L(t) > (e.y.2)'} = P(L > (2,,2)'}. (5.23)

At the same time, we note that, to prove (5.22), it suffices to show the following upper tail dependence:

lim Lij (u, v)
u—1— 1—wu

=0, (5.24)

where Cj;(+) is defined by

Cij(u,v) = P{Li = (F)~(w), L; = (F;)“ (v) }.

Below, we let i = 1 and j = 2 for simplicity. Other cases can be proved in the same fashion. At the same time,
from (5.23), we get that for any ¢ € Ry

Cra(uu) = P{Ly(t) > (F) (), Lo(t) > (F2)~(w)}. (5.25)
Next, we introduce the last exit time 7¢ before ¢, out of the boundaries by
T :inf{s :Li(u) >0foralli=1,2,3, s<u< t}.
As a convention, let 7o(t) = ¢ if L;(t) = 0, for some i € {1,2,3}. Hence, we have
7 <t, a.s. (5.26)

From (5.56), it is obvious that

L(t) = L(m) + X(t) — X(7) + R(Y(t) - Y(Tt)), (5.27)

where X (t) is given by (2.4). Moreover, noting that {X(¢)} is a 3-dimensional Brownian motion, we get that
for large enough t € R

T >0, as. (5.28)
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From Proposition 1 in Konstantopoulous, Last and Lin [18], (5.27) and (5.26), we have that if L(¢) > 0, where
0 = (0,0,0)/, then

L(t) = L(n) + X () — X (7). (5.29)
On the other hand, we note that as u — 1—

(F))"(u) = o0, i =1,2. (5.30)

Hence, from (5.25), (5.29) and (5.30),

n—oo 0

< lim P{Xi(t) Xi(s) > (F)“(w) —n, i=1,2|r = s}dFT,(s), (5.31)
where F,(+) is the distribution function of 7;. From the above arguments, we have that

S B{Xit) = Kis) = (F)(w) =i = 1,2}

fm 20 i dF;, (s)
u—1— 1—wu u—1—n—oo 1—u
s P{Xi(t) - Ki(s) 2 (F)* (w) = i = 1,2}
< lim lim dF,,(s)
n—oou—l— Jq 1—u t
o P{R - Kils) = (F)(w) - nii=1,2)
< lim lim dF., (s). (5.32)
n—o0 0 u—1— ]_ — U

Moreover, for any n € N and s € R, we have

]P’{X,»(t) — Xi(s) > (F)(w) —nyi= 1, 2}

1—u
]P’{Xi(t) ~Xi(s) > (F) () —nyi = 1, 2}
= - - — : (5.33)
P{X1(t) = %1(5) = (Flam) () —n}

where Fi,; »)(+) is the distribution function of the Gaussian random variable Xl(t) - X (s) — n. Finally, from
Theorem 4.7, we can get that for u close to 1—,

(Flom) () < (F)* (u), i=1,2. (5.34)

Combining (5.33) and (5.34) yields

-0, (5.35)
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as u — 1—, since for a Gaussian random vector X = (X17X2)’ with the coefficient being less than 1, for any
je{1,2},
P{X; > 2,i=1,2}

— 0, asx — o0.

It follows from (5.32) and (5.35) that (5.24) holds. From the above discussion, the lemma is proved. O

Remark 5.7. For a,(u;, «;) and by, (ps, @), ¢ = 1,2,3, in Lemma 5.6, we can use tail equivalence to obtain
their explicit expressions. Since they are not the focus of this paper, we will not elaborate them here.

Now, we present the main result of this section.

Theorem 5.8. As (z,y,2) — (00, 00,00),
P{Ly >z, Ly >y, L3 > Z}/(Kxﬂlyuzzus exp{ — (12 + oy + agz)}) =1, (5.36)

where a; is the dominant singularity of L;, u; € {0, f%, f%} is the exponent corresponding to ay; in Lemma 5.2,
and K 1is a constant.

Proof. To prove this theorem, we use a version of L’Hospital’s rule for multivariate functions introduced by
Lawor [19] (see, Thms. 4 and 5 in Lawor [19]). To apply this result, we need the following transformation. Let
X = (X1, X2, X3)' be a random vector with the joint distribution F and marginal distributions F}, i = 1,2, 3.
Then, we can make the following transformation:

-1
—— fori=1,2,3. (5.37)

By the transformation in (5.37), we transform each marginal X; of a random vector X to a unit Fréchet variable
X7, that is,

1
P{X; <z} = exp{—;}7 for v € R4. (5.38)

For the trivariate extreme value distribution G(z,y,z) = G1(2)G1(y)G1(z), define

G*(z,y,2) = G((lo;él)ﬁ(lﬁy (logiél)h(y)’ <logél)(_(z)>. (5.39)

Hence, from (5.37) and (5.38), we know that G*(-) is the joint distribution function with the common marginal
Fréchet distribution ®(x) = exp{—x~1}. Furthermore, for the stationary random vector L, define

1
Y*

A XA (5.40)

Let F*(y1,y2,ys) be the joint distribution function of Y* = (Y7, Y5, Y5*)". Then, it follows from Proposition
5.10 in [30] and Lemma 5.6 that

F*(y1,y2,y3) € D(G*(y1,y2,¥3))- (5.41)
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By (5.41), we have that for any ¥ = (y1,y2,y3)’ € R+» as n — oo,
(F*(ng)" — G*(¥). (5.42)
It follows from (5.42) that as n — co
v Rt
F*(ng) ~ (G () "
By a simple monotonicity argument, we can replace n in the above equation by t. Then we have that as t — oo,
1
F(tg) ~ (G*(9)) " (5.43)

On the other hand, by Lemma 5.3, for any y € Ry, as t — oo

1
t

F}(ty) ~ (Gi(y))*, for any i = 1,2,3. (5.44)
Combining (5.43) and (5.44), we get that as t — oo
FE(ty) ~ Fi (tyr) - Fy (ty2) - F5(tys). (5.45)

Let C*(uy,us,us3) be the copula of the random vector (Y7*, Y5, Y5")', i.e..,
C*(Ff(x)vF;(y)aFg(Z)) = F*(ac,y,z). (546)

Furthermore, let C (u1,ug,us) be the corresponding survival copula of Y*. Then, we have (see, for example, Eq.
(2.46) in Schmitz [31]):

C’ul,uQ,U3 ZuZ Z Ci*j(l—ui,l—ui)—C*(l—ul,l—ug,l—ug)—z (5.47)
1<i<j<3

For convenience, for any (z1,z2,23) € R3, let u;(t) = F} (tz;). Hence for any ¢ € Ry,

Cui(t), uz(t), us(t)) = F*(txy, tws, tas), (5.48)
C’* (1 - ul(t), 1-— UQ(f), 1-— Ug(t)) = F*(t{El,tQSQ,tIg).

Moreover, from (5.45), we get that as t — oo,
C* (1= wi(t), 1 = us(t), 1 = us(t) ~ (1= wa (1)) - (1~ us(t)) - (1~ us(1)), (5.49)
and for any 1 <7< j <3,
C'i*j(l — (), 1 —uj(t)) ~ (1 —ui(t)) - (1 —uy;(2)). (5.50)
From (5.47), (5.49) and (5.50), we get that as t — oo,

C’(ul (t), UQ(t), Ug(t)) ~ Ul (t) . 'U;Q(t) . U3(t), (551)
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which is equivalent to, for any (z,y,z)" € R3,

F*(tz, ty,tz)

lim — _ ~ = 5.52
ML B ) F ) - F 12) (552
To complete the proof, we need to show
: (2, y, 2)
lim = = = =1. 5.53
(2.9.2)' = (s0,00,00) Fi(x) - F5 (y) - F5(2) (5:59)
From (5.46) and (5.51), to prove (5.53), we only need to show
lim Clu,uz,us) _ g (5.54)
(u1,u2,u3)’—(0,0,0)’ and (u1,u2,uz)’ €13 UjU2U3
where I = [0, 1]. Note that
1— _
lim =P (5.55)
z—0 xT
Hence, from (5.52) we get that
lim C(tua, tup, tus) -1 (5.56)

t—0 t3u1u2u;3

It is worthwhile to point out that the limit (5.54) has the form of %. Hence, we apply the multivariate L’Hopital’s
rule (see, for example, Thms. 4 and 5 in Lawor [19]) to prove it. Without much effort, we can construct a
multivariate differentiable function C'(uq,uz,us) such that

Cluy, ug, us) = Cluy, ug, us) for all (u1,ug, us)’ € I,
and
C’(tul, tug, tug) ~ tPuugus, ast — 0.

Hence, it suffices to show that

Clur,uz, us) _ : Clur,up,us) _ (5.57)

lim = lim
(u1,uz2,u3)’—(0,0,0)" and (u1,uz,u3)’ €3 U1U2U3 (u1,u2,u3)’—(0,0,0)’ U1U2U3

Near the origin (0,0,0)’, the zero sets of both C’(ul,ug,ug) and ujusus consist of the hypersurfaces u; = 0,
uz = 0 and uz = 0. By the multivariate L’Hopital’s rule to prove (5.57), we need to show that for each component
E; of R?\ C, where C = {u; = 0} U {ug = 0} U {ug = 0}, we can find a vector Z, not tangent to (0,0,0)’, such
that Dz(ujugus) # 0 on F;, and

D:C(u1,u2,us3)

lim ZEEAND S O .
(u1,u2,u3)’—(0,0,0)" and (u1,u2,u3)’ €E; Dz(uluzu3)
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For the component E; bounded by the hypersurfaces of H; = {(u1,u2,u3) : (u1,u2,u3) € R3 and u; = 0},
i =1,2,3, choose a vector, say zZ = (1,1,1)’, then Z is not tangent to any hypersurfaces u; =0, 7 = 1,2, 3 at the
point (0,0,0)’. Next, we take the limits along the direction z'= (1,1,1)’. It follows from (5.55) and (5.56) that

DG
lim DeCfuy uz,us) _ (5.58)

(u1,u2,u3)’—(0,0,0)" and (u1,us,u3)’€E1 Dg(’ul’u,gu:g)
Similar to (5.58), for any other components E;, i = 2,...,8, we can find a vector Z' such that Z is not tangent

to any hypersurfaces u; = 0, i = 1,2, 3, at the point (0,0,0)’. Moreover, we have

D=C(uy,ua, uz)

lim =1. 5.59
(u1,u2,u3)’—(0,0,0)" and (uy,u2,u3)’€E; Dg‘(UﬂLQ’U/g) ( )
From (5.57) to (5.59) and [19],
lim Cluruz,us) (5.60)
(u17uz,u3)’—>(070,0)’ U1UQU3
It follows from (5.40) that for any (z,y,z)’ € Ri,
P{Ly > z,Ly >y, L >z}—P{Y*>¥ Yy>— Y*>¥}
L= =t == ST R () 2 T 1-F(y) = 1- Fy(2)
1 1 1
:F*(, e ) (5.61)
Fi(z) Fa(y) Fs(z)

Combining (5.60) and (5.61), we get that, as (z,vy, 2)’ — (00, 00,00)’,

P{L; >x,Ls >y, L3z > z}/ (Fl* (Htaz)) -F3 (Fj(;;)) -Fy (F;(Z)» — 1. (5.62)

By (5.55) and (5.62), we get that, as (x,y, 2) — (00, 00, 00)’,
P{L1 22, Ly 2y, Ly > 2}/ (Fale) - FPaly) - Fo(2)) — 1. (5.63)

Finally, it follows from Lemma 5.2 and (5.63) that

Fi(z) ~ K;z" exp{—ayz}, i =1,2,3, (5.64)
where K; is a constant. From (5.63) and (5.64), we have now proved the theorem. O

6. CONCLUDING REMARKS

In previous sections, we obtained exact tail asymptotics for L3, see Theorem 4.7, and asymptotic independence
for L, see Theorem 5.8. From the discussion in Section 2, we know that {L(t)} is an SRBM with the reflection
matrix R given by (2.6). Recall that a general d-dimensional SRBM, denoted as Z = {Z(t),¢ > 0}, is defined
as follows:

Z(t) = B(t) + RM(t), fort >0, (6.1)
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where Z(0) = B(0) € R%, B = {B(t)} is an unconstrained Brownian motion with drift vector ji = (i1, . .., fia)’

and covariance matrix > = (Em‘)dxd, the reflection matrix R is a d x d matrix specifying the reflection behavior
at the boundaries, and M = {M(¢t)} is a d-dimensional process with the local times M, ..., My such that:

(i) the local time M;(t) is continuous and non-decreasing with M;(0) = 0;
(ii) M;(t) only increases at times ¢ for which Z;(t) =0,i=1,...,d;

(iii) Z(t) e RL, ¢t > 0.
It is known that a necessary condition for the existence of the stationary distribution for Zis
R is non-singular and R~1j1 < 0, (6.2)
where R™! is the inverse matrix of R and 0 = (0,...,0)’. For more information about SRBMs, we refer to

Harrison and Hasenbein [14], Harrison and Reiman [15, 16], Varadhan and Williams [32], Williams [33, 34]
among others.

SRBM with triangular reflection matrix. A natural extension of our model is the d-dimensional

Brownian-driven tandem queue with intermediate inputs, which is an SRBM 7= (Zl, el Zd)’, whose reflection
matrix R = (’Fij)dxd satisfies
1, if j =1,
ry =94 —1 ifj=i-1, (6.3)

0, otherwise.

An interesting problem is to obtain exact tail asymptotics for the marginal stationary distributions of Z.

For this model, the kernel equation in (3.1) becomes a d-dimensional ellipsoid H(z1,...,24) = 0. The exact

asymptotic analysis seems to be analogous to that for the 3-dimensional case. However, there are still some

new technical challenges we need to address. For example, to study exact tail asymptotics for the marginal

stationary distribution of Z4, the main challenge comes from the construction of the ellipses which locate the
max

maximum point z;'** and the interlace between the moment generating functions of boundary measures and
marginal stationary distributions. The detailed analysis is beyond the scope of the current paper.

SRBM with general reflection matrix. An immediate question is: Can we generalize our study to a
general d-dimensional SRBM Z with d > 37 To answer this question, we first recall the key components in our
analysis for the 3-dimensional model L:

(1) The fundamental form, or the functional equation satisfied by the (unknown) moment generating functions
of the joint stationary distribution and boundary measures, see the equation in (2.12).
Similar to Lemma 2.3, by using the It6’s formula, such a relationship can be obtained for a d-dimensional
SRBM Z.

(2) The kernel method, including analytic continuation of the unknown moment generating functions and
asymptotic analysis.
We first briefly review why the kernel method can be applied to our case. Inspired by the kernel method for
2-dimensional queueing systems, a binary alternative equation in (3.9) is constructed based on the ternary
kernel equation in (3.1), and then the kernel method is employed to study the binary alternative equation
in (3.9) instead of the kernel equation in (3.1). Finally the analytic continuation of the unknown moment
generating functions and asymptotic analysis are obtained. However, for the general d-dimensional SRBM
Z, it is not possible to find binary alternatives for applying the kernel method. Hence, analytic continuation
could not be carried out by the kernel method at this moment. This looks to be the main challenge for
studying a general model Z. It is our conjecture that the counterpart analytic continuation property (to
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Lemma 3.12) still holds for Z. If this is true, the asymptotic analysis on the dominant singularity should
prevail.

(3) Based on the asymptotic analysis of the unknown moment generating functions, the Tauberian-like
Theorem leads to exact tail asymptotic properties for the boundary measures and marginal stationary
distributions, see Theorem 4.7.

If Step (2) works well for a general Z, then we can get exact tail asymptotic properties for the boundary
measures and marginal stationary distributions of Z, the counterpart to Theorem 4.7, by using the same
Tauberian-like Theorem (see Lemma 2.6).

(4) Furthermore, by extreme value theory and copula, asymptotic independence for the joint stationary
distribution can be obtained, see Theorem 5.8.

If we can obtain exact tail asymptotics for marginal stationary distributions of a general Z, then, similar
to Theorem 5.8, we can study exact tail asymptotics and dependence structure of the joint stationary
distribution of Z.

From above discussions, we know that, due to the challenge arisen in Step (2), we do not have a complete study
on exact tail asymptotics for a general model Z by using our method at this moment. However, the methods
developed in this paper could be applied to discuss rough tail asymptotics for a general d-dimensional SRBM
Z. The large deviations for Z have been studied intensively. Under some mild conditions (see, for example,
Conditions 2.1 and 2.5 in Dupuis and Ramanan [9]), the large deviations principle for Z has been established,
see, for example, Avram, Dai and Hasenbein [1], Dupuis and Ramanan [9] and Majewski [25]. Therefore, based
on the large deviations for Z, we expect to establish rough asymptotitcs for the marginal stationary distributions
of Z, and we can then discuss rough asymptotics and dependence structure of the joint stationary distribution
of Z by the method developed in Section 5. In our ongoing work, we discuss this topic in detail.
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