Regularity of the time constant for a supercritical Bernoulli percolation
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 109-132

We consider an i.i.d. supercritical bond percolation on d , every edge is open with a probability p > p c ( d ) , where p c ( d ) denotes the critical parameter for this percolation. We know that there exists almost surely a unique infinite open cluster 𝒞$$. We are interested in the regularity properties of the chemical distance for supercritical Bernoulli percolation. The chemical distance between two points x, y ∈ 𝒞$$ corresponds to the length of the shortest path in 𝒞$$ joining the two points. The chemical distance between 0 and nx grows asymptotically like $$(x). We aim to study the regularity properties of the map pμ$$ in the supercritical regime. This may be seen as a special case of first passage percolation where the distribution of the passage time is G$$ = 1 + (1 − p)δ$$, p > p$$(d). It is already known that the map pμ$$ is continuous.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2021005
Classification : 60K35, 82B43
Keywords: Regularity, percolation, time constant
@article{PS_2021__25_1_109_0,
     author = {Dembin, Barbara},
     title = {Regularity of the time constant for a supercritical {Bernoulli} percolation},
     journal = {ESAIM: Probability and Statistics},
     pages = {109--132},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021005},
     mrnumber = {4234130},
     zbl = {1468.60116},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021005/}
}
TY  - JOUR
AU  - Dembin, Barbara
TI  - Regularity of the time constant for a supercritical Bernoulli percolation
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 109
EP  - 132
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021005/
DO  - 10.1051/ps/2021005
LA  - en
ID  - PS_2021__25_1_109_0
ER  - 
%0 Journal Article
%A Dembin, Barbara
%T Regularity of the time constant for a supercritical Bernoulli percolation
%J ESAIM: Probability and Statistics
%D 2021
%P 109-132
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021005/
%R 10.1051/ps/2021005
%G en
%F PS_2021__25_1_109_0
Dembin, Barbara. Regularity of the time constant for a supercritical Bernoulli percolation. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 109-132. doi: 10.1051/ps/2021005

[1] P. Antal and A. Pisztora, On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036–1048. | MR | Zbl | DOI

[2] R. Cerf and M. Théret, Weak shape theorem in first passage percolation with infinite passage times. Ann. Inst. Henri Poincaré Probab. Statist. 52 (2016) 1351–1381. | MR | Zbl | DOI

[3] O. Couronné and R. Messikh, Surface order large deviations for 2D FK-percolation and Potts models. Stochastic Process. Appl. 113 (2004) 81–99. | MR | Zbl | DOI

[4] O. Garet and R. Marchand, Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM: PS 8 (2004) 169–199. | MR | Zbl | Numdam | DOI

[5] O. Garet and R. Marchand, Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35 (2007) 833–866. | MR | Zbl | DOI

[6] O. Garet and R. Marchand, Moderate deviations for the chemical distance in Bernoulli percolation. ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010) 171–191. | MR | Zbl

[7] O. Garet, R. Marchand, E.B. Procaccia and M. Théret, Continuity of the time and isoperimetric constants in supercritical percolation. Electr. J. Probab. 22 (2017) 35 pp. | MR | Zbl

[8] G. Grimmett, Percolation. Vol. 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], second edition. Springer-Verlag, Berlin (1999). | MR | Zbl

[9] J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif . Springer-Verlag, New York (1965) 61–110. | MR | Zbl

[10] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963) 13–30. | MR | Zbl | DOI

[11] H. Kesten, Aspects of first passage percolation. In École d’été de probabilités de Saint-Flour, XIV—1984, volume 1180 of Lecture Notes in Math. Springer, Berlin (1986) 125–264. | MR | Zbl

[12] T.M. Liggett, R.H. Schonmann and A.M. Stacey, Domination by product measures. Ann .Probab. 25 (1997) 71–95. | MR | Zbl | DOI

[13] Á. Pisztora, Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104 (1996) 427–466. | MR | Zbl | DOI

[14] J. Theodore Cox The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12 (1980) 864–879. | MR | Zbl | DOI

[15] J. Theodore Cox and R. Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 (1981) 583–603. | MR | Zbl

[16] J. Theodore Cox and H. Kesten, On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981) 809–819. | MR | Zbl | DOI

[17] Á. Timár, Boundary-connectivity via graph theory. Proc. Amer. Math. Soc. 141 (2013) 475–480. | MR | Zbl | DOI

Cité par Sources :

Research was partially supported by the ANR project PPPP (ANR-16-CE40-0016). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001.