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REGULARITY OF THE TIME CONSTANT FOR A SUPERCRITICAL
BERNOULLI PERCOLATION*

BARBARA DEMBIN®*

Abstract. We consider an i.i.d. supercritical bond percolation on Z%, every edge is open with a
probability p > p.(d), where p.(d) denotes the critical parameter for this percolation. We know that
there exists almost surely a unique infinite open cluster C,. We are interested in the regularity properties
of the chemical distance for supercritical Bernoulli percolation. The chemical distance between two
points z,y € C, corresponds to the length of the shortest path in C, joining the two points. The
chemical distance between 0 and nx grows asymptotically like nu,(z). We aim to study the regularity
properties of the map p — pp in the supercritical regime. This may be seen as a special case of first
passage percolation where the distribution of the passage time is G, = pd1 + (1 — p)dso, P > pe(d). It
is already known that the map p — p, is continuous.
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1. INTRODUCTION

The model of first passage percolation was first introduced by Hammersley and Welsh [9] as a model for
the spread of a fluid in a porous medium. Let d > 2. We consider the graph (Z%¢,E%) having for vertices Z?
and for edges E? the set of pairs of nearest neighbors in Z? for the Euclidean norm. To each edge e € E¢ we
assign a random variable t(e) with values in RT so that the family (¢(e), e € E?) is independent and identically
distributed according to a given distribution G. The random variable ¢(e) may be interpreted as the time needed
for the fluid to cross the edge e. We can define a random pseudo-metric T" on this graph: for any pair of vertices
x, y € Z4, the random variable T(z,y) is the shortest time to go from x to y. Let z € Z%\ {0}. One can ask
what is the asymptotic behavior of the quantity 7'(0, ) when ||z|| goes to infinity. Under some assumptions on
the distribution G, one can prove that asymptotically when n is large, the random variable T'(0, nx) behaves
like n - pe(z) where pg(z) is a deterministic constant depending only on the distribution G and the point .
The constant pg(x) corresponds to the limit of 7'(0, nz)/n when n goes to infinity, when this limit exists. This
result was proved by Cox and Durrett in [15] in dimension 2 under some integrability conditions on G, they
also proved that pg is a semi-norm. Kesten extended this result to any dimension d > 2 in [11], and he proved
that pe is a norm if and only if G({0}) < p.(d). In the study of first passage percolation, p¢ is usually called
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the time constant. The constant ug(x) may be seen as the inverse of the speed of spread of the fluid in the
direction of x.

It is possible to extend this model by doing first passage percolation on a random environment. We consider
an i.i.d. supercritical bond percolation on the graph (Z? E?). Every edge e € E? is open with a probability
p > pe(d), where p.(d) denotes the critical parameter for this percolation. We know that there exists almost
surely a unique infinite open cluster C, [8]. We can define the model of first passage percolation on the infinite
cluster C,. To do so, we consider a probability measure G on [0, +00] such that G([0, o0[) = p. In this setting,
the p-closed edges correspond to the edges with an infinite value and so the cluster C, made of the edges with
finite passage time corresponds to the infinite cluster of a supercritical Bernoulli percolation of parameter p.
The existence of a time constant for such distributions was first obtained in the context of stationary integrable
ergodic field by Garet and Marchand in [4] and was later shown for an independent field without any integrability
condition by Cerf and Théret in [2].

The question of the continuity of the map G — ug started in dimension 2 with the article of Cox [14]. He
showed the continuity of this map under the hypothesis of uniform integrability: if GG,, weakly converges toward
G and if there exists an integrable law F such that for all n € N, F' stochastically dominates Gy, then pa, — pa.
In [16], Cox and Kesten prove the continuity of this map in dimension 2 without any integrability condition.
Their idea was to consider a geodesic for truncated passage times min(¢(e), M), and along it to avoid clusters
of p-closed edges, that is to say edges with a passage time larger than some M > 0, by bypassing them with a
short path in the boundary of this cluster. Note that by construction, the edges of the boundary have passage
time smaller than M. Thanks to combinatorial considerations, they were able to obtain a precise control on
the length of these bypasses. This idea was later extended to all the dimensions d > 2 by Kesten in [11], by
taking a M large enough such that the percolation of the edges with a passage time larger than M is highly
subcritical: for such a M, the size of the clusters of p-closed edges can be controlled. However, this idea does
not work anymore when we allow passage time to take infinite values. In [7], Garet, Marchand, Procaccia and
Théret proved the continuity of the map G — ug for general laws on [0, +00] without any moment condition.
More precisely, let (G,,)nen, and G probability measures on [0, +00] such that G,, weakly converges toward G

(we write G, <4 G), that is to say for all continuous bounded functions f : [0, +00] — [0, +00), we have

lim £dG, = / jates
n—-+o0o [07_,’_00] [O,+OO]

Equivalently, we say that G, 4 G if and only if limy, 400 Gp([t, +00]) = G([t, +00]) for all ¢ € [0, +00] such
that  — G([z, +00]) is continuous at ¢. If moreover for all n € N, G,,([0, +00)) > p.(d) and G([0, +00)) > p.(d),
then

lim sup |ug,(2) — pe(z)| =0

N=00 pesd—1

where S is the unit sphere for the Euclidean norm.

In this paper, we focus on distributions of the form G, = pd1 + (1 — p)deo, p > pe(d). We denote by C,, be
the subgraph of Z? whose edges are open for the Bernoulli percolation of parameter p. The travel time given
by a law G, between two points  and y € Z? coincides with the so-called chemical distance that is the graph
distance between xz and y in C’ Namely, for 2,y € Z¢, we define the chemical distance D »(x,y) as the length of
the shortest p-open path joining x and y. Note that if z and y are not in the same cluster of C’ D »(z,y) = +o0.
Actually, when x and y are in the same cluster, D% (z,y) is of order ||y — z||;. In [1], Antal and Pisztora obtained
the following large deviation upper bound. There exists a constant p > 0 depending on p and d such that

lim sup —— log P(0 ¢+ , D% (0, ) > pllyll1) < 0

llylls— o0 IIyH1
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This result implies that

D% 0,9) Loy < p, P, as.

lim sup
lyll—oo Y1

These results were proved using renormalization arguments. They were improved later in [4] by Garet and
Marchand, for the more general case of a stationary ergodic field. They proved that D (0, ) grows linearly in
||z||1. More precisely, for each y € Z?\ {0}, they proved the existence of a constant ju,(y) such that

. D%(0,ny)
Jim — = Lp(y), Pp ass. .
O0+=ny

The constant y,, is called the time constant. The map p — p,, can be extended to Q¢ by homogeneity and to R?
by continuity. It is a norm on R%. This convergence holds uniformly in all directions, this is equivalent of saying
that an asymptotic shape emerges. Indeed, the set of points that are at a chemical distance from 0 smaller
than n asymptotically looks like nB3,, ,, where B, denotes the unit ball associated with the norm . In another

paper [5], Garet and Marchand studied the fluctuations of D (0,y)/ tp(y) around its mean and obtained the
following large deviation result:

CI
InP, (OHx,Wgé(l—e,l—l-a))

Ve > 0, limsup <0.

|| 1 — o0 (Ea iR

In the same paper, they showed another large deviation result that, as a corollary, proves the continuity of the
map p — pp in p = 1. In [6], Garet and Marchand obtained moderate deviations of the quantity |DC;7 (0,y) —
tp(y)|- As a corollary of the work of Garet, Marchand, Procaccia and Théret in [7] we obtain the continuity of
the map p — pyp in (pc(d), 1]. Our paper is a continuation of [7], our aim is to obtain better regularity properties
for the map p — p, than just continuity. We prove the following theorem.

Theorem 1.1 (Regularity of the time constant). Let py > p.(d). There exists a constant ko depending only on
d and po, such that for all p < q in [pg, 1]

sup |up(x) — pg(z)| < Kolg — p)|log(q — p)|.
xegd—l

To study the regularity of the map p — p,,, our aim is to control the difference between the chemical distance in
the infinite cluster C, of a Bernoulli percolation of parameter p > p.(d) with the chemical distance in C, where
q > p- The key part of the proof lies in the modification of a path. We couple the two percolations such that
a p-open edge is also g-open but the converse does not necessarily hold. We consider a g-open path for some
q > p > p.(d). Some of the edges of this path are p-closed, we want to build upon this path a p-open path by
bypassing the p-closed edges. In order to bypass them, we use the idea of [7] and we build our bypasses at a
macroscopic scale. This idea finds its inspiration in the works of Antal and Pisztora [13] and Cox and Kesten
[16]. We have to consider an appropriate renormalization and we obtain a macroscopic lattice with good and
bad sites. Good and bad sites correspond to boxes of size 2N in the microscopic lattice. We will do our bypasses
using good sites at a macroscopic scale that will have good connectivity properties at a microscopic scale. The
remainder of the proof consists in getting probabilistic estimates of the length of the bypass. In this article we
improve the estimates obtained in [7]. We quantify the renormalization to be able to give quantitative bounds
on continuity. Namely, we give an explicit expression of the appropriate size of a N-box. We use the idea of
corridor that appeared in the work of Cox and Kesten [16] to have a better control on combinatorial terms and
derive a more precise control of the length of the bypasses than the one obtained in [7].
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We recall that B,,, denotes the unit ball associated with the norm p,. From Theorem 1.1, we can easily
deduce the following regularity of the asymptotic shape.

Corollary 1.2 (Regularity of the asymptotic shape). Let pg > p.(d). There exists a constant k(, depending only
on d and pg, such that for all p < q in [po, 1],

du(Bu,, By,) < kolg — p)|log(q — p)|

where dy is the Hausdorff distance between non-empty compact sets of R?.

Here is the structure of the paper. In Section 2, we introduce some definitions and preliminary results that
are going to be useful in what follows. Section 3 presents the renormalization process and how we modify a
g-open path to turn it into a p-open path and how we can control the length of the bypasses. In Sections 4
and 5, we get probabilistic estimates on the length of the bypasses. Finally, in Section 6 we prove the main
Theorem 1.1 and its Corollary 1.2.

Remark 1.3. Section 3 is a simplified version of the renormalization process that was already present in [7]. The
simplification comes from the fact that we are not interested in general distributions but only on distributions
G, for p > p.(d) which have the advantage of taking only two values 1 or +o00. The original part of this work
is the quantification of the renormalization and the combinatorial estimates of Section 5.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let d > 2. Let us recall the different distances in R%. Let @ = (x1,...,24) € R, we define

d d
el = fwil, Nellz= | D 2?7 and oo = max{laili=1,...,d}.
i=1 i=1

Let G be a subgraph of (Z¢,E%) and z,y € G. A path v from x to y in G is a sequence v = (vg, €1, ..., €n, V)
such that vo = z, v, =y and for all ¢ € {1,...,n}, the edge e; = (v;_1,v;) belongs to G. We say that x and y
are connected in G if there exists such a path. We denote by |y| = n the length of v. We define

DY (x,y) = inf{|r| : r is a path from z to y in G}

the chemical distance between x and y in G. If  and y are not connected in G, DY (z,y) = oo. In the following,
G will be C}, the subgraph of 7% whose edges are open for the Bernoulli percolation of parameter p > p.(d).
To get around the fact that the chemical distance can take infinite values we introduce a regularized chemical
distance. Let C C C,, be a connected cluster, we define 7€ as the vertex of C which minimizes ||z — Z€||; with a
deterministic rule to break ties. As C C C’Z',7 we have

D% (7€, 5¢) < DC(F,5°) < 0.

Typically, C is going to be the infinite cluster for Bernoulli percolation with a parameter py < p (thus C,, C CZ’,).
We can define the regularized time constant as in [6] or as a special case of [2].

Proposition 2.1. Let p > p.(d). There exists a deterministic function p, : Z% — [0,+00), such that for every
po € (pe(d), p):

DCr (0C»0 777570
Ve € 24 lim (070, na) = pp(z) a.s. and in L'

n—00 n
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It is important to check that p, does not depend on py, i.e., on the cluster C,,, we use to regularize. This is done
in Lemma 2.11 in [7]. As a corollary, we obtain the monotonicity of the map p — p,, which is non increasing,
see Lemma 2.12 in [7].

Corollary 2.2. For all p.(d) < p < q and for all x € 77,

pp(T) > pg(T) .

We will also need this other definition of path that corresponds to the context of site percolation. Let G be
a subset of Z¢ and x,y € G. We say that the sequence v = (v, ..., v,) is a Z%path from z to y in G if vy = =,
v, =y and for all i € {1,...,n}, v; € G and |lv; —v;_1]1 = 1.

3. MODIFICATION OF A PATH

In this section we present the renormalization process. We are here at a macroscopic scale, we define good
boxes to be boxes with useful properties to build our modified paths.

3.1. Definition of the renormalization process

Let p > p.(d) be the parameter of an i.i.d. Bernoulli percolation on the edges of Z%. For a large integer N,
that will be chosen later, we set By = [—N, N[¢NZ% and define the following family of N-boxes, for i € Z4,

By (i) = Tien+1)(BN)

where 7, denotes the shift in Z¢ with vector b € Z%. Z? is the disjoint union of this family: Z¢ = U;cz4 By (3).
We need to introduce larger boxes that will help us to link N-boxes together. For ¢ € Z¢, we define

B (i) = Tian+1)(Bsn).

To define what a good box is, we have to list properties that a good box should have to ensure that we can
build a modification of the path as we have announced in the introduction. We have to keep in mind that all
the properties must occur with probability close to 1 when N goes to infinity. Before defining what a good box
is, let us recall some definitions. A connected cluster C' is crossing for a box B, if for all d directions, there is
an open path in C'N B connecting the two opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := ,max |z; — vl -
x,yeC

Definition 3.1. Let 8 > 0 be a constant that will be defined later. We say that the macroscopic site % is p-good
if the following events occur:

(i) There exists a unique p-cluster C in B} () with diameter larger than N;
(ii) This p-cluster C is crossing for each of the 3¢ N-boxes included in B} (4);
m) For all z,y € 1), it z and y belong to C then ;x7y7 .
iti) For all B\ (3), if  and y bel C then D < 126N

C is called the crossing p-cluster of the p-good box By ().

Let us define a percolation by site on the macroscopic grid given by the states of the boxes, i.e., we say that
a macroscopic site ¢ is open if the box By (%) is p-good, otherwise we say the site is closed. Note that the states
of the boxes are not independent, there is a short range dependence.

On the macroscopic grid Z¢, we consider the standard definition of closest neighbors, that is to say 4 and
j are neighbors if || — j||3 = 1. Let C be a connected set of macroscopic sites, we define its exterior vertex
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boundary

0.0 — i € Z4\ C : i has a neighbor in C' and is connected
v to infinity by a Z%-path in Z¢\ C ’

For a bad macroscopic site #, let us denote by C(2) the connected cluster of bad macroscopic sites containing
i. If C(4) is finite, the set 0, (%) is not connected in the standard definition but it is with a weaker definition
of neighbors. We say that two macroscopic sites ¢ and j are #-neighbors if and only if ||2 — j||oo = 1. Therefore,
0,C(3) is an *-connected set of good macroscopic sites, see for instance Lemma 2 in [17]. We adopt the convention
that 9,C(2) = {¢} when ¢ is a good site.

3.2. Construction of bypasses

Let us consider p.(d) < pg < p < q. Let 8 > 0 that we will choose later depending on py. We fix N in this
section and we build the renormalized process on the macroscopic N-boxes. Let us consider a g-open path ~.
We couple the two percolation processes of parameters p and ¢ in such a way that a p-open edge is necessarily
g-open. Thus, some edges in 7 might be p-closed. We denote by ~, the set of p-open edges in v, and by 7. the
set of p-closed edges in . Our aim is to build a bypass for each edge in ~y. using only p-open edges. The proof
will follow the proof of Lemma 3.2 in [7] up to some adaptations.

As the bypasses are going to be made at a macroscopic scale, we need to consider the N-boxes that  crosses.
We denote by I' C Z% the connected set of all the N-boxes visited by . The set I' is a lattice animal, i.e., a
connected finite set of macroscopic sites. We denote by Bad the random set of bad connected components on
the macroscopic percolation given by the states of the N-boxes. The following Lemma states that we can bypass
all the p-closed edges in v and gives a control on the total size of these bypasses.

Lemma 3.2. We fiz some § > 0 and an integer N. Let us consider y, z € C, such that the N-bozes of y and z
belong to an infinite cluster of p-good boxes. Let us consider a q-open path ~ joining y to z. Then there exists a
p-open path v between y and z that has the following properties:

(1) ~'\ 7y is a set of disjoint self avoiding p-open paths that intersect v' N~y at their endpoints;

(2) |\l < poN > . |C| + |7e| |, where po is a constant depending only on the dimension d and j3.
CeBad:CNI'#

Remark 3.3. Note that here we don’t need to introduce a parameter pg and require that the bypasses are
po open as in [7]. Indeed, this condition was required because finite passage times of edges were not bounded.
This is the reason why it was needed in [7] to bypass p-closed edges with pp-open edges. These pp-open edges
were precisely edges with passage time smaller than some constant My. In our context, we can get rid of this
technical aspect because passage times when finite may only take the value 1.

Before proving Lemma 3.2, we need to prove the following lemma that gives a control on the length of a path
between two points in a x-connected set of good boxes.

Lemma 3.4. Let T be a set of n € N* macroscopic sites such that (Bn(2))iez is a x-connected set of p-good
N-bozes. Let x € Bx(j) be in the p-crossing cluster of By(j) with j € Z and y € By (k) be in the p-crossing
cluster of By (k) with k € Z. Then, we can find a p-open path joining x and y of length at most 126Nn (with
the same constant B as in Def. 3.1).

Proof of Lemma 3.4. Since 7 is a *-connected set of macroscopic sites, there exists a self-avoiding macroscopic
s-connected path (¢;)1<i<r C Z such that ¢; = j, ¢, = k. Thus, we get that r < |Z| = n. As all the sites in 7
are good, all the N-boxes corresponding to the sites (;)1<i<, are good.

For each 2 < i < r —1, we define z; to be a point in the p-crossing cluster of the box By (¢;) chosen according
to a deterministic rule. We define z; = x and x, = y. For each 1 <i < r, z; and x;41 both belong to Bj ().
Using property (i4i) of a p-good box, we can build a p-open path (i) from x; to z;+1 of length at most 128N.
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By concatenating the paths v(1),...,v(r — 1) in this order, we obtain a p-open path joining z to y of length at
most 128Nn. O

Proof of Lemma 3.2. Let us consider y, z € C, such that the N-boxes of y and z belong to an infinite cluster
of p-good boxes. Let v be a g-open path joining y to z. The idea is the following. We want to bypass all the
p-closed edges of . Let us consider an edge e € v, and By (%) its associated N-box. There are two different
cases:

— If By(2) is a good box, we can build a p-open bypass of e at a microscopic scale by staying in a fixed
neighborhood of By (2). We will use the third property of good boxes to control the length of the bypass
that will be at most 126N.

— If By(4) is a bad box, we must build a p-open bypass at a macroscopic scale in the exterior vertex boundary
0,C (%) that is an *-connected component of good boxes. We will use Lemma 3.4 to control the length of
this bypass.

Let po = (¢0(J))1<j<r, be the sequence of N-boxes ~ visits. From the sequence ¢y, we can extract the sequence
of N-boxes containing at least one p-closed edge of v. We only keep the indices of the boxes containing the
smallest extremity of a p-closed edge of «y for the lexicographic order. We obtain a sequence 1 = (¢1(j))1<j<r, -
Notice that r; < ro and 1 < |7.|. Before building our bypasses, we have to get rid of some pathological cases.
We are going to proceed to further extractions. Note that two x-connected components of (9,C(¢1(j)))1<j<rs
can be *-connected together, in that case they count as a unique connected component. Namely, the set F =
Ui<j<r OuC(01(j)) has at most r; *-connected components (S, (;))1<j<r,- Up to reordering, we can assume
that the sequence (S,,(j))1<j<r, is ordered in such a way that S, 1 is the first *-connected component of E
visited by v among the (Sg,(j))1<j<r.» Sp,(2) is the second and so on. Next, we consider the case of nesting,
that is to say when there exist j # k such that S_, ;) is in the interior of S,,(x). In that case, we only keep
the largest connected component S, (;): we obtain another subsequence (S, (;))1<j<r; With 73 < ro. Finally,
we want to exclude a last case, when between the moment we enter for the first time in a given connected
component and the last time we leave this connected component, we have explored other connected components
of (Syy(j))1<j<ry- That is to say we want to remove the macroscopic loops v makes between different visits
of the same *-connected components S, ;) (see Fig. 1). We iteratively extract from (S,,(;))1<j<r; & sequence
(Se4(j))1<j<r, in the following way: S, (1) = Sg, (1), assume (S, (j))1<j<k is constructed o4 (k +1) is the smallest
indice o3(j) such that vy visits S, ;) after its last visit to S, (). We stop the process when we cannot find such
j. Of course, 74 < r3. The sequence (S, (;))1<j<r, 1S a sequence of sets of good N-boxes that are all visited
by 7.

Let us introduce some notations (see Fig. 2), we write v = (zo,...,2,). For all k € {1,...,r4}, we denote
by W, (k) (respectively Woy¢(k)) the first moment that v enters in S, (1) (resp. last moment that v exits from
Se.(1))- More precisely, we have

Uin(1) =min{j > 1,2; € S,,) }
and
Uout(1) = max{j > Wi, (1),25 € Sy, 1) } .
Assume U, (1),...,U;, (k) and Uy (1),. .., Uput (k) are constructed then
Uin(k+1) =min{j > Wour(k),z; € Spyk+1) }
and

\Ifout(k + 1) = max{j > \I/m(k+ 1),JCj € Sg04(l~c+1) } .
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: the boxes (p1(j))1<j<r
: the sets of good boxes (Sw(j))lﬁjﬁm

Om0 <

: the sets of good boxes (S, (;))1<j<r, that do not belong to (S,,())1<j<rs

FIGURE 1. Construction of the path +" — First step.

Let Bin(j) be the N-box in S, ;) containing zy,, (j), Bout(j) be the N-box in S, ;) containing zy, ;). Let
7(j) be the section of v from g, ;) to zw,, j4+1) for 1 < j <4, let y(0) (vesp y(r4)) be the section of v from
y to xy,, (1) (resp. from zg_ ,(r,) tO 2).

We have to study separately the beginning and the end of the path . Note that as the N-boxes of y and z
both belong to an infinite cluster of good boxes, their box cannot be nested in a bigger *-connected components
of good boxes of the collection (S, (;))1<j<r,. Thus, if By(k), the N-box of y, contains a p-closed edge of
7, necessarily S, (1) contains By (k), Bi,(1) = By(k) and xy,, 1) = y. Similarly, if By(l), the N-box of z,
contains a p-closed edge of 7, necessarily S, (r,) contains By (1), Bout(r4) = By (1) and zy_,,(r,) = 2.

In order to apply Lemma 3.4, let us show that for every j € {1,...,r4}, 2y, ;) (resp. zy,,,(;)) belongs to
the p-crossing cluster of B;,(j) (resp. Bout(j)). Let us study separately the case of xy,, 1) and 2y _,, (). If
Ty,,(1) = Y then zy, (1) belongs to the p-crossing cluster of B;,(j). Suppose that xy,, 1) # y. As y € C, and
y is connected to wy,, (1) by a p-open path, xy, 1) is also in C,. By the property (i) of a good box applied
to Bi,(1), we get that xy, (1) is in the p-crossing cluster of By, (1). We study the case of xy_,(r,) similarly.
To study zg,,(j) (resp. zy,,,(;))) for j € {2,...,74 — 1}, we use the fact that by construction, thanks to the
extraction ys, two different elements of (Sm(j))lgjgm are not x-connected. Therefore, for 1 < j < r4, we have

17w, G+1) = Tw,. Gl = N

and so the section 7(j) of v from wy, ;) to ¥y,,(j+1) has a diameter larger than N and contains only p-open
edges. As B,y:(j) and By, (j + 1) are good boxes, we obtain, using again property (i) of good boxes, that zy,_, (;
and zy,, (j4+1) belong to the p-crossing cluster of their respective boxes.

Finally, by Lemma 3.4, for every j € {1,...,7r4}, there exists a p-open path 7,(j) joining zy,, ;) and
Ty,,,;) of length at most 128N|S,,(;)|. We obtain a p-open path ' joining y and z by concatenating
Y(0), Viink (1), y(1), . - ., Viink (r4), v(r4) in this order. Up to removing potential loops, we can suppose that each
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Bt (7) *\

Bout (]) —] )

|
k|

() —=

Topi (5)— - s ”L’ka(,?)
G —1) A

D: StP4(j)

FIGURE 2. Construction of the path 4" — Second step.

Yiink (7) is a self-avoiding path, that all the v;;,x(j) are disjoint and that each 7, (j) intersects only y(j — 1)
and y(j) at their endpoints. Let us estimate the quantity |y \ 7|, as v' \ v C U2, 1ink(¢), we obtain:

ra
Y\l < Z [Viink (5]

j=1

T4

<D 128N[S,, )]

j=1

12BNl +126N Y7 9.0
CeBad:CNT'#)D

where the last inequality comes from the fact that each S, ;) is the union of elements of {0,C : C' € Bad; CNI" #
(¢} and of good boxes that contain edges of v.. We conclude by noticing that |9,C| < 2d|C|. O

3.3. Deterministic estimate

When ¢ — p is small, we want to control the probability that the total length of the bypasses 4"\ v of p-closed
edges is large. We can notice in Lemma 3.2 that we need to control the bad connected components of the
macroscopic site percolation. This will be done in Section 5. We will also need a deterministic control on |T'|
which is the purpose of the following Lemma (this Lemma is an adaptation of Lemma 3.4 of [7]).
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Lemma 3.5. For every path v of Z2, for every N € N*, there exists a *-connected macroscopic path T such
that

.
v | Bi(i) and [T <1+ 2= M+
iel’

Proof. Let v = (x;)1<i<n be a path of 7% where x; is the i-th vertex of 4. Let T' be the set of N-boxes that

visits. We are going to define iteratively the macroscopic path I. Let p(1) = 1 and 2; be the macroscopic site
such that x; € By(%1). We suppose that 41,...,%; and p(1),...,p(k) are constructed. Let us define

p(k+1) = min{j > p(k) : a; ¢ By (i1)} -
If this set is not empty, we set 4,41 to be the macroscopic site such that
Tpet1) € B (iry1) -

Otherwise, we stop the process, and we get that for every j € {p(k),...,n}, z; € By (ix). As n is finite, the

process will eventually stop and the two sequences (p(1),...,p(r)) and (¢1,...,4,) are finite. Note that the %;
are not necessarily all different. We define I' = (44, ...,%,). By construction,
vc | By(@)
iel

Notice that for every 1 <k <7, ||#p41) — Tpe)l[1 > N, thus p(k 4 1) — p(k) > N. This leads to N(r — 1) <
p(r) —p(1) < n, and finally,

N <1+

[y +1
N

Remark 3.6. This Lemma implies that if ' is the set of N-boxes that « visits then

1
IT| < 39T < 3¢ (1 + MAJ; > .

4. CONTROL OF THE PROBABILITY THAT A BOX IS GOOD

We need in what follows to control the quantity > |C'| where the sum is over all C' € Bad such that C NI # (.
We would like to obtain a control which is uniform in the parameter of percolation p. To do so, we are going
to introduce a parameter py > p.(d) and obtain a uniform control in p for all p > pgy of the probability that the
box By is p-bad.

Theorem 4.1. Let py > p.(d). There exist positive constants B(pg) > 0, A(pg) and B(pg) such that for all
p>po and for all N > 1

P(By is p-bad) < A(po) exp(—B(po)N) .

Note that the property (i7) of the definition of p-good box is a non-decreasing event in p. Thus, it will be easy to
bound uniformly the probability that property (i¢) is not satisfied by something depending only on py. However,
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for properties (i) and (i%¢) a uniform bound is more delicate to obtain. Before proving Theorem 4.1, we need the
two following lemmas that deal with properties (¢) and (4i¢). Let T, n(p) be the event that By has a p-crossing
cluster and contains some other p-open cluster C' having diameter at least m.

Lemma 4.2. Let pg > p.(d), there exist v =v(pg) > 0 and k = k(pg) such that for all p > pg
P(T,n(p) < KN*? exp(—vm). (4.1)

The following Lemma is an improvement of the result of Antal and Pisztora in [1] that controls the probability
that two connected points have a too large chemical distance. In the original result, the constants depend on
p, we slightly modify its proof so that constants are the same for all p > py. This improvement is required to
obtain a decay that is uniform in p.

Lemma 4.3. Let pg > p.(d), there exist B = B(py) > 0, A= A\(po) and B = g(po) > 0 such that for all p > po
Vo e Z% P(f|lz]ly < D%(0,x) < +o0) < Aexp(—B|z|1). (4.2)

Remark 4.4. Note that this is not an immediate corollary of [1]. Although increasing the parameter of percola-
tion p reduces the chemical distance, it also increases the probability that two vertices are connected. Therefore
the event that we aim to control is neither non-increasing neither non-decreasing in p.

Before proving these two lemmas, we are first going to prove Theorem 4.1.

Proof of Theorem 4.1. Let us fix pg > p.(d). Let us denote by (ii¢)" the property that for all z,y € Bj (%), if
|l — y|loo > N and if z and y belong to the p-crossing cluster C then D (z,y) < 68N. Note that properties
(#¢) and (i7¢)" imply property (4ii). Indeed, thanks to (ii), we can find z € C N By (¢) such that |z — z]c > N
and ||y — z|lec = N. Therefore, by applying (iii)’,

D% (z,y) < D (z,2) + D% (z,y)
< 128N.

Thus, we can bound the probability that a N-box is bad by the probability that it does not satisfy one of the
properties (i), (i) or (4ii)’. Since we want to control the probability of By being a p-bad box uniformly in p,
we will emphasize the dependence of (i), (ii) and (iii)" in p by writing (i), (i7), and (i), First, let us prove
that the probability that a N-box does not satisfy property (i%),, i.e., the probability for a box not to have a
p-crossing cluster, is decaying exponentially, see for instance Theorem 7.68 in [8]. There exist positive constants
k1(po) and ka(pg) such that for all p > pg

P(By does not satisfies (ii),) < P(By does not satisfies (i7),)
< k1(po) exp(—ra(po) N1 . (4.3)

Next, let us bound the probability that a N-box does not satisfy property (iii);. Using Lemma 4.3, for p > po,

P(By does not satisfy (iii);,)

< Z Z ]le—yHerNP (GﬂN < DC;(x,y) < +OO)

x€BY yEBY,

<Y D taypsnP (Bl = ylloe < D (1) < +o0)

r€BY yEBY
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< Z Z Ljyy|.>nAexp(—BN)

r€BY yEBY

< (6N + 1)*?Aexp(—BN).
Finally, by Lemma 4.2,

P(By is p-bad)
< P(Bn does not satisfies (i7),) + P(By satisfies (i7), but not (i),)
+ P(By does not satisfy (iii);,)

N ~ ~
< Ky exp(—ro N1 + 39N T exp <—1/3d> + (6N +1)*Aexp(—BN)

< A(po)efB(pO)N.

For the second inequality, we used inequality (4.3) and the fact that the event that the 3¢ N-boxes of Bl are
crossing and there exist another p-open cluster of diameter larger than N in BY; is included in the event there
exists a N-box in B that has a crossing property and contains another p-open cluster of diameter at least
N/3%. The last inequality holds for N > Cy(po), where Co(po), A(po) > 0 and B(py) > 0 depends only on pg
and on the dimension d. O

Proof of Lemma 4.2. In dimension d > 3, we refer to the proof of Lemma 7.104 in [8]. The proof of Lemma
7.104 requires the proof of Lemma 7.78. The probability controlled in Lemma 7.78 is clearly non decreasing in
the parameter p. Thus, if we choose §(pg) and L(pg) as in the proof of Lemma 7.78 for pg > p.(d), then these
parameters can be kept unchanged for some p > pg. Thanks to Lemma 7.104, we obtain

2 o P () < AN+ D exp ( (25 = 1) tou(t — 6 )

d.3¢ —log(1 — d(po))
1o 5(po)N2d o ( L(po) + 1 )

We get the result with x = % and v = W > 0.

In dimension 2, the result is obtained by Couronné and Messikh in the more general setting of FK-percolation
in Theorem 9 in [3]. We proceed similarly as in dimension d > 3, the constant appearing in this theorem first
appeared in Proposition 6. The probability of the event considered in this proposition is clearly increasing in the
parameter of the underlying percolation, it is an event for the subcritical regime of the Bernoulli percolation.
Let us fix a pg > pc(2) = 1/2, then 1 — py < p.(2) and we can choose the parameter ¢(1 — pg) and keep it
unchanged for some 1 —p < 1 — py. In Theorem 9, we get the expected result with ¢(1 — pg) for a p > py and
g(n) =n. O

We explain now how to modify the proof of [1] to obtain the uniformity in p.

Proof of Lemma 4.3. Let po > p.(d) and p > po. First note that the constant p appearing in [1] corresponds
to our 8. The proof of Lemma 2.3 in [1] can be adapted (as we did above in the proof of Lem. 4.2) to choose
constants c3, ¢4, cg and ¢y that depend only on pg and d, we do not get into details again. Thanks to this, NV
may be chosen in the expression (4.47) of [1] such that it only depends on py and d and so does p. This concludes
the proof. O
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5. PROBABILISTIC ESTIMATES

We can now use the stochastic minoration by a field of independent Bernoulli variables to control the proba-
bility that the quantity > |C| is big, where the sum is over all C' € Bad such that C N T # (. The proof of the
following Lemma is in the spirit of the work of Cox and Kesten in [16] and relies on combinatorial considerations.
These combinatorial considerations were not necessary in [7].

We consider a path v and its associated lattice animal I'. We need in the proof of the following Lemma
to define I" as a path of macroscopic sites, that is to say a path (ix)r<, in the macroscopic grid such that
{ik,k < r} =T (this path may not be self-avoiding). We can choose for instance the sequence of macroscopic
sites that v visits. However, it is difficult to control the size of this sequence by the size of I'. That is the reason
why we consider the path of the macroscopic grid I' that was introduced in Lemma 3.5.

Proposition 5.1. Let py > p.(d). Once py is fized, we choose 5 > 0 given by Theorem 4.1. Let e € (0,1 —p.(d)).
There exist a constant Ce € (0,1) depending only on e and a positive constant Cy depending on po, d and 3,
such that for every N > Cy|logel, then for all p > po , for every n € N*

P [ 3y starting from 0 such that |T| < n, Z |C|>en| <CZ
CeBad:CNT'#£D

where I is the lattice animal associated with the path v and T the macroscopic path given by Lemma 3.5.

Proof. Let € > 0. Let N > N(g) where N(g) will be defined later. Let us consider a path + starting from 0,
its associated lattice animal I', i.e., the set of boxes « visits and its associated path on the macroscopic grid
T = (F(k))0<k<r as defined in Lemma 3.5. We first want to include T' in a subset of the macroscopic grid. Of
course, T is included in the hypercube of side-length 2r centered at F( ), but we need to have a more precise
control. We set K to be the unique integer such that

<K<-41< (5.1)

™ | =
™ | =
m\w

We recall that e < 1. Let v be a site, we denote by S(v) the hypercube of side-length 2K centered at v and by
0S5 (v) its inner boundary:

S)={weZ: |w—v|e <K} and 9Sw)={wecZ®: ||w—v|s=K}.
We define v(0) = I'(0), po = 0. If po, . .., px and v(0),...,v(k) are constructed, we define if any
Pry1 = min {z elput1,....r}:T() e aS(U(k))} and  v(k 4+ 1) = T(prsr) -

If there is no such index we stop the process. Since py1 —pg > K, there are at most 1+r/K such pj. Notice that
1+r/K <14 n/K on the event {|I'| < n}. We define 7 =1 +n/K. On the event {|I'| < n}, the macroscopic
path T' is contained in the union of those hypercubes:
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FIGURE 3. Construction of v(0),...,v(7).

If we stop the process for a k < 7, we artificially complete the sequence until attaining 7 by setting for k < j < 7,
v(j) = v(k). See Figure 3, the corridor D(v(0),...,v(7)) is represented by the grey section. By construction, for
all 1 < k <r, there exists a j < 7 such that I'(k) is in the strict interior of S(v(j)), so we have

I'c U {j, 7 is #-connected to f(k) } C D(v(0),...,v(7))
k=1

where the first inclusion follows from Lemma 3.5.
Thus, we obtain

P | 3y starting from 0 such that |T'| < n, Z |C| > en
CeBad:CNI'#)
Jv starting from 0 such that
<p( U > |Cl zen, T C D@(O),...,v(r))
v(0),...,0(T) CeBad:CNI'#0

Jv starting from 0 such that

< N IP’( D |C|zen,FCD(v(O),...,v(T))>

v(0),...,v(7) CeBad:CNT'#D

< Z P Z |C| > en

v(0),...,v(7)

CeBad:
CND(v(0),...,v(7))#0
< > 2P >, 0=y
v(0),...,v(1) j=en CeBad:

CND(v(0),...,v(7))#0
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where the first sum is over the sites v(0),...,v(7) satisfying v(0) = I'(1) and for all 0 < k < 7, v(k+1) €
9S(v(k)) U {v(k)}. Since 9S(v) U {v} contains at most (cqK)%~! sites where ¢4 > 1 is a constant depending

only on the dimension, the sum over the sites v(0),...,v(T) contains at most
(ch)(d—l)r < (CdK) 2n(}i(—1) — Cg
terms for n large enough. For any fixed v(0),...,v(7), D(v(0),...,v(r)) contains at most

(T+ 12K +1)? < (n/K +2)(2K + 1) < 2n(3K)% := Csn

macroscopic sites. The constants C5 and Cs only depend on € and d. Let us recall that for a bad macroscopic
site 2, C(2) denotes the connected cluster of bad macroscopic sites containing . Let us notice that the following
event

> C| =

CeBad:
CND(v(0),...,v(T))#D

is included in the event: there exist an integer p < Csn and distinct bad macroscopic sites 2i,...,%, €

D(v(0),...,v(r)), disjoint connected components C1,...,C, such that for all 1 < k < p, C(ix) = Cx and
> h_1 |Ck| = j. Therefore, for any fixed v(0),...,v(7),

P > 0] =

CeBad:
CND(v(0),...,0(7))#0
Csn
Vi<k<p
< ._ = .
SIED D SN S Bt 52
p=1 i,€D(v(0),...,v(T)) '31,..4739‘21. C’leAnimalsﬁ

i Jitt+ip=J
i,€D(v(0),...,0(T)) _ 3 i
Vk#l i #%; C, EAnlmalsiP

where Animals” is the set of connected macroscopic sites of size k containing the site v. We have | Animals® | <
(79)* (see for instance Grimmett [8], p. 85). There are at most (CZ”) ways of choosing the sites 41, .. .,%,. Thus,

if we fix the sites 41,...,%, the number of possible choices of the connected components Ci,..., C_'p such that
for all 1 <k < p, C(i)) = Cy and > _, |Cy| = j is at most:

Y @y =ty YL

'le,u-ngZl. 'j17~~~,jp.21‘
Jit+ip=J Jite+ip=J
Next we need to estimate, for given sites i1, ..., ¢, and disjoint connected components Ci,..., C’p, the probability

that for all 1 < k < p, C(iy) = Cy. For all sites i € Uzzlék, the N-box By(%) is bad. There is a short range
of dependence between the state of the boxes. Indeed, by definition of a p-good box, the state of By(2) only
depends on boxes By (j) such that || — j||o < 138. Thus, if ||z — j||o > 278 the state of the boxes By (%) and
By (j) are independent. We can deterministically extract from Uizlc_'k a set of macroscopic sites € such that
|E] > 7/(27B)¢ and for any i # j € &, the state of the boxes By (i) and By (j) are independent. Therefore, we
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have using Proposition 4.1

P(Vl <k<p, C(g) = Ck) <P (Vi €&, By(4) is p-bad)
< P(Bx(0) is p-bad)?/ (279"
< (A(po) exp(—B(po)N(e)))”/ @™ . (5.3)
In what follows, we set
a = a(e) = (A(po) exp(=B(po) N (¢)))/ 77" (5.4)

in order to lighten the notations. We aim to find an expression of a(e) such that we get the upper bound stated
in the Proposition. The expression of N(g) will be determined by the choice of a(e). Combining inequalities
(5.2) and (5.3), we obtain

P 3 Cl = <C§j(03”)<7da>ﬂ‘ o

Cé€Bad: P Jis-sdp21
CND(v(0),...,v(7))#£0 Jit+ip=J
and so
P [ 3y starting from 0 such that |I'| < n, Z |C| > en

CeBad:CNI'#D

<oy (7%)1% <C3"> oL

izen =1 P T
Jittie=J

Notice that
0377, .
E 1= E 1= . .
= NP T 1reCgn 20 J

Jittio=j Jitticg.n=J

To bound those terms we will need the following inequality, for » > 3, N € N* and a real z such that 0 <
ez(14+ §) < 1:

Zj(r‘w:_l) < M (5.5)
j=N

v
J T l-—ez(14 %)

o

where v is an absolute constant. This inequality was present in [16] but without proof, for completeness we
will give a proof of (5.5) at the end of the proof of Proposition 5.1. Using inequality (5.5) and assuming
0 < eTdale)(1+ <) < 1, we get,

P [ 3y starting from 0 such that |I| < n, Z |C| > en
C€Bad:CNT'#£0
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. ) — 1
< C;L Z (7dOé)J (C?,n ‘;] )
j>en

[e?da(a)(l + %)rn

<vC¥% .
=Y 21—67‘104(5)(14—%)

Let us recall that Cy = (cgK)(@~V/K Cy = 2(3K)? and that K(¢) was defined in (5.1). We have to choose
a(e) and a constant 0 < C. < 1 such that C5 [eT%a(e)(1 + %)]8 < (¢ that is to say

2(d—1)

(cgK)™ R [e7da(€)(1+2(3K)d

3

)} E <C.. (5.6)

Note that the condition (5.6) implies the condition 0 < e7%«(e)(1 + %) < 1. Thus, using (5.1), we have

(0l 52 [ertageya+ 22800
2d d ©
< (cgK)® [e?da(€)4(3§) }

i d
< exp 2—}? log(cqaK) + €log (e?da(s) 4B3K) )]

[ 4(32)¢
< exp |2delog (2?i> +elog (e?da(s) (82) >]

1
<exp | — 2deloge + delog(2¢cq) + € log (46(42)%4(5) Ed+1> 1 .

We set,

5.T‘

) = Beca@)?

where r = 3d + 2. We obtain

d €
(ch)% eTda(e)(1 + @) <exp((r— (8d+1))eloge)

< exp(eloge) < 1.
By definition of « in (5.4), it follows that there exists a positive constant C; depending on 3, d, pp such that
N(e) = Cy|loge].

It remains now to prove inequality (5.5) to conclude. To show this inequality, we need a version of Stirling’s
formula with bounds: for all n € N*, one has

1 1
Vorn"Tre ™ <npl <en™tie "

)
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thus,
S ) B
= j = =1
TS 2 1)y
o ] . 7 . rfé )
=Y L (7"”. 1) ("” - 1) i
=2 J r—
oo . . r—1 1
e r\J J 1 1 2
<SS i (1 7) 1 -
_227TZ +N <+r—1) (j+r—1>
j=N
<o r\J .
= ) e(r=1)log(1+5/(r—1))
<X g7 (L) ey
j=N
00 . r \\N
e . r\s e (ez(1+ %))
< < (ez) (1_~_7) = S TN
g;\r 27 N 2r 1 —ez(1+ %)
where we use in the last inequality the fact that for all x > 0, log(1 + z) < z. O

6. REGULARITY OF THE TIME CONSTANT

In this section, we prove the main result Theorem 1.1 and its Corollary 1.2. Before proving this Theorem,
we need to prove two lemmas. The following Lemma enables to control the number of p-closed edges |v.| in a
geodesic 7y between two given points y and z in the infinite cluster C,. We denote by F} the event that 0,z € C,
and the N-boxes containing 0 and x belong to an infinite cluster of p-good boxes.

Lemma 6.1. Let p.(d) < po < p < q. We fix some 8> 0 and let py be the constant given in Lemma 3.2. Then
for every integer N, for every § > 0 and x € Z%, we have

P | E,, D% (0,z) > D%(0,z) <1+poN<q;p+5>>+poN plel

CeBad:
CNI#)

< 6—252H9¢H1 )

where I' is the lattice animal of N-bozes visited by an optimal path v between O and x in C,.

Proof. On the event F;, we have 0,z € C, C C, so there exists a g-open path joining 0 to x, let v be an optimal
one. Necessarily, we have |y| > ||z||1. We consider the modification 7" given by Lemma 3.2. As +' is p-open,

D (0,2) < |Y| <y N[+ 17 \ 7l

<hl+po | Nel+N > [C|
CeBad:CNI'#D

<D%(0,2z)+po | NIl +N > [C]] . (6.1)
CeBad:CNT'#D
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We want to control the size of ~.. For that purpose, we want to introduce a coupling of the percolations ¢
and p, such that if any edge is p-open then it is g-open, and we want the random path ~, which is an optimal
g-open path between 0 and z, to be independent of the p-state of any edge, i.e., any edge is p-open or p-closed
independently of . This is not the case when we use the classic coupling with a unique uniform random variable
for each edge. Here we introduce two sources of randomness to ease the computations by making the choice of
~ independent from the p-state of its edges. We proceed in the following way: with each edge we associate two
independent Bernoulli random variables V' and Z of parameters respectively ¢ and p/q. Then W = ZV is also
a Bernoulli random variable of parameter p. This implies

Thus, we can now bound the following quantity by summing on all possible self-avoiding paths for . For short,
we use the abbreviation s.a. for self-avoiding.

IP’(I%I % +5>>

I
-2 % P (v=rhel = bl (2 +) )

v

r s.a. path
= 3 = - ei q—p
= Z IP’(’y—r,|{e€r. elsp—closed}|2k<+5>)
= = q
k=|lz|1 |r|=k
r s.a. path
= 3 = . _ q—p
— Z IF’(’y—r,|{e€r.Z(e)_0}|>k(_H;))
= = q
k=llzlly  |r|=k
r s.a. path
= 3 = . _ q—p
=Y P(VT)PQ{eET.Z(e)o}Qk(+5>)
= = q
k=llz|lx  |r|=k
r s.a. path
< ) P(y = 1) e 20k < =207l ©2)
k=llzlls  |rl=k
r s.a. path

where we use Chernoff bound in the second to last inequality (see Thm. 1 in [10]). On the event F, N
{|’Yc| <l (% +5)}, by (6.1), we get

D& (0,0) < D0.0) + o NP1 (L2 45) 48 Y o
q CeBad:CNI'#£D

:ch(O,m)<1+poN<q;p+5>)+p0N DORTel

CeBad:CNT'#D
and the conclusion follows. O

The proof of the following Lemma is the last step before proving Theorem 1.1.
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Lemma 6.2. Let py > p.(d). Take > 0 given by Theorem 4.1. Fixz e € (0,1 — pg). There exist constants C}
(depends on py and d) and p (depends on pg, d and €) such that if we set N(g) = C1|loge|, for every ¢ > p > po,
for every x € Z¢ with ||z||1 large enough,

P (D%(ﬁcp,%% < DC (%, ) (1 T ool pN(e)) +noe||x||1) >

where 1y > 0 is a constant depending only on d and py.

Proof. Let us fix ¢ > 0. Let C; be the constant given by Proposition 5.1. Let N > Cy|loge|. Fix an z € Z¢
such that [|z||; > 3dN. We denote by ix(0) (respectively ix(x)) the i € Z? such that 0 € By (i) (resp. such
that 2 € By(4)). Let us define for 4 € Z%, Y; = L{By(4) is p-good} and by C,, the union of infinite cluster in the
macroscopic site percolation (Y;);cze. We recall that

F,={0eC,zeC}n{in(0)eC, in(x)€C,}.
We have
( ) > DCa (O Cp) (1 -l—poq_pN) +3Eﬁp0||x||1>
<p <F D6 (0,2) 2 D4(0,0) (14 m LN ) + 328l ) + P, (6.3
We have

P(Fy) <P ({0 €Cp, x € Cp}°) +P ({in(0) €C,, in(z) € C,}°) .
Using FKG inequality, we have
PO €Cpz€Cy) >P(0€C,) Pz eC,) > 62
where 6,, = P(0 € Cp,). First note that the field (Y;);cz« has a finite range of dependence that depends on £
and d. Using the stochastic comparison in [12], for every p1, there exists a positive constant o depending on g,

d and p; such that if P(Y, = 0) < « then the field (Y;);eze stochastically dominates a family of independent
Bernoulli random variables with parameter p;. Let us choose p; large enough such that

2
92 9170
site,p1 — 2

where 04;¢e,p, denotes the probability for a site to belong to the infinite cluster of i.i.d. Bernoulli site percolation
of parameter p;. Thanks to Theorem 4.1, there exists a positive integer Ny depending only on «, py and d such
that for every N > Ny,

For every € < 1 — pg, we have |loge| > |log(1 — pg)|. We set

No
o :max<,C> .
! [log(1 —po)|” "
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If we set N(e) = C}|logel, then we have N(g) > Ny so that using the stochastic domination and FKG we obtain
Pin)(0) € Cpp ine) (@) €Cp) > O, -

Finally, we get

2

0
P(FS) <1-62 +1—0%,, <1- % : (6.4)

On the event F}, we have 0,z € C,, C C,, we can consider v a geodesic from 0 to z in Cy, and let I" be the set
of N(e)-boxes that v visits.
By Lemma 6.1, we have for every § > 0

P(F,, D%(0,2) = D(0,2) (1 +pod p pN(s)) + 32Bpolla]1 )

<P | Fu, poN(e) [ DY(0,2)6+ > [Cl] > 3<Bpolxl
CeBad:CNT'#D

F,, D%(0,z) > D% (0, ) (1 + poN(e) (q;—f’ ¥ 5))

+P +poN(e) > [C]
C€Bad:
CNT#)
3ep||x
= RS E D DI < =i

CeBad:CNI'#()

2
+P(Fy, |y > Bllz||y) + e 20 Ielh

3
<P|F byl <Bllall. Y lClZﬁ“”‘f'l(m;‘(S)

CeBad:CNI'#£D

+P(Fy, 1] > Bllzfy) + e 2ol (6.5)

We set § = £/N(g). We know by Lemma 3.5 that || < 1+ (|y| + 1)/N(c). Moreover as |y| > 3dN (), we have
IT| < 2|v|/N(g). Using Proposition 5.1,

3e
PPl <Bllzl, > 1C1> Blalh (N(@ B 5)
CEBad:CNT#£(
Jv starting from 0 such that |f\ < 2'16\,H(Zglv

=¥ > |C| > 5% < CgBHIHl/N(s) (6.6)
- €

CEBad:CNT#)
where C. < 1. Moreover, by Lemma 4.3, we get

P (Fy, [y > Bllallr) < P8l < D%(0,2) < +00) < Aexp(—Bla|1). (6.7)
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Finally, combining (6.3), (6.4), (6.5), (6.6) and (6.7), we obtain that

P (DCP@CP,%CP) > DO (3¢, 3%) (1 +poq;pzv<s>) ; 3sﬁpo||x|1)
2 —~
<1- % 4+ 201l /NE) | Fe-Blelh 4 o—26lali/N(E)?
S 1-— p(‘%pO)

for an appropriate choice of p > 0 (depending on pg, € and d) and for every x such that ||z||; is large enough. O

Proof of Theorem 1.1. Lete > 0,6 > 0, pg > p.(d) and = € Z%, consider N(¢) = C}|loge| and p as in Lemma 6.2
and q¢ > p > pg. With the convergence of the regularized times given by Proposition 2.1, we can choose n large
enough such that

DEr (acp , %Cp)
n

P <Hp(x) —0<

n

b (ch (0%, nz’r) -

qa—p

i (Dcp(ﬁcp,ﬁy’ccp) < DC (0%, 7z’) (1 + po N(a)) n n05n|x||1> >p.

The intersection of these three events has positive probability, we obtain on this intersection

() — 6 < (g(a) + 0) (1 n poq;pN(s)) T noellell

By taking the limit when 0 goes to 0 we get

q—p

@) < pa(e) (1 0N ) el

By Corollary 2.2, we know that the map p — 1, is non-increasing. We also know that p,(x) < ||z||1pp(e1) for
e1 = (1,0,...,0), for any p > p.(d) and any x € Z?. Thus, for every ¢ > 0,

q—Dp
() = 1g(2) < p1g(x)p0 L=—L N () + noexlx
< ino () 2l|10 L N (€) + noel|z |1
pc(d)

< no(po) 1zl (N (e)(q — p) +¢€)

where 7, is a constant depending on d and pg. Using the expression of N(e) stated in Lemma 6.2, we obtain

pp() = pig(x) < mollzlly (C7llogel(q — p) +€) - (6.8)
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By setting € = ¢ — p in the inequality, we get

tip(x) — prg(2) < nyllzlli(g — p)|log(g — p)|

where 1y > 0 depends only on py and d. Thanks to Corollary 2.2, we have p,(z) — pq(x) > 0, so that

|1p(2) = pg(@)| < mgllll1 (g — p)[log(q — p)| . (6.9)

By homogeneity, (6.9) also holds for all z € Q%. Let us recall that for all z,y € R% and p > p.(d),

[ () = pp(W)] < pp(er) |z =yl (6.10)

see for instance Theorem 1 in [2]. Moreover, there exists a finite set (y1, ..., ym) of rational points of S?~1 such
that

5 1CU{x€Sd1 Iy — @l < (a—p)/log(a—p)| }

=1

Let z € S~! and y; such that |jy; — z||; < (¢ — p)|log(g — p)|. Using inequality (6.10), we get

l1ip () — p1q ()]
< \up( z) — pp(Ya)| + |1p (i) — 1q (Vi) + [1g(yi) — pg(2)]
< pp(en)llyi — v + g lyill1 (g — p)[log(q — p)| + pg(en)llys — =
< (2pap, (e1) +19) (¢ — p)|log(q — p)| -

This yields the result. O

Proof of Corollary 1.2. Let pg > p.(d). We consider the constant ko appearing in the Theorem 1.1. Let p < ¢
in [po, 1]. We recall the following definition of the Hausdorff distance between two subsets E and F of R%:

dy(E, F) :inf{reR+:EcF’" andFCET}
where E" = {y : 3z € E, |ly — z||2 < r}. Thus, we have

Y Y

dy (B, ,B, )< su
u He #q) P Mp(y) Mq(y)

yesd—1

2

min

Note that y/pu,(y) (vesp. y/pq(y)) is in the unit sphere for the norm p, (vesp. j,). Let us define pu
inf,ega—1 (7). As the map p — p,, is uniformly continuous on the sphere S¥=! (see Thm. 1.2 in [7],) the map

min min

p — py"" is also continuous and p = 1infpep,,1) u;m” > 0. Finally
dy (B, . B,.) < ! ’
s < sup -
8 yesi1 | Hp(y)  pq(y)
1
< sup ™ |1p(y) — 1Y)

yesd—1 Hq(y) pp(y

< sup

S SW e 1p(y) — 11q(y)]
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)

Szﬁ5@§@—pﬂbﬁq—ML

This yields the result. O

Remark 6.3. At this stage, we were not able to obtain Lipschitz continuity for p — p,,. The difficulty comes
from the fact that we do not know the correlation between v and the state of the boxes that ~y visits. At first
sight, it may seem that the renormalization is responsible for the appearance of the log terms in Theorem 1.1.
However, when p is very close to 1, we can avoid renormalization and bypass p-closed edges at a microscopic scale
as in [15] but even in that case, we cannot obtain Lipschitz continuous regularity with the kind of combinatorial
computations made in Section 5. A similar issue arises, it is hard to deal with the correlation between p-closed
edges of v and the length of the microscopic bypasses.
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