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CONVERGENCE OF A PARTICLE APPROXIMATION FOR THE
QUASI-STATIONARY DISTRIBUTION OF A DIFFUSION PROCESS:
UNIFORM ESTIMATES IN A COMPACT SOFT CASE

Lucas JOURNEL' AND PIERRE MONMARCHE>*

Abstract. We establish the convergences (with respect to the simulation time ¢; the number of
particles INV; the timestep ) of a Moran/Fleming-Viot type particle scheme toward the quasi-stationary
distribution of a diffusion on the d-dimensional torus, killed at a smooth rate. In these conditions,
quantitative bounds are obtained that, for each parameter (t — oo, N — oo or ¥ — 0) are independent
from the two others.
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1. INTRODUCTION
1.1. The problem

Start from the diffusion on the d-dimensional periodic flat torus T¢
dZy = b(Z;)dt + d B, (1.1)

with b € C*(T?), where (B;)i>0 is a d-dimensional Brownian motion. Add a killing rate A € C(T%) and, given a
standard exponential random variable E independent from (Z;);>¢, define the death time

¢
T = inf {t >0, E< / )\(Zs)ds} . (1.2)
0

Then a probability measure v on T¢ is said to be a quasi-stationary distribution (QSD) associated to the SDE
(1.1) and the rate A if

Law(Zy) =v = YVt >0, Law(Zy | T >t)=v.
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In our case, there exists a unique QSD v, and, whatever the initial distribution 7y of Zj,
Law(Z; | T >t) — vy
t—o0

see e.g. [10], Thm. 2.1) or Corollary 2.15 below.

The present work is dedicated to the proof of convergence of an algorithm designed to approximate v,.
This is classically done through a system of N interacting particles whose empirical measure converges to
Law(Zy | T > t) as N — oo, where killed particles are resurrected in a suitable way in order to keep constant
the size of the system (while a naive Monte Carlo simulation would see the sample shrink along time). This
question has already been addressed by many authors in various contexts, see the discussion in Section 1.4
below. Before introducing the algorithm, stating our results and comparing them with previous works, for now,
let us simply highlight the main specificities of the present work.

The first novelty is that we take into account the time-discretization of the continuous-time diffusion. That
way, we establish error bounds between the theoretical target QSD and the empirical measure indeed obtained
with an actual implementation of the algorithm. There are three sources of errors: first, the continuous-time
SDE (1.1) has to be discretized with some time-step parameter v > 0. Second, as will be detailed below, a
non-linearity in the theoretical algorithm has to be approximated by a system of N particles. This leads to the
definition of an ergodic Markov chain whose invariant measure is close, in some sense, for large IV, to the QSD
of the time-discretization of the diffusion. But then this Markov chain is only run for a finite simulation time
t = mry, m € N. A third error term then comes from the fact that stationarity is not fully achieved. We will
obtained quantitative error bounds in v, N and t.

A second specifity is that the bound obtained for each parameter will be uniform in the other two. For
instance, the only other work in which the long-time convergence of the chain is proven to be, under some
(restrictive) conditions, uniform in N, is [13] in a finite state space. Besides, our work is quite close in spirit to
this work of Cloez and Thai. The question of the dependency or uniformity of the estimates in other previous
works will be further discussed in Section 1.4.

Finally, although it was not the primary motivation of the present work, it seems that the particular definition
of the system of interacting particles considered here, in particular the rebirth mechanism, was not considered
in previous works (where, basically, killed particles are resurrected at the position of one of the other particles).
Our variant is initially motivated by the property stated in Proposition 1.1 below, which has been indicated to
the second author by Bertrand Cloez. Yet, this variant has the unintended advantage to be both discrete in time
and non-failable, in the sense that it is well-defined for all times, even though all particles die simultaneously
from time to time (see also [37] on this question).

Note that we restrict the study to a compact state space. Moreover, we only consider soft killing at some
continuous rate, and no hard killing which would correspond to the case where T is the escape time from some
sub-domain (see e.g. [4, 21]). Finally, as will be seen below, as far as the long-time behaviour of the process
is concerned we will work in a perturbative regime, namely we will assume that the variations of A\ are small
with respect to the mixing time of the diffusion (1.1) (while ||| itself is not required to be small). These
very restrictive conditions, which rule out many cases of practical interest, have to be considered in light of our
very strong results (Thms. 1.2 and 1.3 below and all the corollaries of Sect. 2.5, gathered in Fig. 1). In fact,
although already interesting by itself, this restricted framework can be thought as a toy model motivated in
particular by the case that arises in the parallel replica algorithm [29]. In that case, T is the escape time for
(1.1) from a bounded metastable domain, so that the lifespan of the process is expected to be larger than its
mixing time (and to depend little from the initial condition, given it is far enough from the boundary). Hence,
the compact and perturbative assumptions are consistent with this objective. The restriction to smooth killing
rate, however, is made to avoid additional difficulties in the hard case where, even in the metastable case, the
probability to leave the domain is high (and exhibits high variations) when the process is close to its boundary.
The initial motivation of the present study was to test the general strategy of the proof (via coupling aguments)
in a first simple case, with the goal of extending it later on to the metastable hard case by combining it with
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some Lyapunov arguments to control the variations of the killing rate near the boundary. This is postponed for
future work.

This work is organized as follows. The algorithm and main results are presented in Section 1.3, and the
relation with previous works is discussed in Section 1.4. Section 2 contains the proofs, and more precisely: a
general coupling argument, which is the central tool for all our results, is presented in Section 2.1; the basic
bounds in terms of t — +o00, N — 400 and v — 0 are then stated and proven respectively in Sections 2.2, 2.3
and 2.4; finally, these basic results are combined in Section 2.5, concluding the proofs of the main theorems and
inducing a number of corollaries.

1.2. Notations and conventions

We respectively denote P(F') and B(F') the set of probability measures and of Borel sets of a Polish space F.
Functions on T¢ are sometimes identified to [0, 1]?-periodic functions, and similar non-ambiguous identifications
are performed, for instance if z € T? and G is a d-dimensional standard gaussian random variable, 2 4+ G has to
be understood in T¢, etc. A Markov kernel Q on F is indiscriminately understood as, first, a function from F to
P(F), in which case we denote @ : © — Q(z,-) (where Q(x,-) denotes the probability A € B(F) — Q(x, A) €
[0, 1]); second, a Markov operator on bounded measurable functions on F', in which case we denote @ : f — Qf
(where Qf(z) = [ f(w)Q(z,dw)); third, by duality, a function on P(F), in which case we denote @ : p — pQ (so
that u(Qf) = (uQ)f). In particular, Q(z,-) = 6,Q for x € F. If u € P(F) and k € N,, we denote u®* € P(FF)
the law of a k-uplet of independent random variables with law u. Similarly, if @ is a Markov kernel on F', we
denote Q®* the kernel on F* such that Q®*(z,-) = Q(x1,) ® - ® Q(xy, ) for all x = (z1,...,2%) € F¥. We
denote £(1) the exponential law with parameter 1, U (I) the uniform law on a set I and A (m, ) the Gaussian
law with mean m and variance matrix ¥. We use bold letters for random variables in T?Y and decompose them
in d-dimensional coordinates, like X = (X1,..., Xy) with X; € T¢, or X; = (X115, XN1)-

1.3. The algorithm and main result

Starting from the diffusion (1.1) killed at time T given by (1.2), we introduce two successive approximations.
The first is time discretization. For a given time step v > 0 and a sequence (G})ren of independent random
variables with law A(0, I;), we consider the Markov chain on T given by Zy = Zy and

VEEN,  Zpi = Zy +b(Zy) + VG (1.3)
and, given E ~ £(1) independent from (G)ren and Zo,
T = inf{t =ny, n€N,, E< '}/Z/\(Zk)} .
k=1

From classical results for Euler schemes of diffusions (see e.g. [33]), it is quite clear that, for any A € B(T?) and
all ¢t > 0,

P(Zwﬂ €A, T<t> = P(Z, € A, T <t),
from which, for all ¢t > 0,
Law (ZWA/J |T<t) 5 Law (Zy | T < t)

(we will prove this, see Cor. 2.11 below). Note that, from the memoryless property of the exponential law, given
a sequence (Uy)gen of independent variables uniformly distributed over [0, 1] and independent from (Gg)gen
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and Zj, then ((Zn)neN,T) has the same joint distribution as ((Zn)neN,T) with
T = inf {t:n’y, n € Ny, U, gp(zn)}

where p(z) = 1 — exp(—vyA(2)) is the probability that, arriving at state z, the chain is killed.

A naive Monte Carlo sampler for the QSD would be to simulate N independent copies of the chain (1.3) killed
with probability z — p(z) and to consider after a large number of iterations the distribution of the copies that
have survived. However, after a long time, most copies (possibly all) would have died and the estimator would
be very bad. To tackle this issue, we have to introduce a rebirth mechanism to reincorporate dead particles in
the system.

Denote K : T¢ — P(T%) the Markov kernel associated with the transition (1.3), i.e

Kf(z) = (2m)~ 9?2 /Rdf(er,yb(x) + V) e*%\yIQdy.

For pu € P(T?), let Q, be the Markov kernel such that, for all z € T, Q,(x,-) is the law of the random
variable X defined as follows. Let (Xg,Uk)ren be a sequence of independent random variables such that, for
all k € N, X, and Uy, are independent, U, ~ U([0,1]) and Xy ~ K(z,-) while, for k > 1, X} ~ puK. Let
H =inf{k e N, Uy > p(Xk)}, and set X = Xp. Since A is bounded, p is uniformly bounded away from 1 and
thus H is almost surely finite, so that @), is well-defined.

In other words, a random variable X ~ @Q,(xz,-) may be constructed through the following algorithm (in
which new means: independent from all the variables previously drawned).

1. Draw X ~ N (z + vb(z),vI;) and a new Uy ~ U([0, 1]).
2. If Uy > p(Xo), set X = X in T (in that case, we say the particle has moved from = to Xy without dying).
3. If Uy < p(Xp) then set i = 1 and, while X is not defined, do:
(a) Draw a new X/ distributed according to u, a new X; ~ N (X} + vb(X]),v14) and a new U; ~ U([0, 1]).
(b) If U; > p(X;), set X = X; in T¢ (in that case, we say the particle has died, resurrected at X!, moved
to X, and survived).
(¢) IfU; < p(X;), set i < i+ 1 (in that case, we say the particle has died, resurrected at X/, moved to X;
and died again) and go back to step (a).

From this, we define a chain (Yj)ren as follows. Set Yy = Z and suppose that Yj has been defined for some
k € N. Let ny = Law(Y%), and draw a new Y41 ~ @, (Y%, ). This somewhat intricate definition is motivated
by the following results (whose proof is postponed to Sect. 2):

Proposition 1.1. For alln € N
M = Law(Zn|T > n’y) .

In particular, as n — oo, the law 7, of ¥, converges toward the QSD of Z. Unfortunately, it is impossible to
sample (Y )ren in practice since this would require to sample according to ny for any k € N. This is a classical
case of a time-inhomogeneous Markov chain which is interacting with its own law or, similarly, of a measure-
valued sequence (7 )ren With a non-linear evolution. Such processes arise in many applications, see e.g. [15, 16]
and references within. Motivated by the Law of Large Numbers, we are lead to a second approximation, which
is to use mean-field interacting particles. For a fixed N € N, and for x = (xi)ie[[l,N]] € T we denote

1Y ;
N; ., € P(T9
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the associated empirical distribution. Then we define the Markov operator R on TV as

R(I’, ) = Qﬂ(z)('rh ) - Qﬂ(l)(INa ) .

In other words, a random variable Y ~ Q(z,-) is such that the Y;’s are independent with Y; ~ Q) (2s,-). In
order to specify the parameters involved, we will sometimes write Ry  for R.

Let us informally describe the transitions of such a Markov chain (Xj)gen: the " particle follows the
transition given by (1.3) independently from the other particles until it dies. If it dies at a step k € N, then it
is resurrected on another particle X j;_1 with J uniformly distributed over [[1, N]] (in particular and contrary
to most previous works on similar algorithms, J = i is not excluded, although it doesn’t change much since its
probability vanishes as N — oo) and immediatly performs a step of (1.3); if it dies again after this unique step,
it is resurrected again and performs a new step, and so on until it is not killed after a resurrection and an FEuler
scheme step. Then this is the new value X j from which the particle follows again the transitions (1.3) until its
next death, etc.

Note that there is no problem of simultaneous death since at step k the particles are resurrected on positions
at step £ — 1, which are well-defined even if all particles die at once at step k.

It is easily seen that R admits a unique invariant measure toward which the law of the associated Markov
chain converges exponentially fast (in the total variation sense for instance), but a naive argument yields a
convergence rate that heavily depends on N (and possibly 7). Similarly, classical studies can be conducted for
the limits N — oo and v — 0 but again with estimates that are typically exponentially bad with respect to
the total simulation time (see the references in Sect. 1.4 or Props. 2.5 and 2.8). In the following we will focus
on a somewhat perturbative regime under which we will establish estimates for each of these limits that are
uniform with respect to the other parameters. Even for the continuous-time process (corresponding to v =0 ,
see Sect. 2.4 for the definition), such uniform results are new (see Cors. 2.10 and 2.12).

Recall that the W, Wasserstein distance between p, v € P(T4) is defined by

Wi (p,v) = mf{E(|X -Y]) : X~p, YV ~v}.

More generally, for p a distance on some Polish space F', denote W, the corresponding Wasserstein distance on
P(F), defined by

W, (u,v) =inf{E(p(X,Y)) : X ~p, Y ~v}. (1.4)

If X ~pand Y ~ v, we call (X,Y) a coupling of p and v. If (X,Y) is a coupling for which the infimum in
(1.4) is attained, we say that it is an optimal coupling. From ([39], Cor. 5.22), such an optimal coupling always
exists.

Our first main result is a long-time convergence rate uniform in N:

Theorem 1.2. There exist cy,ca2,7 > 0 and a distance p on T¢ equivalent to the Euclidean distance, that
depend only on the drift b and the dimension d, such that, if X is Lipschitz with a constant Ly and

k=1 — colyeVMee (1.5)

then the following holds: for all v € (0,7], N € N and all u,v € P(T), considering the distance pn(z,y) =
Z?;l p(‘rla yZ) for T,y € TdN;

Won (ﬂRNm VRN,’V) < (1 —=79k) Won (,v).
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As a consequence, there exists C > 0 that depends only on b and d such that for all v € (0,70], m, N € N and
all p,v € P(T),

Wi (bR, vRY ) < CN(1—~k)™ .

This means that, with respect to the metric py, Ry, has a Wasserstein curvature of v« in the sense of [28].

Theorem 1.2 is proven in Section 2.2. From this first result, similar bounds can be obtained for large N and
small 7 (see Sects. 2.3 and 2.4). Combining all these results eventually yields a quantitative bound on the error
made in practice by approximating v, by the empirical distribution of the particular particle system:

Theorem 1.3. Under the conditions of Theorem 1.2, suppose that  given by (1.5) is positive. There exists
C > 0 such that for all N € N, v € (0,7], t = 0 and o € P(T), if (Xp)ren is a Markov chain with initial
distribution uo and transition kernel Ry -,

EVr (n(X(e/5)) )] < C(V7+alN)+e7)

where
N-1/2 ifd=1,
a(N) = N-Y2In(1+N) ifd=2,
N-1/d ifd>2.

All the constants in Theorems 1.2 and 1.3 (and all other results stated in this work) are explicit. More
precisely, ¢; and 7o come from Corollary 2.2 of [32] (see Prop. 2.1) where an explicit value is given, and all the
other constants involved in our results can be tracked by following the explicit computations.

In Theorem 1.3, the speeds of the different convergences (exponential in the simulation time, with the square-
root of the timestep and with « of the number of particles) are optimal since they are optimal for non-interacting
diffusions (i.e. the case A = 0), see in particular [26] for the large N asymptotic.

Other intermediary results will be established in the rest of the paper that are interesting by themselves:
propagation of chaos (i.e. N — o) and continuous-time limit at a fixed time (even without the condition
k > 0) respectively in Propositions 2.5 and 2.8. From that, results for the continuous-time process (v = 0), the
equilibria (¢ = oo) or the non-linear process (N = c0), or when two parameters among three are sent to their
limits, are then simple corollaries, see Section 2.5. All these results are summarised in Figure 1 at the end of
this work.

Note that exp(—vA(x)) is the probability that the chain is not killed when it arrives at state xz. The time
step v should be chosen in such a way that this probability is relatively large, say at least one half. In that case,
exp(7||A]loo) is typically close to 1. In other words, the positivity of x given by (1.5) is mostly a condition about
L) being small enough.

This perturbation condition is different from the one considered in [34], where ||A||oo rather than Ly is
supposed to be small (while our main arguments are a direct adaptation of the coupling arguments of [34]).
This difference comes from the fact that, in the present study, we work with the W; distance rather than the total
variation one (which is a Wasserstein distance but associated to the discrete metric d(x,y) = Ly4y). Indeed, in
our coupling arguments, we need to control |A(z) — A\(y)| the difference between the death rates of two processes
at different locations, which is bounded here by Ly|z — y| and in [34] by 2||A||ocLsy. In fact our argument
for the long-time convergence may easily be adapted to the total variation distance framework, following [34].
Nevertheless this would be more troublesome in the study of the limit N — co. Then, one needs to couple 7y,
(that admits a density with respect to the Lebesgue measure) with 7(Xy) (which is a sum of Dirac masses),
so that the total variation distance is not adapted. This may be solved by considering W; — total variation
regularization results for (Euler schemes of) diffusions, that can be established by coupling arguments again.
Nevertheless, in order to focus on the other difficulties of the problem and for the sake of clarity, we decided to
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stick to the W distance in all the different results of this work. Similar Wasserstein coupling arguments have
been used in [13] on a similar problem (see next section) and in [41] for a different kind of mean-field interacting
particle system (also with a similar perturbative condition corresponding to the fact o in ([41], Prop. 3.1) has
to be positive, i.e. the interaction should be small with respect to the independent mixing).

Notice that, among all possible discretization schemes, we only considered the explicit Euler-Maruyama
one. This choice was made for simplicity, but the proofs could be extended to other usual schemes. The main
ingredient required is a Wasserstein curvature of order v for a modified W; distance (see Prop. 2.1, based on ([32],
Cor. 2.2)). Similarly, we only considered the case of an elliptic diffusion process with a constant diffusion matrix
for simplicity (since we use ([32], Cor. 2.2) which covers this case), although a similar Wasserstein contraction
certainly holds in a much more general framework (even hypoelliptic non-elliptic, as in continuous-time settings
[22]). As stated in the introduction, the present paper does not aim at the broadest generality, and by avoiding
technicalities we want to highlight the main issue (i.e. the question of the uniformity of bounds in the various
parameters).

1.4. Related works

The use of particle systems with death and re-birth to approximate the QSD of a Markov process has been
introduced in [7], for two-dimensional Brownian motions killed at the boundary of a box. This work refers
to the system as a Fleming Viot process. However, in the lecture notes of Dawson [14], a (continuous-time)
system of N particles that move independently according to some Markov dynamics and interact through a
sampling-replacement mechanism is called a Moran particle process, while the term Fleming- Viot process refers
to a measure-valued (continuous-time) process that can be obtained as the limit of the Moran particle system
as the number of particles goes to infinity. Besides, with these definitions, the empirical measure of a Moran
particle process is nothing but a Fleming-Viot process in the particular case where the initial condition is the
sum of N Dirac measures. Both the initial works of Moran [35] and Fleming and Viot [25] are motivated by
population genetics models.

The seminal work [7] is a numerical study so that, although a continuous-time continuous density-valued
process is targeted, what is really implemented is in fact a discrete-time particle system. From then, the use
of similar processes in numerical schemes (for killed processes or more general non-linear problems such as
non-linear filtering, rare events analysis and so on [15, 16]) have been widely studied. Although the term Moran
particle system is used in [18] and a few other works, most studies concerned with quasi-stationary distributions
refer to Fleming-Viot particle system, see e.g. [2, 9, 11, 13, 21, 23, 27, 30, 31] (for continuous-time processes,
which thus corresponds to the process introduced in 2.4 i.e. the limit v — 0).

Different frameworks have been considered: finite space, discrete infinite space, compact and non-compact
continuous space; continuous and discrete time; hard or soft killing, or more general non-linear evolutions. There
are also some variants on the precise definition of the rebirth mechanism (as mentioned in the introduction, our
specific scheme, where killed particles at step k are resurrected on a position of a particle at step kK — 1 and then
perform an Euler step conditioned not to be killed again, seems to be new). Disregarding these differences, let
us discuss the kind of results established in the existing literature.

A first set of works, starting shortly after the initial numerical study of [7], are concerned with finite-time
propagation of chaos, either for the marginal laws or at the level of a trajectory in the Skorohod topology
[2, 8, 18, 23, 27, 40], possibly with a precise CLT [9, 21]. Similarly, propagation of chaos and/or CLT as N — 400
at stationarity (i.e. for the invariant measure of the Fleming-Viot particle system) are established e.g. in [2, 30].
Uniform in time propagation of chaos is established in [17, 19, 38]. Contrary to our results, this uniformity in
time is not obtained with a long-time convergence of the particle system at a speed independent from N, but
rather from the long-time convergence of the limit (N = +o00) non-linear process. This long-time convergence for
the non-linear process (or, equivalently according to Proposition 1.1, for the process conditionned to survival)
has recently been studied in general settings, in particular in a series of works by Champagnat, Villemonais
and coauthors, see e.g. [3, 10, 12, 20] and references within. The idea to combine a finite-time convergence
as N — +oo with a long-time convergence of the limit process to obtain a uniform in time convergence with
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N traces back at least to [36]. Remark that, combining uniform in time propagation of chaos estimates with
long-time convergence of the limit process, it is possible to obtain results in the spirit of Theorem 1.3, i.e. that
gives an error bound between the empirical measure of the chain simulated in practice with the target QSD,
even if no long-time convergence of the particle system is available.

Contrary to the present paper, most of these previous works do not consider a perturbative framework where
a condition similar to the positivity of x given by (1.5) would be considered. Such a condition is considered in
[13], which together with the present paper is the only one that establishes a long-time convergence rate uniform
in N for the particle system. Remark that geometric ergodicity for the particle system, stated for instance in
[37], is usually easy to obtain (for a fixed N) from classical tools on Markov chains. Obtaining a rate that
is uniform in N is much harder (hence the perturbative framework). Besides, for another class of mean-field
particle systems, the McKean-Vlasov diffusions (for which interaction is induced by an interaction potential
force in the drift of the diffusion), it is well-known that there are cases (in non-convex confining potential with
convex interaction for instance, at low temperature, for instance) where the non-linear limit system has several
equilibria and the convergence rate of the particle system (which has a unique invariant measure for all N') goes
to +oo with N. In fact we don’t expect this to happen for the Fleming-Viot particle system in our context
(compact space, elliptic diffusion, smooth killing) where the QSD is unique and the long-time convergence of the
limit process and the uniform in time propagation of chaos have been established in non-perturbative cases (for
a discussion on other cases where the QSD may not be unique, we refer to [1, 11]). This may indicate that the
uniform in N long-time convergence could hold in much more general cases, far from the perturbative regime
around the non-interacting case. In that case, our perturbative condition (and the one of [13]) would just come
from the particular non-optimal proof. However, the long-time convergence of the limit-process does not imply
directly the uniform convergence for the interacting system, so this is still an open question, and our results and
those of [13] are the only of their kind. At least, we can say that we have no reason to think that our condition
k > 0, with the explicit expression of k, is sharp in any way.

The differences of our work with [13] are the following. The latter is concerned with a continuous-time
Markov chain on a finite state space rather than a diffusion on the torus. Moreover, it requires a strong Doeblin
condition: the parameter A in [13] is required to be positive, which implies that, for any pair of states 4,4’, there
is a probability to go either from i to ', or from 4’ to 4, or from both 7 and i’ to some third state j. Related to
this, in [23], although uniform in N long-time convergence is not stated or proven, a coupling argument similar
to ours or to [13] is used (in ([23], Prop. 3.1)) to obtain uniform in time propagation of chaos estimates. This
work is concerned with countable state space under an even more restrictive Doeblin condition than [13] (there
exists at least one state i for which the transition rate from j to ¢ is uniformly bounded for all other j), and the
uniform in time result requires a perturbative condition (« > C in [23] corresponding to A > 0 in [13] and £ > 0
for us). We remark that, in a countable discrete state space, our arguments can be easily adapted to obtain a
uniform long-time convergence under a condition of positive Wasserstein curvature for some distance (similarly
to Prop. 2.1), which is much less restrictive than the Doeblin conditions of [13, 23]. Of course in that case we
still need A to be Lipschitz (with respect to the distance for which the Wasserstein contraction holds) with a
Lipschitz constant sufficiently small (with respect to the curvature).

As far as the time discretization error is concerned, we are not aware of results similar to ours in previous
works but we refer the reader to [24] for weak error studies & la Talay-Tubaro for some non-linear evolutions,
and references within for more details.

Finally, let us mention another related set of works, [4-6], based on self-interacting processes. Indeed, the
reason we introduced a system of IV interacting particles was to approximate some non-linearity in the evolution
of a measure-valued process. Yet, actually, when it comes to the approximation of the QSD, we are not really
interested in the non-linear evolution, but only in its long-time limit. A classical idea in the field of stochastic
algorithms in that case is to construct a chain similar to (Yj)ren except that, in the rebirth mechanism, the
unknown law 7, is replaced by the occupation measure of the past trajectory (which, by ergodicity, is expected
to converge to equilibrium), i.e. there is only one particle and, when it dies at time ¢ > 0, it is resurrected at
its position at time s uniformly distributed over [0,¢]. Although the algorithms are quite similar (and can be
combined), their theoretical studies rely on quite distinct arguments.
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2. PROOFS
Let us first establish the preliminary result stated in the introduction:

Proof of Proposition 1.1. For n € N, denote
N = Law(Ys,), v, = Law (Zn | T> nv) .

Since vy = 19, suppose by induction that v,, = 7, for some n € N. Keeping the notations introduced of the
definition of the kernel @, consider the events By = {U > p(X)}. Then, for all bounded measurable f,

Quf(x) =E(f(X))

< Z ]lBkﬂ(ﬂk y Bf )

keN
k—1
= E (f(Xo)Luyzp(xo) + 2 E (F(Xi) Lo, spx) [T P (B5)
E>1 =0
=K[f(1 )+ Y uK [f(1—p)] (uEp)* ™ Kp(a).

k=1

In particular, integrating with respect to u, we obtain

B _ pE[f(1—p)]
pQuf = pK [f(1—p)] %(MKp)k = K[ =g

Applied with p = 7, this reads

kK [£(1—p))

Mirf = E(f (Vi) = EE (V) [Ya)) = 0@, f = = 55—

On the other hand,

E (f(2n+1)]1f>(n+1)w> =K (f ( ~n+1) ]1T~>nvIlUn>p(Zn+1))
=E (f ( ~n+1) (1 -p (sz+1)> 1T>m)
=P (T > m) v K [f(1=p)],
frow which
‘ E (f(ZnH)]LB(nHM) P (T > nv) v K[fA=D)] K [f(1 - p)]
S P(T> (n—l—l)’y) - P<T>m) mK[-p  wKl-p
which concludes. O

2.1. The basic coupling

The long-time estimates needed to prove convergence toward equilibrium and uniform in time estimates in
N and v are based on the fact that, as long as particles don’t die, they follow the chain (1.3) which, like its
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continuous-time counterpart (1.1), have some mixing properties. In order to quantify the latters, we start by
stating ([32], Cor. 2.2) in a suitable way in our context.

Proposition 2.1. There exists ¢1,a,v0 > 0 (that all depend only on the drift b of (1.1) and on the dimension
d) such that, denoting p(x,y) = (1 — exp(—alx — y|))/a for z,y € T¢, then p is a metric on T with

Yy € (0,7), Yu,v € P(TY), W, (uK,vK) < (1—cy)W,(p,v).

Proof. This is ([32], Coro. 2.2) applied to a diffusion with smooth drift on the torus, in which case the distance
on T? for which the contraction holds is p. O

In the rest of the paper, p is the metric and ¢1, a, 7y are the constants given by Proposition 2.1. Remark that
p is equivalent to the Euclidian metric, with

Blr—yl < playy) < lr—yl  for B = 2(1—e V) /(aVd),

where we used that the diameter of T? is v/d/2 and that r — (1 — exp(—ar))/a is a concave function with
derivative 1 at zero. In particular, W, and W, are equivalent.

Now, in this particle system, the contraction property of the chain (1.3) may be counterbalanced by the
death/resurrection mechanism through which particles interact. Indeed, considering two systems of N interacting
particles, for i € [[1, N]] the previous result means that we can couple the i*" particles of both systems to get
closer one to the other (on average), as long as they don’t die. But then, one of the two particle can die and
resurrect far from the other, or even if they die simultaneously they may resurrect far apart one from the other.
That being said, first, the closer they get, the easier it is to couple them in order to die simultaneously, and
second, when they die simultaneously, keeping the particles close one to the other amount to do a suitable
coupling of the laws from which the particles are resurrected. This is quantified in the following proposition.

In all the rest of the paper, we suppose that A is Ly-Lipschitz (but not necessarily that « given by (1.5) is
positive).

Proposition 2.2. Let i, pu1, th, i1y € P(T9) and let (Xo, X}) (resp. (X1, X})) be a coupling of oK and puyK
(resp. p1 K and py K ). Then

Wy (1o i) < 1 (B (00X X0) + 120 (30, X))

where
h=1—minp+ (aB) 'Ly
and, considering U ~ U([0,1]) independent from (Xo, X}, X1, X1),
g =P (U < p(X;) Ap(X])) , i=0,1
Proof. Let (Xy, X}, Ur)ren be a sequence of independent triplet of random variables such that, for all k£ € N,
U, ~ U(]0,1]) is independent from (X, X}), which are such as defined in the proposition for k¥ = 0 and 1
and, for j > 1, have the same distribution as (X1, X7). Set H = inf{n € N, U,, < p(X,,)} and H' = inf{n €

N, U,, < p(X},)}. Then, by considering the law of (X, Uy)ren alone, it is clear that Xy ~ poQ,, and, similarly,
Xy ~ Q) , so that

W, (NOQ;LU,UE)Q/LQ) < E(p(Xu, Xp)) -
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Different cases are distinguished depending on the value of H and H’. In the simplest case, none of the particles
dies:

E(p(Xe, X)) la—p—o) = ( (X0, X0) L >p (Xo)vp(X; ))
(p (XOaXO) 1Uo>mlnp)

(1 = minp) E (p(Xo, X)) ,

E
E

NN

where we used the independence between Uy and (X, X(). In the second case, only one particle dies: using that
Ipllee < 1/a,

E (p (X#, Xpp) Lanmr—o<avi) < a”'P(Ug € [p(Xo) A p(Xg), p(Xo) V p(Xp)])
=a"E(|p(Xo) — p(X{)])
a”'yLAE (| Xo — Xg)

<
< (aB) Iy IAE (p(Xo, X7)) -

In the third case, both particles die k > 1 times:

k—1

E (p(Xu, Xip) Vi=rr=r) = E | p(Xp, X1) Lo spxavoxy) L] Loy<pxan(x))
§=0

g QOinlE (P (an Xllg) ]lUkZminp)
< qogy ™! (1 —minp) E (p (X1, X7)) -

Finally, combining the computations of the last two cases, the fourth one reads, for k > 1

a”qoqt TP (U, € [p(X3) A p(Xp), p(Xk) V p(X1)])
aB) " qoq; 'YLAE (p (X1, X1)) -

E(p(Xa, X)) Vuam—k<HVH)

NN

Summing these four cases concludes. O

2.2. Long-time convergence

TdN

For N € N, denote py the metric on given by

N

i=1
The following result is similar to the results of [13, 34, 41] and based on the same coupling argument.

Proposition 2.3. There exists co > 0 (that depends only on the drift b of (1.1) and on the dimension d) such
that for all v € (0,7%] N € N, and all p,v € P(T),

Won (ﬂRN,'Ya VRN,W) < (1—9k) Won (,v).

with k given by (1.5).

Proof. Tt is in fact sufficient to prove this for p = 4, and v = §, for any z,y € TV, Indeed, assuming the result
proven for Dirac masses, in the general case, considering (X, Yo) an optimal coupling of p and v and (X1, Y1)
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an optimal coupling of R(Xo, ) and R(Yy, ), then X3 ~ uR and Y; ~ VR, so that

W,y (uR,vR) < E (pn (X1,Y1))
=E(E(pn (X1,Y1) | (Xo,Y0)))
= E(E (W, (5%, R, 5w, R) | (X0, Y0)))

—76)E (pn (Xo, Yo))
=) Wy (15 v) -

Hence, in the following, we fix z,y € TV, Let (Xi,Yi)ie[,ny) be independent pairs of random variables in
T9 where, for all i € [[1, N]], (X;,Y;) is an optimal coupling of Qr(a) (i, ) and Qr(y)(Yi,-). Then (X,Y) is a
coupling of R(x,-) and R(y, '), so that

Woy (0:R, 6, R) < E(pn (X,Y)) E (p (Xi,Yi))

I
.MZ

s
Il
-

|
.MZ

s
Il
-

Wp (QTA’(’I‘)(‘rl) )7 Qﬂ'(y) (yla )) .

We want to apply Proposition 2.2 with p1 = 7(z), po = 6, #y = 7(y) and p(, = 6,,. To do so, for all i € [[1, N]],
we consider (X;,Y;) an optimal coupling of K(z;,-) and K (y;,-). From Proposition 2.1,

E (P (Xuﬁ)) < (=) p(zi, yi) - (2.1)

Moreover, if J ~ U([[1, N]]) is independent from the (X;,Y;)’s, we remark that (X, Y) is a coupling of m(z)K
and m(y)K. Proposition 2.2 applied with these couplings reads, for all ¢ € [[1, N]],

Wo (Qn(a) (is ), Quriy) (i) < h (E (P(Xu)}i» t1 Eiq*E (P(XJ, YJ))) (2.2)

where, if U ~ U([0,1]) is independent from the previous variables,
a: = P (U <p(X) Ap(¥)

and, conditionning on the value of J,

N
0 = F(U<pE)ApTn) = 3

Summing (2.2) over ¢ € [[1, N]] and applying (2.1) yields

N
Wiy (8:R.0,R) < h((l—cw)zp(xi,yz-)Jr s E(p(ff.],m)) .

i=1
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Applying Proposition 2.1 again,
N 1 N
E(p(Xs,75) = Z (p(X:¥0)) < (10 D owiw).

and the previous inequality becomes

h(l—c17)

WpN (535R7 5yR) < 1_ 4

pN(x,y) .

Bounding 1 — ¢, > 1 — maxp > exp(—7v||A]|oo) and maxp — minp < \/d/2yL) yields

h(l— 1-— — mi “1yL
(=) Ly _ gy Ly maxp ming + () 51y
— qx 1 —maxp
<1 —cpy +yLyerMle ((aﬂ’)’1 + \/E) ,
which concludes. O

As a direct consequence, Proposition 2.3 gives
VmeN, Wy (WR™vR™) < e "W, (1,v),

with x that does not depends on N nor 5. Provided x > 0, and since P(TY) is complete for W; (hence for
W, ) the Banach fixed-point theorem implies then that R admits a unique invariant measure toward which it
converges at rate yx.

In the rest of the paper, k is given by (1.5) (but is not necessarily assumed positive).

Proof of Theorem 1.2. The first part of the theorem has already been proven in Proposition 2.3. The last
statement then follows from the first part, the equivalence between the Euclidean distance and py and the fact
W, (s 1) < |lpnlloo = NVd/2 for all v, u € P(T). O
2.3. Propagation of chaos

Recall that 7 is the law at time k of the non-homogeneous Markov chain (Yy)ren on T¢ introduced in
Section 1.3 with transition kernels @,, and initial condition 7, and that R = Ry, is the transition kernel of
the Markov chain (X}, )gen on TV,

Lemma 2.4. There exist Cy > 0 such that for all N € N , v € (0,7], n € P(T%) and u € P(T),
Won (1R, nQ7™) < yNC; /w W, (m (), 1) p(de) .

Proof. Similarly to the proof of Proposition 2.3, we start with the case pu = §, for some z € T, Let
(Xi,Yi)ieq,ny be N independent pairs of random variables such that for all 7 € [[1, N]], (X;,Y;) is an optimal
coupling of Qr(z) (i, -) and @, (x4, -). Then (X,Y) is a coupling of Ry(z,-) and Q®N( x,-), so that

Woy (6:RN,6.QEN) < E (pwv (X,Y))

N N
= 2 B X6 Y)) = 2 Wy (e Qne: 0 n)
— i—1
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From Proposition 2.2 (bounding ¢o < maxp < ¥||Alloc and 1 —¢; > 1 — maxp > exp(—0||Al|))

W, (5$iQ7r(Z')) 5137;Q77) < YA loo (1 + (aﬂ)_l'YOLA) ewu)\”mwp (m(2),m)
= yC1W, (m(x),m) -

Now in the general case where p is not a Dirac mass, considering Zy ~ p, and (Z1, Z3) an optimal coupling of
R(Zp,-) and Q??N(Zo, -) and conditioning with respect to Zy,

Woy (uRy, pQEN) < E(pn(Z1,Zn)) < YNCLE (W, (7(Z0o),m)) -

O
Proposition 2.5. There exist Co,C3 > 0 such that for all N € N, v € (0,7], m € N and ny € P(T), first,
Won 0§V R™ 3N ) < CoNa(N)y Y (1 —yk)" !, (2.3)
s=1
and second, if (Xg)ken @5 a Markov chain with initial distribution n?N and transition kernel R, then
m
EW, (7(Xs),1m)) < Cza(N) (1 + ’yZ(l - 'y/-@)s_l> . (2.4)
s=1

Remark that when x> 0, v > 7" (1 — vk)*~! < 1/k so that (2.3) and (2.4) yield uniform in time estimates.
On the contrary, when k < 0, the estimates are exponentially bad in t = mry.

Proof. We start with the proof of (2.3), for m > 1 (the case m = 0 being trivial). From the triangular inequality,
Proposition 2.3 and Lemma 2.4,

Nm—1

m = Wyy (W?NRMWS?;N) < Won (WSQNRMWE?LJX1R) +Won (nf,%]le, n?fle@’N )

< W= s+ NG [ W (@), ) 3 (o).
T

Since W, < Wi, estimating the last term is a classical question, that is to bound the expected Wasserstein
distance between the empirical measure of a sample of N independent and identically distributed random
variables and their common law. From ([26], Thm. 1) (and since on the torus the moments of probability
measures are uniformly bounded), there exists some C’ > 0 independent from 7o, m, N and v such that

W ((2), m—1) 1SN (dz) < C'a(N).

TN
Since 79 = 0, a direct induction concludes the proof of (2.3).

To prove (2.4), let (X,Y) be an optimal coupling of 7¥" R™ and n&N. Considering J ~ U([[1, N]])
independent from (X,Y) then, conditionally to (X,Y), (Xs,Y) is a coupling of 7(X) and 7 (Y), so that

W, (x(X), 7(Y)) < E(p(X5,Y5) | (X,Y)) = 1ow(X.Y).
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Taking the expectation in
W, (m(X), k) < Wy (m(X), w(Y) + W, (7(Y), k)

we conclude with (2.3) and ([26], Thm. 1) again. O
Corollary 2.6. With the notations of Proposition 2.5, for all k € [[1, N]],

m

W, (Law (X1, ...  Xem)snSF) < Caka(N)y Z(l )

s=1

Proof. Let (X,Y) be an optimal coupling of 7783’ NRm and n@N and let o be uniformly distributed over the set
of permutations of N elements, independent from (X,Y). Since the laws of X and Y are exchangeable, X, =
(Xo(1) -+ Xo(ny) has the same law as X, in particular (X,(1), ..., X,(r)) has the same law as (X,..., Xg).
The same goes for Y,, and

k
E (Z p(Xa(i)aya(i))> = kE (p(Xa(l)aya(l))) = %E (pN(X,Y))

k
= NWPN (nag)NRmunfr%N) )

and Proposition 2.5 concludes. O

Corollary 2.6 means that, for any fixed k € N,, as N goes to infinity, the k-marginals of the system of
particles converge toward the law of k independent non-linear chains, which is the so-called propagation of
chaos phenomenon.

2.4. Discrete to continuous time

We start by defining (Y;);>0 and (X;);>0 the continuous-time analoguous of the chains (Y)gen on T¢ and
(X%)ren on T4 defined in Section 1.3. We start with the non-linear process. For ¢ > 0, let

7, = Law(Zy | T >t)

where Z solves (1.1) with initial distribution 7o and T is given by (1.2). We define (Y);>0 as follows. Set
Yo = Zo ~ 1o, To = 0 and suppose that T, and (Y¢)¢c[o,7,) have been defined for some n € N. Let (B;);>0 be
a new Brownian motion on T¢ and E ~ £(1), independent one from the other. Let Y be the solution of

Ay, = b(Y;)dt + dB,

for t > T,, with YTH =Y, and let

t
Tpi1 = inf{t>Tn, Eg/ A(ffs)ds}.

Tn
For t € (T, Tpy1), set Y, = Y;. Finally, draw a new Yo,
are then defined for all n € N. Since X is bounded, T}, almost surely goes to infinity when n — oo so that (Y¢)¢>0
is defined for all ¢ > 0. Similarly to Proposition 1.1, it can be established that Law(Y;) =7, for all ¢ > 0.
Now, as in Section 1.3, from the non-linear process (Y;);>0, the interacting particles (X;);>0 are obtained
by replacing 7, by the empirical distribution of the system when particles die and are resurrected.

according to 7y, ., . By induction T}, and (Y%):e0,7,,]
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More precisely, let (Ej g, Bik, Jik)ie[,n),ken be a family of independent triplet of independent random
variables where, for all ¢ € [[1, N]] and k € N, E; , ~ £(1), Jip ~ U([[1,N]]) (except if &k = 0, in which case
Jix =1 almost surely) and B, i = (Bjkt)i>0 is a d-dimensional Brownian motion. From these variables, we
simultaneously define by induction the process and its death times (75 & )ic[p1,n]),ken as follows. First, set Xo=2x

and Tj o = 0 for all i € [[1, N]]. For all i € [[1, N]], set X; 00 = x; and for k > 1, set

Xi,k,Tz:,k = lim YJM,% (25)

ST g
For all kK € N, for t > T; , let Xi,k solve
AXips = b(Kipa)dt+ B,

set
t A
Tiper = Ti7k+inf{t >0, B g/ A(Xi,k,s) ds}
0

and for all t € [T, T} k11), set X, = Xi’k,t.

Then X; = (X14,...,Xnz) is well-defined for all ¢ > 0. Indeed, it is well defined for all t < S; =
min{T} 1, i € [[1, N]]} the first death time of some particle, and is equal on this interval to (X1.04,..., Xn.0.4),
which is continuous on [0, S1]. Hence, the limits involved in (2.5) are well defined for £ = 1 and all i € [[1, N]]
such that 7; ; = S;. Then the algorithm above similarly defines the process up to the second time some particles
die, etc.

Remark that most of the times (2.5) simply reads X; p.1,, = X, .71, (at its k™ death time, the i particle
is resurrected at the current position of the Jf’,‘C particle). Indeed, the only case when this is not true is when
the Jf}}C particle dies at time T; ;. Since the probability that two or more particles die simultaneously is zero,

this almost surely only occurs if J; y =4, i.e. if the particle is resurrected at its own position.
Denote (P;)i>0 the Markov semi-group associated with (X¢)¢>o0, ¢-e. for all ¢ > 0, P; is the Markov kernel
given by
Pif(z) = E(f(Xy) | Xo =) .

We sometimes write P, = Py to specify the number of particles.

Lemma 2.7. There exist Cy > 0 such that for all N € N, v € (0,7] and p € P(T),
WPN (N‘RNKY? NPN,’)') < NC473/2 .
Proof. As in the proof of Lemma 2.4, it is sufficient to treat the case pu = 6, with a fixed z € TV . Let (Xt)t20

be defined as above from random variables (E; x, Bi k, Jik)ic[[1,N]],ken- In particular, X7 ~ 0, Py .
To define Xy ~ §, R, for all i € [[1, N]] and k € N, consider (Xi7k7t)t;0 the solution to )N(Uw =zy,, and

i = b(Kipo) dt+ By
Denoting

H;, = inf {k eEN, Eip 27X (sz'y>} )
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set X1 = (Xlﬁh’)” N ’XN,HNKY)'
Then (X1, X,) is a coupling of R(x,-) and P,(z,-), so that

WPN (R(xv')vp‘y(xv')) < E(pN(leiv)) = ZE(p(XiJ’YiW))'

We now distinguish four cases, considering the events

Bii={H;=0and T;; >~}

Bis={Hi=1and Ty <v<Tis ATy 1}
Bis={H;=1and T;; >~vy}U{H; =0and T;; <~}
Biy={H; 22} U{Tio <~Y}U{Ti1 VTs 01 <7},

that is, respectively: none of the two i*" particles dies; both the i*" particles die exactly once; one particle dies
but not the other; at least two deaths are involved for one of the two particle. For all ¢ € [[1, N]], Q = U;*:le-,
so that

E(p(Xi1, Xiny)) < E(p(Xi1, Xi) (Ip,y + 1po + 1p,, + 15,,)) -
Conclusion follows by gathering the four cases.
Case 1. It reduces to the classical case of diffusions, since
E(IXi1 — Xiyllp,,) =E (|Xi,o,w - Xi,o,vl]le) <E (\Xi,m - Xi70,7|> :

Then

~ ~ t A

|Xi,0,t - Xi,o,t\ = ’/ (b(iﬁz) -b (Xi,O,s)) ‘ ds
0
t ~ ~ ~
<9 [ (1Ksos = Kool + fos = Kol ) ds
0

By the Gronwall Lemma, for all ¢ > 0, almost surely,

sup | X0t — Xi0.t
s€[0,t]

t
< Vb aetITPI / i — Xy0.0]ds (2.6)
0

Since X; 0,5 is a Gaussian variable with mean x; + sb(z;) and variance s,

E (o5 — Kiosl) < sb(@:) + B (Joi + sb(@i) = Kiosl) < [Bllocs + V5. (2.7)

As a consequence, for v < 7o,

~ A~ ’y ~ b
E (1Xi07 — Xionl) < [V0llce¥¥ / E (Jos - Kiosl) ds < ey, (2.8)
0
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Case 2. We bound
E(|Xi1— Xi,l|ls,,) <E ((|Xi,m —g,| + [ Xin — xJi,o|> lle) :

Similarly to (2.7),

3/2
JlEi,o@uAnm) < e,

]lBi,2) <E <|Xi’1,7 —ZJ; 0

E ('XiJW —TJio

where we used the independence of E; o from J; 1 and (X; 1,¢)¢>0. Denote (X/);>o the solution of

. , dBj, 404 fort<Tig
dX;, = b (Xi,t) dt + { dB; 14 fort >T;p.

with X7, = 27, ,. Under the event B; s, X1, = XZ-’W. Moreover, J; o, By, ,0 and B;; are independent from

T and’thus, by the strong Markov property, (X{,t)@o is independent from T; ¢ and conditionally to J; ¢ it has
the same distribution as X Ji0,0,t (namely it is a diffusion solving (1.1) with initial condition x, ). Hence,

E (1%i10 = 2a0l1pa ) SE(X], = pollmocian.) <72

Case 3. We bound

— 1
E (p(Xi1, Xiy)lp,,) < EP(B'L,S)

1 el R - v N ~

< =P ( A(Xi0,5)ds A (’7)\(X7Z,O,fy)) S Eip < / AM(Xi0,5)ds V <’7)‘(Xi,0,'y))>
a 0 0
1 LA ~

= —-E ( exp </ )\(Xi,o7s)ds> — exp (*’YA(XLO,»Y)) D
a 0
1 LA ~

< EE ( / )\(Xi,075)d8 — 'Y/\(Xi,O,v) ) .

0

Now,

vy N Yoo -
/ )\(XZ-’(),S)ds — ’)’)\(Xi,o,y) < L)\ (/ |Xi,0,s - x1|ds + Vl‘ri - Xi’0,7|> :
0 0

Using (2.6) together with (2.7) yields

E (p (X'idvyi,»y) ]lBi,S) g C3"}/3/2 .

Case 4. We bound

(EioV Eix <AlAlloo) + P (Eio V Es, 00 <Yl Al)

2
<2 (1 — e—vl\/\\lm) < 293N%
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Proposition 2.8. There exist Cs5 > 0 such that for all N € N , v € (0,7] and no € P(T9),
Wox (NRan,wﬂPN,m'y) < VANCsy Z(l — k)"
s=1

As for Proposition 2.5, when £ > 0, v > oo, (1 —v&)* ! < 1/k so that (2.3) and (2.4) yield uniform in time
estimates. On the contrary, when xk < 0, the estimates are exponentially bad in t = m-y.

Proof. The proof is similar to Proposition 2.5. Denoting p,, = pR™ and v, = uPp, from the triangular
inequality, Proposition 2.3 and Lemma 2.7,

Tm ‘= WpN (,Um,Vm) < WpN (NrmymflR) + WPN (Vm*1R7 Vm*1P’7)
< (1= yR)rm_1 + NCyy*/2,

and an induction concludes. O

2.5. Conclusion

In this section we use the notations of the previous ones, in particular k is given by (1.5) and the constants
Cs, C3 and Cj are those of Propositions 2.5 and 2.8. We can now gather all these previous results.

Letting either v vanish or N go to infinity in Proposition 2.3, we obtain long-time convergence for, respectively,
the non-homogeneous self-interacting Markov chain (Y})gen introduced in Section 1.3 and the continuous-time
Markov chain (Kt)@o defined in Section 2.4.

Corollary 2.9. Let (n,)nen be such as defined in Section 1.3, and (7n)nen be similarly defined but with a
different initial distribution 7jo € P(T?). For all m € N and all v € (0,70],

Wo (s m) - < (1= 75)"™ Wy (100, 70) -
Corollary 2.10. For all N € N,, t > 0 and p,v € P(T),
Wiy (uPn ¢, vPNy) < e_’“WpN (u,v) .
Proof of Corollary 2.9. The proof is based on the simple equality: For all N € N and p,v € P(T?),
Wy (nEN,v®N) = NW, (p,v) . (2.9)
Indeed, by considering N independent couplings (X, Y:)ie, Ny
N
Wow (1N, vEN) < E(pn(X,Y)) = Y E(p(Xi, i) = NW, (u,v) -
i=1
Conversely, if (X,Y) is an optimal coupling of u®" and v®V, then

Wy () < B((X0 1) = E(N(GY)) = W, (15Y,05Y)

By the triangular inequality,

W, (SN, 78N) < W, (SN 8N R™) + W, (PN R™, 75§V R™) + W, (§N R 75N
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< (1 =78)" W8N, 35N ) + 2CoNa(N)y Y (1 —vr)*.

s=1

where we applied Propositions 2.3 and 2.5. Using the equality 2.9, dividing by N and letting N go to infinity
concludes the proof of Corollary 2.9. O

Remark that the beginning of the proof also applies for u, v € P(TV) that are exchangeable (i.e. invariant
by any permutation of the d-dimensional coordinates), in which case, denoting, M and v their d-dimensional
marginals, we get that

1
Wp </J/(1)a V(l)) < NWPN (/”'a V) .

Proof of Corollary 2.10. Similarly to the previous proof, Corollary 2.10 is a direct consequence of Propositions
2.3 and 2.8, letting m go to infinity at a fixed ¢t and N in

Won (WPN i, VPN) < Wpy (:U’PN,ta/J'RW,t/m) + Woy (/‘LRﬁ,t/m’ VRW,t/m) + Wy (VR?\},t/vaPNyt) .

We now turn to the continuous-time limit of the non-linear chain (Y3 )ren.

Corollary 2.11. There exists Cs > 0 such that for all no € P(T?) and all v € (0,70], if (N )nen 45 such as
defined in Section 1.3, and (7;)t>0 is such as defined in Section 2.4 (with Ty = no), then

Wl (771»@7) < 0673/2 )

and for all m > 1,
Wl) (T}maﬁm’y) < ﬁ067 Z(l - 7”)871 .
s=1

Proof. For the first inequality, we could follow the proof of Lemma 2.7, but, using the notations of the
introduction, we will rather use the fact that

mzﬁaw(Zl\T>fy), M, = Law(Z, | T >~),
where the gaussian variable Gy in (1.3) is equal to B, /\/7 where (B;);>0 is the Brownian motion involved in

(1.1), and T and T are defined with the same E ~ £(1). Recall the estimate (2.8) for the error from an Euler
scheme to its initial diffusion. Then we bound

~ - - -1 ~
]E(|Zlew||T>'y,T>7)<(IP’(T>7,T>7)) IE<|217Z7|>
< (1 —e—%”A“m)_lcﬁy?’/g,

which concludes the first part of the corollary.
For the second part, denoting r,, = W, (nm,ﬁmv), we bound

Tm < W, <77m»ﬁm71Qﬁm71) + W, (ﬁmleﬁmfl’ﬁmv)
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< (1= 7yK) rme1 + Con™?

where we used the first part of the corollary and Corollary 2.9. An induction concludes. O
We can now prove propagation of chaos results for the continuous-time process:

Corollary 2.12. Forall N € N, k € [[1, N]] and allt > 0, if (X;)¢>0 is a Markov process with initial distribution
7789]\' associated to the semigroup (P t)i>o0 then, first,

t
ka' (‘Caw(Xl,ta s 7Xk,t)7ﬁ§>k) < CQICO[(N)/ eiﬁsds’
0

and second,

E (W, (r(X.). 7)) < Csa(N) <1+ /0 te’“ds) .

Proof. As shown in the proof of Proposition 2.5, if (X,Y) is an optimal coupling of p and v,

E (W), (r(X), 7(Y))) < x-Won (1,7

Thus, considering a time step v = t/m, m € N, we decompose
W (m(Xe), ) < W (7(Xe), 1(Xin)) + W, (7(Xin), 11m) + W (0, Ty

take the expectation, apply Propositions 2.5 and 2.8 and Corollary 2.11 and let m go to infinity. This proves
the second point, and the proof of the first one is similar, with Corollary 2.6. O

Up to now, we have sent either N or « to their limit. When x > 0, if we let ¢ = m~y go to infinity at fixed
N and +, we recover results on the equilibria of the processes. Indeed, note that Corollary (2.9) together with
the Banach fixed-point theorem imply that n — 7, admits a limit which is independent from 7. Together with

Proposition 1.1, this is the unique QSD of the Markov chain (1.3). Denote it v,. Similarly, Proposition 2.3 implies

that Ry, admits a unique invariant measure. Denote it oo, Ny, and ,u(o? N its first kd-dimensional marginal

for k € [[1, N]] (i.e. the law of (X1,...,X) if X ~ fioo,n,4). Third, Corollary 2.10 implies that (Pn.t)t>0 admits
a unique invariant measure fi, y-

Corollary 2.13. If k > 0, then for all N € N and 7 € (0, o]
Won (Uoo,Nﬁvﬁoo,N) < \ﬁN’flen
Corollary 2.14. If k > 0, then for all N € N, k € [[1, N]] and v € (0,o], first,
Wox (Hgi),N,w V§k> < K1 Czka(N),
and second,
Epoe vy Wy (m(X),14)) < kK C3a(N) .

Proofs of Corollaries 2.13 and 2.14. Considering any ng € P(T?) and m € N,
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Woy (/”LOQN,’WEOO,N) < Wy (Noo,NmnggNRm) + Won (W?NRmvnS@NPvm) + Won (n((?NP'ymvﬁoo,N)

Apply Proposition 2.3 with pt = peo, N~ and v = U?N, Corollary 2.10 with the same v and with u = , and
Proposition 2.8. Letting m go to infinity concludes the proof of Corollary 2.13. The proof of Corollary 2.14 is
similar (based on Prop. 2.5 and Cor. 2.6, like Cor. 2.12). O

Next, we can send two parameters to their limit. Sending N to infinity and ~ to zero, we get the long time
convergence of the non-linear process (Y;);>0 introduced in Section 2.4 (or, equivalently, of the process Z solving
(1.1) conditionned not to be dead):

Corollary 2.15. Let (7;)i>0 be such as defined in Section 1.3, and (f)i>0 be similarly defined but with a
different initial distribution 7o € P(T<). For all t > 0,

W, (g, 1) < e W, (T, o) -

Proof. Thanks to Corollary 2.11, let v = ¢/m vanish in Corollary 2.9. O

In particular, if 7y is the QSD v, , by definition, 7y = v, for all t > 0, so that Corollary 2.15 yields the
uniqueness of the QSD and the exponential convergence of Law(Z; | T > t) toward v, (which is a result in the
spirit of [3, 10, 12, 20]).

Now, at a fixed v > 0, letting ¢ and IV go to infinity, we obtain an error bound between the QSD v, of the
continus process (1.1) and the QSD v, of the discrete scheme.

Corollary 2.16. If k > 0, then for all v € (0,7]
Wy (vy,v2) < /781 Ce

Proof. Thanks to Corollaries 2.9 and 2.15 (applied with one of the initial condition being the equilibrium), let
m go to infinity in Corollary 2.11. O

Finally, letting ~ vanish and ¢ go to infinity at a fixed N € N, we obtain a propagation of chaos result at
stationarity (as established first in [2], and more recently with a CLT in [30] in the case of a finite state space)
for the continuous time system of interacting particle (X;);>o introduced in Section 2.4.

Corollary 2.17. If & > 0 and if X is a random variable with law P N> then for all N € N and k € [[1, N]],
Won (Law(X1, ..., Xy),v2%) < k7 'Coka(N),
and second,
E (W, (n(X),v.)) < Csa(N) (1+£7") .

Proof. The proof is similar to Corollary 2.12, letting ¢ go to infinity in Corollary 2.12 thanks to Corollaries 2.10
and 2.15. O

Remark that our results at stationarity (Cors. 2.13, 2.14, 2.16 and 2.17) all require the perturbative condition
k > 0. Yet, propagation of chaos at stationarity for the continuous time process follows from the works [2, 17,
19, 30, 38] in a much broader (non-perturbative) framework (and, although it doesn’t seem to have been studied
yet, the situation should be similar for error bounds in 7 rather than N). As discussed in Section 1.4, error
bounds on N (and possibly 7) that are uniform in time can be obtained thanks to the long-time convergence
of the limit (N = +00) non-linear process. In our case, when k > 0, this long-time convergence follows from
the (uniform in N) long-time convergence of the particle system (whether it is possible to obtain the latter
from the former is unclear), but it holds in more general cases (see [3, 10, 12, 20] and references within) and,
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FIGURE 1. Summary of the different results. The label of each arrow indicates the corollary
or proposition where the corresponding quantitative convergence is stated. Vertical, horizontal
and diagonal arrows correspond respectively to ¢, v and N going to their limit.

in those cases, results similar to Corollaries 2.13, 2.14, 2.16 and 2.17 should hold. The question of establishing
propagation of chaos or discretization error bounds at stationarity in a more general case (i.e. without the
condition k > 0) is out of the scope of the present work.

All our results are summarised in Figure 1

Finally, we detail the proof of our main result.

Proof of Theorem 1.3. For ng € P(T), let (X,Y) be an optimal coupling of poR!/ 7 and ngz’NRWWJ. As in
the proof of Proposition 2.5,

1
E (W, (x(X),7(Y))) < 5Wox (R YR < aemnm0),

where we used Proposition 2.3 and the fact that px(x,y) < Na for all 2,35 € T?N. Then, by the triangular
inequality,

Wy (m(Y), 1) < Wy (7(Y)1/4)) + Wo (011721 v) + Wy (v, 1) -

Taking the expectation, applying Proposition 2.5 and Corollaries 2.9 (applied with 7y = v,) and 2.16, the
boundedness of p and the equivalence of W, and W, concludes. O
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