Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: Uniform estimates in a compact soft case
ESAIM: Probability and Statistics, Tome 26 (2022), pp. 1-25

We establish the convergences (with respect to the simulation time t; the number of particles N; the timestep γ) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary distribution of a diffusion on the d-dimensional torus, killed at a smooth rate. In these conditions, quantitative bounds are obtained that, for each parameter (t, N or γ → 0) are independent from the two others.

DOI : 10.1051/ps/2021017
Classification : 65C35, 65C40, 60J22
Keywords: Quasi-stationary distribution, interacting particle system, Wasserstein distance, couplings, propagation of chaos
@article{PS_2022__26_1_1_0,
     author = {Journel, Lucas and Monmarch\'e, Pierre},
     title = {Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: {Uniform} estimates in a compact soft case},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--25},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {26},
     doi = {10.1051/ps/2021017},
     mrnumber = {4363453},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021017/}
}
TY  - JOUR
AU  - Journel, Lucas
AU  - Monmarché, Pierre
TI  - Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: Uniform estimates in a compact soft case
JO  - ESAIM: Probability and Statistics
PY  - 2022
SP  - 1
EP  - 25
VL  - 26
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021017/
DO  - 10.1051/ps/2021017
LA  - en
ID  - PS_2022__26_1_1_0
ER  - 
%0 Journal Article
%A Journel, Lucas
%A Monmarché, Pierre
%T Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: Uniform estimates in a compact soft case
%J ESAIM: Probability and Statistics
%D 2022
%P 1-25
%V 26
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021017/
%R 10.1051/ps/2021017
%G en
%F PS_2022__26_1_1_0
Journel, Lucas; Monmarché, Pierre. Convergence of a particle approximation for the quasi-stationary distribution of a diffusion process: Uniform estimates in a compact soft case. ESAIM: Probability and Statistics, Tome 26 (2022), pp. 1-25. doi: 10.1051/ps/2021017

[1] A. Asselah, P.A. Ferrari, P. Groisman and M. Jonckheere, Fleming–Viot selects the minimal quasi-stationary distribution: the Galton–Watson case. Ann. l’Institut Henri Poincaré, Probabilités Stat. 52 (2016) 647–668. | MR

[2] A. Asselah, P.A. Ferrari and P. Groisman, Quasistationary distributions and Fleming-Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. | Zbl | MR | DOI

[3] V. Bansaye, B. Cloez and P. Gabriel, Ergodic behavior of non-conservative semigroups via generalized Doeblin’s conditions. Acta Applicandae Mathematicae. | MR

[4] M. Benaïm, N. Champagnat and D. Villemonais, Stochastic approximation of quasi-stationary distributions for diffusion processes in a bounded domain. Preprint (2019). | arXiv | MR

[5] M. Benaïm and B. Cloez, A stochastic approximation approach to quasi-stationary distributions on finite spaces. Electr. Commun. Probab. 20 (2015) 13 pp. | MR

[6] M. Benaïm, B. Cloez and F. Panloup, Stochastic approximation of quasi-stationary distributions on compact spaces and applications. Ann. Appl. Probab. 28 (2018) 2370–2416. | MR | DOI

[7] K. Burdzy, R. Hoł Yst and P. March, A Fleming-Viot particle representation of the Dirichlet Laplacian. Commun. Math. Phys. 214 (2000) 679–703. | Zbl | MR | DOI

[8] K. Burdzy, R. Holyst, D. Ingerman and P. March, Configurational transition in a Fleming - Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A Math. General 29 (1996) 2633–2642. | Zbl | DOI

[9] F. Cerou, B. Delyon, A. Guyader and M. Rousset, A Central Limit Theorem for Fleming-Viot Particle Systems with Soft Killing. Preprint (2016). | arXiv | MR

[10] N. Champagnat, K. Coulibaly-Pasquier and D. Villemonais, Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions. Preprint (2016). | arXiv | MR

[11] N. Champagnat and D. Villemonais, Convergence of the Fleming-Viot process toward the minimal quasi-stationary distribution, ALEA, Lat. Am. J. Probab. Math. Stat. 18 (2021) 1–15. | MR | DOI

[12] N. Champagnat and D. Villemonais, Practical criteria for r-positive recurrence of unbounded semigroups, Electron. Commun. Probab. 25 (2020) 6. | MR

[13] B. Cloez and M.-N. Thai, Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space. Stochastic Process. Appl. 126 (2016) 680–702. | MR | DOI

[14] D. Dawson, Measure-valued Markov processes (1993). | Zbl | MR

[15] P. Del Moral, Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Springer-Verlag, New York (2004). | Zbl | MR

[16] P. Del Moral, Mean Field Simulation for Monte Carlo Integration. Chapman and Hall/CRC, New York (2013). | MR | DOI

[17] P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l’I.H.P. Probabilités et statistiques 37 (2001) 155–194. | Zbl | Numdam | MR

[18] P. Del Moral and L. Miclo, A Moran particle system approximation of Feynman–KaC formulae. Stoch. Process. Appl. 86 (2000) 193–216. | Zbl | MR | DOI

[19] P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. | Zbl | Numdam | MR | DOI

[20] P. Del Moral and D. Villemonais, Exponential mixing properties for time inhomogeneous diffusion processes with killing. Bernoulli 24 (2018) 1010–1032. | MR | DOI

[21] B. Delyon, F. Cérou, A. Guyader and M. Rousset, A Central Limit Theorem for Fleming-Viot Particle Systems with Hard Killing. To appear in Ann. l’IHP (Probability and Statistics) (2017) . | arXiv

[22] A. Eberle, A. Guillin and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics. Preprints (2017). | arXiv | MR

[23] P. Ferrari and N. Maric, Quasi stationary distributions and Fleming-Viot processes in countable spaces. Electr. J. Probab. 12 (2007) 684–702. | Zbl | MR

[24] G. Ferré and G. Stoltz, Error estimates on ergodic properties of discretized Feynman–KaC semigroups. Numer. Math. 143 (2019) 261–313. | MR | DOI

[25] W.H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28 (1979) 817–843. | Zbl | MR | DOI

[26] N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738. | MR | DOI

[27] I. Grigorescu and M. Kang, Hydrodynamic limit for a Fleming-Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. | Zbl | MR | DOI

[28] A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38 (2010) 2418–2442. | Zbl | MR | DOI

[29] C. Le Bris, T. Lelièvre, M. Luskin and D. Perez, A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18 (2012) 119–146. | Zbl | MR | DOI

[30] T. Lelièvre, L. Pillaud-Vivien and J. Reygner, Central limit theorem for stationary Fleming-Viot particle systems in finite spaces. ALEA Lat. Am. J. Probab. Math. Stat. 15 (2018) 1163–1182. | MR | DOI

[31] J.-U. Löbus, A stationary Fleming-Viot type Brownian particle system. Math. Z. 263 (2009) 541–581. | Zbl | MR | DOI

[32] M.B. Majka, A. Mijatović and L. Szpruch, Non-asymptotic bounds for sampling algorithms without log-concavity. Preprints (2018). | arXiv | MR

[33] G. Milstein and M.V. Tretyakov, Stochastic Numerics for Mathematical Physics (2004). | Zbl | MR | DOI

[34] P. Monmarché, Elementary coupling approach for non-linear perturbation of Markov processes with mean-field jump mechanims and related problems. Preprints (2018). | arXiv | MR

[35] P.A.P. Moran, Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54 (1958) 60–71. | Zbl | MR | DOI

[36] F.M. Norman, Ergodicity of diffusion and temporal uniformity of diffusion approximation. J. Appl. Prob. 14 (1977) 399–404. | Zbl | MR | DOI

[37] W. Oçafrain and D. Villemonais, Convergence of a non-failable mean-field particle system. Stoch. Anal. Appl. 35 (2017) 587–603. | MR | DOI

[38] M. Rousset, On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824–844. | Zbl | MR | DOI

[39] C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). | Zbl | MR

[40] D. Villemonais, General approximation method for the distribution of Markov processes conditioned not to be killed. ESAIM: PS 18 (2014) 441–467. | MR | DOI

[41] D. Villemonais, Lower bound for the coarse Ricci curvature of continuous-time pure jump processes. Preprint (2017). | arXiv | MR

Cité par Sources :