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REGULARITY OF THE TIME CONSTANT FOR A SUPERCRITICAL

BERNOULLI PERCOLATION∗

Barbara Dembin**

Abstract. We consider an i.i.d. supercritical bond percolation on Zd, every edge is open with a
probability p > pc(d), where pc(d) denotes the critical parameter for this percolation. We know that
there exists almost surely a unique infinite open cluster Cp. We are interested in the regularity properties
of the chemical distance for supercritical Bernoulli percolation. The chemical distance between two
points x, y ∈ Cp corresponds to the length of the shortest path in Cp joining the two points. The
chemical distance between 0 and nx grows asymptotically like nµp(x). We aim to study the regularity
properties of the map p → µp in the supercritical regime. This may be seen as a special case of first
passage percolation where the distribution of the passage time is Gp = pδ1 + (1− p)δ∞, p > pc(d). It
is already known that the map p→ µp is continuous.
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1. Introduction

The model of first passage percolation was first introduced by Hammersley and Welsh [9] as a model for
the spread of a fluid in a porous medium. Let d ≥ 2. We consider the graph (Zd,Ed) having for vertices Zd
and for edges Ed the set of pairs of nearest neighbors in Zd for the Euclidean norm. To each edge e ∈ Ed we
assign a random variable t(e) with values in R+ so that the family (t(e), e ∈ Ed) is independent and identically
distributed according to a given distribution G. The random variable t(e) may be interpreted as the time needed
for the fluid to cross the edge e. We can define a random pseudo-metric T on this graph: for any pair of vertices
x, y ∈ Zd, the random variable T (x, y) is the shortest time to go from x to y. Let x ∈ Zd \ {0}. One can ask
what is the asymptotic behavior of the quantity T (0, x) when ‖x‖ goes to infinity. Under some assumptions on
the distribution G, one can prove that asymptotically when n is large, the random variable T (0, nx) behaves
like n · µG(x) where µG(x) is a deterministic constant depending only on the distribution G and the point x.
The constant µG(x) corresponds to the limit of T (0, nx)/n when n goes to infinity, when this limit exists. This
result was proved by Cox and Durrett in [15] in dimension 2 under some integrability conditions on G, they
also proved that µG is a semi-norm. Kesten extended this result to any dimension d ≥ 2 in [11], and he proved
that µG is a norm if and only if G({0}) < pc(d). In the study of first passage percolation, µG is usually called
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the time constant. The constant µG(x) may be seen as the inverse of the speed of spread of the fluid in the
direction of x.

It is possible to extend this model by doing first passage percolation on a random environment. We consider
an i.i.d. supercritical bond percolation on the graph (Zd,Ed). Every edge e ∈ Ed is open with a probability
p > pc(d), where pc(d) denotes the critical parameter for this percolation. We know that there exists almost
surely a unique infinite open cluster Cp [8]. We can define the model of first passage percolation on the infinite
cluster Cp. To do so, we consider a probability measure G on [0,+∞] such that G([0,∞[) = p. In this setting,
the p-closed edges correspond to the edges with an infinite value and so the cluster Cp made of the edges with
finite passage time corresponds to the infinite cluster of a supercritical Bernoulli percolation of parameter p.
The existence of a time constant for such distributions was first obtained in the context of stationary integrable
ergodic field by Garet and Marchand in [4] and was later shown for an independent field without any integrability
condition by Cerf and Théret in [2].

The question of the continuity of the map G → µG started in dimension 2 with the article of Cox [14]. He
showed the continuity of this map under the hypothesis of uniform integrability: if Gn weakly converges toward
G and if there exists an integrable law F such that for all n ∈ N, F stochastically dominates Gn, then µGn → µG.
In [16], Cox and Kesten prove the continuity of this map in dimension 2 without any integrability condition.
Their idea was to consider a geodesic for truncated passage times min(t(e),M), and along it to avoid clusters
of p-closed edges, that is to say edges with a passage time larger than some M > 0, by bypassing them with a
short path in the boundary of this cluster. Note that by construction, the edges of the boundary have passage
time smaller than M . Thanks to combinatorial considerations, they were able to obtain a precise control on
the length of these bypasses. This idea was later extended to all the dimensions d ≥ 2 by Kesten in [11], by
taking a M large enough such that the percolation of the edges with a passage time larger than M is highly
subcritical: for such a M , the size of the clusters of p-closed edges can be controlled. However, this idea does
not work anymore when we allow passage time to take infinite values. In [7], Garet, Marchand, Procaccia and
Théret proved the continuity of the map G→ µG for general laws on [0,+∞] without any moment condition.
More precisely, let (Gn)n∈N, and G probability measures on [0,+∞] such that Gn weakly converges toward G

(we write Gn
d→ G), that is to say for all continuous bounded functions f : [0,+∞]→ [0,+∞), we have

lim
n→+∞

∫
[0,+∞]

fdGn =

∫
[0,+∞]

fdG .

Equivalently, we say that Gn
d→ G if and only if limn→+∞Gn([t,+∞]) = G([t,+∞]) for all t ∈ [0,+∞] such

that x→ G([x,+∞]) is continuous at t. If moreover for all n ∈ N, Gn([0,+∞)) > pc(d) and G([0,+∞)) > pc(d),
then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.
In this paper, we focus on distributions of the form Gp = pδ1 + (1 − p)δ∞, p > pc(d). We denote by C′p be

the subgraph of Zd whose edges are open for the Bernoulli percolation of parameter p. The travel time given
by a law Gp between two points x and y ∈ Zd coincides with the so-called chemical distance that is the graph
distance between x and y in C′p. Namely, for x, y ∈ Zd, we define the chemical distance DC

′
p(x, y) as the length of

the shortest p-open path joining x and y. Note that if x and y are not in the same cluster of C′p, DC
′
p(x, y) = +∞.

Actually, when x and y are in the same cluster, DC
′
p(x, y) is of order ‖y−x‖1. In [1], Antal and Pisztora obtained

the following large deviation upper bound. There exists a constant ρ > 0 depending on p and d such that

lim sup
‖y‖1→∞

1

‖y‖1
logP(0↔ y,DC

′
p(0, y) > ρ‖y‖1) < 0 .
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This result implies that

lim sup
‖y‖1→∞

1

‖y‖1
DC
′
p(0, y)10↔y ≤ ρ, Pp a.s.

These results were proved using renormalization arguments. They were improved later in [4] by Garet and

Marchand, for the more general case of a stationary ergodic field. They proved that DC
′
p(0, x) grows linearly in

‖x‖1. More precisely, for each y ∈ Zd \ {0}, they proved the existence of a constant µp(y) such that

lim
n→∞
0↔ny

DC
′
p(0, ny)

n
= µp(y), Pp a.s. .

The constant µp is called the time constant. The map p→ µp can be extended to Qd by homogeneity and to Rd
by continuity. It is a norm on Rd. This convergence holds uniformly in all directions, this is equivalent of saying
that an asymptotic shape emerges. Indeed, the set of points that are at a chemical distance from 0 smaller
than n asymptotically looks like nBµp , where Bµp denotes the unit ball associated with the norm µp. In another

paper [5], Garet and Marchand studied the fluctuations of DC
′
p(0, y)/µp(y) around its mean and obtained the

following large deviation result:

∀ε > 0, lim sup
‖x‖1→∞

lnPp
(

0↔ x, D
C′p (0,y)
µp(y) /∈ (1− ε, 1 + ε)

)
‖x‖1

< 0 .

In the same paper, they showed another large deviation result that, as a corollary, proves the continuity of the
map p → µp in p = 1. In [6], Garet and Marchand obtained moderate deviations of the quantity |DC

′
p(0, y) −

µp(y)|. As a corollary of the work of Garet, Marchand, Procaccia and Théret in [7] we obtain the continuity of
the map p→ µp in (pc(d), 1]. Our paper is a continuation of [7], our aim is to obtain better regularity properties
for the map p→ µp than just continuity. We prove the following theorem.

Theorem 1.1 (Regularity of the time constant). Let p0 > pc(d). There exists a constant κ0 depending only on
d and p0, such that for all p ≤ q in [p0, 1]

sup
x∈Sd−1

|µp(x)− µq(x)| ≤ κ0(q − p)| log(q − p)| .

To study the regularity of the map p→ µp, our aim is to control the difference between the chemical distance in
the infinite cluster Cp of a Bernoulli percolation of parameter p > pc(d) with the chemical distance in Cq where
q ≥ p. The key part of the proof lies in the modification of a path. We couple the two percolations such that
a p-open edge is also q-open but the converse does not necessarily hold. We consider a q-open path for some
q ≥ p > pc(d). Some of the edges of this path are p-closed, we want to build upon this path a p-open path by
bypassing the p-closed edges. In order to bypass them, we use the idea of [7] and we build our bypasses at a
macroscopic scale. This idea finds its inspiration in the works of Antal and Pisztora [13] and Cox and Kesten
[16]. We have to consider an appropriate renormalization and we obtain a macroscopic lattice with good and
bad sites. Good and bad sites correspond to boxes of size 2N in the microscopic lattice. We will do our bypasses
using good sites at a macroscopic scale that will have good connectivity properties at a microscopic scale. The
remainder of the proof consists in getting probabilistic estimates of the length of the bypass. In this article we
improve the estimates obtained in [7]. We quantify the renormalization to be able to give quantitative bounds
on continuity. Namely, we give an explicit expression of the appropriate size of a N -box. We use the idea of
corridor that appeared in the work of Cox and Kesten [16] to have a better control on combinatorial terms and
derive a more precise control of the length of the bypasses than the one obtained in [7].
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We recall that Bµp denotes the unit ball associated with the norm µp. From Theorem 1.1, we can easily
deduce the following regularity of the asymptotic shape.

Corollary 1.2 (Regularity of the asymptotic shape). Let p0 > pc(d). There exists a constant κ′0 depending only
on d and p0, such that for all p ≤ q in [p0, 1],

dH(Bµq ,Bµp) ≤ κ′0(q − p)| log(q − p)|

where dH is the Hausdorff distance between non-empty compact sets of Rd.

Here is the structure of the paper. In Section 2, we introduce some definitions and preliminary results that
are going to be useful in what follows. Section 3 presents the renormalization process and how we modify a
q-open path to turn it into a p-open path and how we can control the length of the bypasses. In Sections 4
and 5, we get probabilistic estimates on the length of the bypasses. Finally, in Section 6 we prove the main
Theorem 1.1 and its Corollary 1.2.

Remark 1.3. Section 3 is a simplified version of the renormalization process that was already present in [7]. The
simplification comes from the fact that we are not interested in general distributions but only on distributions
Gp for p > pc(d) which have the advantage of taking only two values 1 or +∞. The original part of this work
is the quantification of the renormalization and the combinatorial estimates of Section 5.

2. Definitions and preliminary results

Let d ≥ 2. Let us recall the different distances in Rd. Let x = (x1, . . . , xd) ∈ Rd, we define

‖x‖1 =

d∑
i=1

|xi|, ‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max{|xi|, i = 1, . . . , d} .

Let G be a subgraph of (Zd,Ed) and x, y ∈ G. A path γ from x to y in G is a sequence γ = (v0, e1, . . . , en, vn)
such that v0 = x, vn = y and for all i ∈ {1, . . . , n}, the edge ei = 〈vi−1, vi〉 belongs to G. We say that x and y
are connected in G if there exists such a path. We denote by |γ| = n the length of γ. We define

DG(x, y) = inf{|r| : r is a path from x to y in G}

the chemical distance between x and y in G. If x and y are not connected in G, DG(x, y) =∞. In the following,
G will be C′p the subgraph of Zd whose edges are open for the Bernoulli percolation of parameter p > pc(d).
To get around the fact that the chemical distance can take infinite values we introduce a regularized chemical
distance. Let C ⊂ C′p be a connected cluster, we define x̃C as the vertex of C which minimizes ‖x− x̃C‖1 with a
deterministic rule to break ties. As C ⊂ C′p, we have

DC
′
p(x̃C , ỹC) ≤ DC(x̃C , ỹC) <∞ .

Typically, C is going to be the infinite cluster for Bernoulli percolation with a parameter p0 ≤ p (thus Cp0 ⊂ C′p).
We can define the regularized time constant as in [6] or as a special case of [2].

Proposition 2.1. Let p > pc(d). There exists a deterministic function µp : Zd → [0,+∞), such that for every
p0 ∈ (pc(d), p]:

∀x ∈ Zd lim
n→∞

DCp(0̃Cp0 , ñx
Cp0 )

n
= µp(x) a.s. and in L1.
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It is important to check that µp does not depend on p0, i.e., on the cluster Cp0 we use to regularize. This is done
in Lemma 2.11 in [7]. As a corollary, we obtain the monotonicity of the map p → µp which is non increasing,
see Lemma 2.12 in [7].

Corollary 2.2. For all pc(d) < p ≤ q and for all x ∈ Zd,

µp(x) ≥ µq(x) .

We will also need this other definition of path that corresponds to the context of site percolation. Let G be
a subset of Zd and x, y ∈ G. We say that the sequence γ = (v0, . . . , vn) is a Zd-path from x to y in G if v0 = x,
vn = y and for all i ∈ {1, . . . , n}, vi ∈ G and ‖vi − vi−1‖1 = 1.

3. Modification of a path

In this section we present the renormalization process. We are here at a macroscopic scale, we define good
boxes to be boxes with useful properties to build our modified paths.

3.1. Definition of the renormalization process

Let p > pc(d) be the parameter of an i.i.d. Bernoulli percolation on the edges of Zd. For a large integer N ,
that will be chosen later, we set BN = [−N,N [d∩Zd and define the following family of N -boxes, for i ∈ Zd,

BN (i) = τi(2N+1)(BN )

where τb denotes the shift in Zd with vector b ∈ Zd. Zd is the disjoint union of this family: Zd = ti∈ZdBN (i).
We need to introduce larger boxes that will help us to link N -boxes together. For i ∈ Zd, we define

B′N (i) = τi(2N+1)(B3N ).

To define what a good box is, we have to list properties that a good box should have to ensure that we can
build a modification of the path as we have announced in the introduction. We have to keep in mind that all
the properties must occur with probability close to 1 when N goes to infinity. Before defining what a good box
is, let us recall some definitions. A connected cluster C is crossing for a box B, if for all d directions, there is
an open path in C ∩B connecting the two opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Definition 3.1. Let β > 0 be a constant that will be defined later. We say that the macroscopic site i is p-good
if the following events occur:

(i) There exists a unique p-cluster C in B′N (i) with diameter larger than N ;
(ii) This p-cluster C is crossing for each of the 3d N -boxes included in B′N (i);

(iii) For all x, y ∈ B′N (i), if x and y belong to C then DC
′
p(x, y) ≤ 12βN .

C is called the crossing p-cluster of the p-good box BN (i).

Let us define a percolation by site on the macroscopic grid given by the states of the boxes, i.e., we say that
a macroscopic site i is open if the box BN (i) is p-good, otherwise we say the site is closed. Note that the states
of the boxes are not independent, there is a short range dependence.

On the macroscopic grid Zd, we consider the standard definition of closest neighbors, that is to say i and
j are neighbors if ‖i − j‖1 = 1. Let C be a connected set of macroscopic sites, we define its exterior vertex
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boundary

∂vC =

{
i ∈ Zd \ C : i has a neighbor in C and is connected

to infinity by a Zd-path in Zd \ C

}
.

For a bad macroscopic site i, let us denote by C(i) the connected cluster of bad macroscopic sites containing
i. If C(i) is finite, the set ∂vC(i) is not connected in the standard definition but it is with a weaker definition
of neighbors. We say that two macroscopic sites i and j are ∗-neighbors if and only if ‖i− j‖∞ = 1. Therefore,
∂vC(i) is an ∗-connected set of good macroscopic sites, see for instance Lemma 2 in [17]. We adopt the convention
that ∂vC(i) = {i} when i is a good site.

3.2. Construction of bypasses

Let us consider pc(d) < p0 ≤ p ≤ q. Let β > 0 that we will choose later depending on p0. We fix N in this
section and we build the renormalized process on the macroscopic N -boxes. Let us consider a q-open path γ.
We couple the two percolation processes of parameters p and q in such a way that a p-open edge is necessarily
q-open. Thus, some edges in γ might be p-closed. We denote by γo the set of p-open edges in γ, and by γc the
set of p-closed edges in γ. Our aim is to build a bypass for each edge in γc using only p-open edges. The proof
will follow the proof of Lemma 3.2 in [7] up to some adaptations.

As the bypasses are going to be made at a macroscopic scale, we need to consider the N -boxes that γ crosses.
We denote by Γ ⊂ Zd the connected set of all the N -boxes visited by γ. The set Γ is a lattice animal, i.e., a
connected finite set of macroscopic sites. We denote by Bad the random set of bad connected components on
the macroscopic percolation given by the states of the N -boxes. The following Lemma states that we can bypass
all the p-closed edges in γ and gives a control on the total size of these bypasses.

Lemma 3.2. We fix some β > 0 and an integer N . Let us consider y, z ∈ Cp such that the N -boxes of y and z
belong to an infinite cluster of p-good boxes. Let us consider a q-open path γ joining y to z. Then there exists a
p-open path γ′ between y and z that has the following properties:

(1) γ′ \ γ is a set of disjoint self avoiding p-open paths that intersect γ′ ∩ γ at their endpoints;

(2) |γ′ \γ| ≤ ρ0N

( ∑
C∈Bad:C∩Γ6=∅

|C|+ |γc|

)
, where ρ0 is a constant depending only on the dimension d and β.

Remark 3.3. Note that here we don’t need to introduce a parameter p0 and require that the bypasses are
p0 open as in [7]. Indeed, this condition was required because finite passage times of edges were not bounded.
This is the reason why it was needed in [7] to bypass p-closed edges with p0-open edges. These p0-open edges
were precisely edges with passage time smaller than some constant M0. In our context, we can get rid of this
technical aspect because passage times when finite may only take the value 1.

Before proving Lemma 3.2, we need to prove the following lemma that gives a control on the length of a path
between two points in a ∗-connected set of good boxes.

Lemma 3.4. Let I be a set of n ∈ N∗ macroscopic sites such that (BN (i))i∈I is a ∗-connected set of p-good
N -boxes. Let x ∈ BN (j) be in the p-crossing cluster of BN (j) with j ∈ I and y ∈ BN (k) be in the p-crossing
cluster of BN (k) with k ∈ I. Then, we can find a p-open path joining x and y of length at most 12βNn (with
the same constant β as in Def. 3.1).

Proof of Lemma 3.4. Since I is a ∗-connected set of macroscopic sites, there exists a self-avoiding macroscopic
∗-connected path (ϕi)1≤i≤r ⊂ I such that ϕ1 = j, ϕr = k. Thus, we get that r ≤ |I| = n. As all the sites in I
are good, all the N -boxes corresponding to the sites (ϕi)1≤i≤r are good.

For each 2 ≤ i ≤ r− 1, we define xi to be a point in the p-crossing cluster of the box BN (ϕi) chosen according
to a deterministic rule. We define x1 = x and xr = y. For each 1 ≤ i < r, xi and xi+1 both belong to B′N (ϕi).
Using property (iii) of a p-good box, we can build a p-open path γ(i) from xi to xi+1 of length at most 12βN .
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By concatenating the paths γ(1), . . . , γ(r− 1) in this order, we obtain a p-open path joining x to y of length at
most 12βNn.

Proof of Lemma 3.2. Let us consider y, z ∈ Cp such that the N -boxes of y and z belong to an infinite cluster
of p-good boxes. Let γ be a q-open path joining y to z. The idea is the following. We want to bypass all the
p-closed edges of γ. Let us consider an edge e ∈ γc and BN (i) its associated N -box. There are two different
cases:

– If BN (i) is a good box, we can build a p-open bypass of e at a microscopic scale by staying in a fixed
neighborhood of BN (i). We will use the third property of good boxes to control the length of the bypass
that will be at most 12βN .

– If BN (i) is a bad box, we must build a p-open bypass at a macroscopic scale in the exterior vertex boundary
∂vC(i) that is an ∗-connected component of good boxes. We will use Lemma 3.4 to control the length of
this bypass.

Let ϕ0 = (ϕ0(j))1≤j≤r0 be the sequence ofN -boxes γ visits. From the sequence ϕ0, we can extract the sequence
of N -boxes containing at least one p-closed edge of γ. We only keep the indices of the boxes containing the
smallest extremity of a p-closed edge of γ for the lexicographic order. We obtain a sequence ϕ1 = (ϕ1(j))1≤j≤r1 .
Notice that r1 ≤ r0 and r1 ≤ |γc|. Before building our bypasses, we have to get rid of some pathological cases.
We are going to proceed to further extractions. Note that two ∗-connected components of (∂vC(ϕ1(j)))1≤j≤r1
can be ∗-connected together, in that case they count as a unique connected component. Namely, the set E =
∪1≤j≤r1∂vC(ϕ1(j)) has at most r1 ∗-connected components (Sϕ2(j))1≤j≤r2 . Up to reordering, we can assume
that the sequence (Sϕ2(j))1≤j≤r2 is ordered in such a way that Sϕ2(1) is the first ∗-connected component of E
visited by γ among the (Sϕ2(j))1≤j≤r2 , Sϕ2(2) is the second and so on. Next, we consider the case of nesting,
that is to say when there exist j 6= k such that Sϕ2(j) is in the interior of Sϕ2(k). In that case, we only keep
the largest connected component Sϕ2(k): we obtain another subsequence (Sϕ3(j))1≤j≤r3 with r3 ≤ r2. Finally,
we want to exclude a last case, when between the moment we enter for the first time in a given connected
component and the last time we leave this connected component, we have explored other connected components
of (Sϕ3(j))1≤j≤r3 . That is to say we want to remove the macroscopic loops γ makes between different visits
of the same ∗-connected components Sϕ3(j) (see Fig. 1). We iteratively extract from (Sϕ3(j))1≤j≤r3 a sequence
(Sϕ4(j))1≤j≤r4 in the following way: Sϕ4(1) = Sϕ3(1), assume (Sϕ4(j))1≤j≤k is constructed ϕ4(k+1) is the smallest
indice ϕ3(j) such that γ visits Sϕ3(j) after its last visit to Sϕ4(k). We stop the process when we cannot find such
j. Of course, r4 ≤ r3. The sequence (Sϕ4(j))1≤j≤r4 is a sequence of sets of good N -boxes that are all visited
by γ.

Let us introduce some notations (see Fig. 2), we write γ = (x0, . . . , xn). For all k ∈ {1, . . . , r4}, we denote
by Ψin(k) (respectively Ψout(k)) the first moment that γ enters in Sϕ4(1) (resp. last moment that γ exits from
Sϕ4(1)). More precisely, we have

Ψin(1) = min
{
j ≥ 1, xj ∈ Sϕ4(1)

}
and

Ψout(1) = max
{
j ≥ Ψin(1), xj ∈ Sϕ4(1)

}
.

Assume Ψin(1), . . . ,Ψin(k) and Ψout(1), . . . ,Ψout(k) are constructed then

Ψin(k + 1) = min
{
j ≥ Ψout(k), xj ∈ Sϕ4(k+1)

}
and

Ψout(k + 1) = max
{
j ≥ Ψin(k + 1), xj ∈ Sϕ4(k+1)

}
.
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Figure 1. Construction of the path γ′ – First step.

Let Bin(j) be the N -box in Sϕ4(j) containing xΨin(j), Bout(j) be the N -box in Sϕ4(j) containing xΨout(j). Let
γ(j) be the section of γ from xΨout(j) to xΨin(j+1) for 1 ≤ j < r4, let γ(0) (resp γ(r4)) be the section of γ from
y to xΨin(1) (resp. from xΨout(r4) to z).

We have to study separately the beginning and the end of the path γ. Note that as the N -boxes of y and z
both belong to an infinite cluster of good boxes, their box cannot be nested in a bigger ∗-connected components
of good boxes of the collection (Sϕ4(j))1≤j≤r4 . Thus, if BN (k), the N -box of y, contains a p-closed edge of
γ, necessarily Sϕ4(1) contains BN (k), Bin(1) = BN (k) and xΨin(1) = y. Similarly, if BN (l), the N -box of z,
contains a p-closed edge of γ, necessarily Sϕ4(r4) contains BN (l), Bout(r4) = BN (l) and xΨout(r4) = z.

In order to apply Lemma 3.4, let us show that for every j ∈ {1, . . . , r4}, xΨin(j) (resp. xΨout(j)) belongs to
the p-crossing cluster of Bin(j) (resp. Bout(j)). Let us study separately the case of xΨin(1) and xΨout(r4). If
xΨin(1) = y then xΨin(1) belongs to the p-crossing cluster of Bin(j). Suppose that xΨin(1) 6= y. As y ∈ Cp and
y is connected to xΨin(1) by a p-open path, xΨin(1) is also in Cp. By the property (i) of a good box applied
to Bin(1), we get that xΨin(1) is in the p-crossing cluster of Bin(1). We study the case of xΨout(r4) similarly.
To study xΨin(j) (resp. xΨout(j))) for j ∈ {2, . . . , r4 − 1}, we use the fact that by construction, thanks to the
extraction ϕ2, two different elements of (Sϕ4(j))1≤j≤r4 are not ∗-connected. Therefore, for 1 ≤ j < r4, we have

‖xΨin(j+1) − xΨout(j)‖1 ≥ N

and so the section γ(j) of γ from xΨout(j) to xΨin(j+1) has a diameter larger than N and contains only p-open
edges. As Bout(j) and Bin(j+ 1) are good boxes, we obtain, using again property (i) of good boxes, that xΨout(j)

and xΨin(j+1) belong to the p-crossing cluster of their respective boxes.
Finally, by Lemma 3.4, for every j ∈ {1, . . . , r4}, there exists a p-open path γlink(j) joining xΨin(j) and

xΨout(j) of length at most 12βN |Sϕ4(j)|. We obtain a p-open path γ′ joining y and z by concatenating
γ(0), γlink(1), γ(1), . . . , γlink(r4), γ(r4) in this order. Up to removing potential loops, we can suppose that each
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Figure 2. Construction of the path γ′ – Second step.

γlink(j) is a self-avoiding path, that all the γlink(j) are disjoint and that each γlink(j) intersects only γ(j − 1)
and γ(j) at their endpoints. Let us estimate the quantity |γ′ \ γ|, as γ′ \ γ ⊂ ∪r4i=1γlink(i), we obtain:

|γ′ \ γ| ≤
r4∑
j=1

|γlink(j)|

≤
r4∑
j=1

12βN |Sϕ4(j)|

≤ 12βN |γc|+ 12βN
∑

C∈Bad:C∩Γ6=∅

|∂vC|

where the last inequality comes from the fact that each Sϕ4(j) is the union of elements of {∂vC : C ∈ Bad;C∩Γ 6=
∅} and of good boxes that contain edges of γc. We conclude by noticing that |∂vC| ≤ 2d|C|.

3.3. Deterministic estimate

When q− p is small, we want to control the probability that the total length of the bypasses γ′ \ γ of p-closed
edges is large. We can notice in Lemma 3.2 that we need to control the bad connected components of the
macroscopic site percolation. This will be done in Section 5. We will also need a deterministic control on |Γ|
which is the purpose of the following Lemma (this Lemma is an adaptation of Lemma 3.4 of [7]).
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Lemma 3.5. For every path γ of Zd, for every N ∈ N∗, there exists a ∗-connected macroscopic path Γ̃ such
that

γ ⊂
⋃
i∈Γ̃

B′N (i) and |Γ̃| ≤ 1 +
|γ|+ 1

N
.

Proof. Let γ = (xi)1≤i≤n be a path of Zd where xi is the i-th vertex of γ. Let Γ be the set of N -boxes that γ

visits. We are going to define iteratively the macroscopic path Γ̃. Let p(1) = 1 and i1 be the macroscopic site
such that x1 ∈ BN (i1). We suppose that i1, . . . , ik and p(1), . . . , p(k) are constructed. Let us define

p(k + 1) = min {j > p(k) : xj /∈ B′N (ik)} .

If this set is not empty, we set ik+1 to be the macroscopic site such that

xp(k+1) ∈ BN (ik+1) .

Otherwise, we stop the process, and we get that for every j ∈ {p(k), . . . , n}, xj ∈ B′N (ik). As n is finite, the
process will eventually stop and the two sequences (p(1), . . . , p(r)) and (i1, . . . , ir) are finite. Note that the ij
are not necessarily all different. We define Γ̃ = (i1, . . . , ir). By construction,

γ ⊂
⋃
i∈Γ̃

B′N (i) .

Notice that for every 1 ≤ k < r, ‖xp(k+1) − xp(k)‖1 ≥ N , thus p(k + 1) − p(k) ≥ N . This leads to N(r − 1) ≤
p(r)− p(1) ≤ n, and finally,

|Γ̃| ≤ 1 +
|γ|+ 1

N
.

Remark 3.6. This Lemma implies that if Γ is the set of N -boxes that γ visits then

|Γ| ≤ 3d|Γ̃| ≤ 3d
(

1 +
|γ|+ 1

N

)
.

4. Control of the probability that a box is good

We need in what follows to control the quantity
∑
|C| where the sum is over all C ∈ Bad such that C ∩Γ 6= ∅.

We would like to obtain a control which is uniform in the parameter of percolation p. To do so, we are going
to introduce a parameter p0 > pc(d) and obtain a uniform control in p for all p ≥ p0 of the probability that the
box BN is p-bad.

Theorem 4.1. Let p0 > pc(d). There exist positive constants β(p0) > 0, A(p0) and B(p0) such that for all
p ≥ p0 and for all N ≥ 1

P(BN is p-bad) ≤ A(p0) exp(−B(p0)N) .

Note that the property (ii) of the definition of p-good box is a non-decreasing event in p. Thus, it will be easy to
bound uniformly the probability that property (ii) is not satisfied by something depending only on p0. However,
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for properties (i) and (iii) a uniform bound is more delicate to obtain. Before proving Theorem 4.1, we need the
two following lemmas that deal with properties (i) and (iii). Let Tm,N (p) be the event that BN has a p-crossing
cluster and contains some other p-open cluster C having diameter at least m.

Lemma 4.2. Let p0 > pc(d), there exist ν = ν(p0) > 0 and κ = κ(p0) such that for all p ≥ p0

P(Tm,N (p)) ≤ κN2d exp(−νm) . (4.1)

The following Lemma is an improvement of the result of Antal and Pisztora in [1] that controls the probability
that two connected points have a too large chemical distance. In the original result, the constants depend on
p, we slightly modify its proof so that constants are the same for all p ≥ p0. This improvement is required to
obtain a decay that is uniform in p.

Lemma 4.3. Let p0 > pc(d), there exist β = β(p0) > 0, Â = Â(p0) and B̂ = B̂(p0) > 0 such that for all p ≥ p0

∀x ∈ Zd P(β‖x‖1 ≤ DC
′
p(0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (4.2)

Remark 4.4. Note that this is not an immediate corollary of [1]. Although increasing the parameter of percola-
tion p reduces the chemical distance, it also increases the probability that two vertices are connected. Therefore
the event that we aim to control is neither non-increasing neither non-decreasing in p.

Before proving these two lemmas, we are first going to prove Theorem 4.1.

Proof of Theorem 4.1. Let us fix p0 > pc(d). Let us denote by (iii)′ the property that for all x, y ∈ B′N (i), if

‖x − y‖∞ ≥ N and if x and y belong to the p-crossing cluster C then DC
′
p(x, y) ≤ 6βN . Note that properties

(ii) and (iii)′ imply property (iii). Indeed, thanks to (ii), we can find z ∈ C ∩B′N (i) such that ‖x− z‖∞ ≥ N
and ‖y − z‖∞ ≥ N . Therefore, by applying (iii)′,

DC
′
p(x, y) ≤ DC

′
p(x, z) +DC

′
p(z, y)

≤ 12βN .

Thus, we can bound the probability that a N -box is bad by the probability that it does not satisfy one of the
properties (i), (ii) or (iii)′. Since we want to control the probability of BN being a p-bad box uniformly in p,
we will emphasize the dependence of (i), (ii) and (iii)′ in p by writing (i)p, (ii)p and (iii)′p. First, let us prove
that the probability that a N -box does not satisfy property (ii)p, i.e., the probability for a box not to have a
p-crossing cluster, is decaying exponentially, see for instance Theorem 7.68 in [8]. There exist positive constants
κ1(p0) and κ2(p0) such that for all p ≥ p0

P(BN does not satisfies (ii)p) ≤ P(BN does not satisfies (ii)p0)

≤ κ1(p0) exp(−κ2(p0)Nd−1) . (4.3)

Next, let us bound the probability that a N -box does not satisfy property (iii)′p. Using Lemma 4.3, for p ≥ p0,

P(BN does not satisfy (iii)′p)

≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
(

6βN ≤ DC
′
p(x, y) < +∞

)
≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
(
β‖x− y‖∞ ≤ DC

′
p(x, y) < +∞

)
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≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥N Â exp(−B̂N)

≤ (6N + 1)2dÂ exp(−B̂N) .

Finally, by Lemma 4.2,

P(BN is p-bad)

≤ P(BN does not satisfies (ii)p) + P(BN satisfies (ii)p but not (i)p)

+ P(BN does not satisfy (iii)′p)

≤ κ1 exp(−κ2N
d−1) + 3dκN2d exp

(
−ν N

3d

)
+ (6N + 1)2dÂ exp(−B̂N)

≤ A(p0)e−B(p0)N .

For the second inequality, we used inequality (4.3) and the fact that the event that the 3d N -boxes of B′N are
crossing and there exist another p-open cluster of diameter larger than N in B′N is included in the event there
exists a N -box in B′N that has a crossing property and contains another p-open cluster of diameter at least
N/3d. The last inequality holds for N ≥ C0(p0), where C0(p0), A(p0) > 0 and B(p0) > 0 depends only on p0

and on the dimension d.

Proof of Lemma 4.2. In dimension d ≥ 3, we refer to the proof of Lemma 7.104 in [8]. The proof of Lemma
7.104 requires the proof of Lemma 7.78. The probability controlled in Lemma 7.78 is clearly non decreasing in
the parameter p. Thus, if we choose δ(p0) and L(p0) as in the proof of Lemma 7.78 for p0 > pc(d), then these
parameters can be kept unchanged for some p ≥ p0. Thanks to Lemma 7.104, we obtain

∀p ≥ p0, P(Tm,N (p)) ≤ d(2N + 1)2d exp

((
m

L(p0) + 1
− 1

)
log(1− δ(p0))

)
≤ d.3d

1− δ(p0)
N2d exp

(
−− log(1− δ(p0))

L(p0) + 1
m

)
.

We get the result with κ = d.3d

1−δ(p0) and ν = − log(1−δ(p0))
L(p0)+1 > 0.

In dimension 2, the result is obtained by Couronné and Messikh in the more general setting of FK-percolation
in Theorem 9 in [3]. We proceed similarly as in dimension d ≥ 3, the constant appearing in this theorem first
appeared in Proposition 6. The probability of the event considered in this proposition is clearly increasing in the
parameter of the underlying percolation, it is an event for the subcritical regime of the Bernoulli percolation.
Let us fix a p0 > pc(2) = 1/2, then 1 − p0 < pc(2) and we can choose the parameter c(1 − p0) and keep it
unchanged for some 1− p ≤ 1− p0. In Theorem 9, we get the expected result with c(1− p0) for a p ≥ p0 and
g(n) = n.

We explain now how to modify the proof of [1] to obtain the uniformity in p.

Proof of Lemma 4.3. Let p0 > pc(d) and p ≥ p0. First note that the constant ρ appearing in [1] corresponds
to our β. The proof of Lemma 2.3 in [1] can be adapted (as we did above in the proof of Lem. 4.2) to choose
constants c3, c4, c6 and c7 that depend only on p0 and d, we do not get into details again. Thanks to this, N
may be chosen in the expression (4.47) of [1] such that it only depends on p0 and d and so does ρ. This concludes
the proof.
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5. Probabilistic estimates

We can now use the stochastic minoration by a field of independent Bernoulli variables to control the proba-
bility that the quantity

∑
|C| is big, where the sum is over all C ∈ Bad such that C ∩ Γ 6= ∅. The proof of the

following Lemma is in the spirit of the work of Cox and Kesten in [16] and relies on combinatorial considerations.
These combinatorial considerations were not necessary in [7].

We consider a path γ and its associated lattice animal Γ. We need in the proof of the following Lemma
to define Γ as a path of macroscopic sites, that is to say a path (ik)k≤r in the macroscopic grid such that
{ik, k ≤ r} = Γ (this path may not be self-avoiding). We can choose for instance the sequence of macroscopic
sites that γ visits. However, it is difficult to control the size of this sequence by the size of Γ. That is the reason
why we consider the path of the macroscopic grid Γ̃ that was introduced in Lemma 3.5.

Proposition 5.1. Let p0 > pc(d). Once p0 is fixed, we choose β > 0 given by Theorem 4.1. Let ε ∈ (0, 1−pc(d)).
There exist a constant Cε ∈ (0, 1) depending only on ε and a positive constant C1 depending on p0, d and β,
such that for every N ≥ C1| log ε|, then for all p ≥ p0 , for every n ∈ N∗

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn

 ≤ Cnε
where Γ is the lattice animal associated with the path γ and Γ̃ the macroscopic path given by Lemma 3.5.

Proof. Let ε > 0. Let N ≥ N(ε) where N(ε) will be defined later. Let us consider a path γ starting from 0,
its associated lattice animal Γ, i.e., the set of boxes γ visits and its associated path on the macroscopic grid
Γ̃ = (Γ̃(k))0≤k≤r as defined in Lemma 3.5. We first want to include Γ̃ in a subset of the macroscopic grid. Of

course, Γ̃ is included in the hypercube of side-length 2r centered at Γ̃(0), but we need to have a more precise
control. We set K to be the unique integer such that

1

ε
≤ K <

1

ε
+ 1 ≤ 2

ε
. (5.1)

We recall that ε < 1. Let v be a site, we denote by S(v) the hypercube of side-length 2K centered at v and by
∂S(v) its inner boundary:

S(v) = {w ∈ Zd : ‖w − v‖∞ ≤ K} and ∂S(v) = {w ∈ Zd : ‖w − v‖∞ = K} .

We define v(0) = Γ̃(0), p0 = 0. If p0, . . . , pk and v(0), . . . , v(k) are constructed, we define if any

pk+1 = min
{
i ∈ {pk + 1, . . . , r} : Γ̃(i) ∈ ∂S(v(k))

}
and v(k + 1) = Γ̃(pk+1) .

If there is no such index we stop the process. Since pk+1−pk ≥ K, there are at most 1+ r/K such pk. Notice that

1 + r/K ≤ 1 + n/K on the event {|Γ̃| ≤ n}. We define τ = 1 + n/K. On the event {|Γ̃| ≤ n}, the macroscopic

path Γ̃ is contained in the union of those hypercubes:

D(v(0), . . . , v(τ)) =

τ⋃
i=0

S(v(i)) .
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Figure 3. Construction of v(0), . . . , v(τ).

If we stop the process for a k < τ , we artificially complete the sequence until attaining τ by setting for k < j ≤ τ ,
v(j) = v(k). See Figure 3, the corridor D(v(0), . . . , v(τ)) is represented by the grey section. By construction, for

all 1 ≤ k ≤ r, there exists a j ≤ τ such that Γ̃(k) is in the strict interior of S(v(j)), so we have

Γ ⊂
r⋃

k=1

{
j, j is ∗-connected to Γ̃(k)

}
⊂ D(v(0), . . . , v(τ))

where the first inclusion follows from Lemma 3.5.
Thus, we obtain

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ P

 ⋃
v(0),...,v(τ)

{
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

}
≤

∑
v(0),...,v(τ)

P

(
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

)

≤
∑

v(0),...,v(τ)

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| ≥ εn



≤
∑

v(0),...,v(τ)

∑
j≥εn

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


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where the first sum is over the sites v(0), . . . , v(τ) satisfying v(0) = Γ(1) and for all 0 ≤ k < τ , v(k + 1) ∈
∂S(v(k)) ∪ {v(k)}. Since ∂S(v) ∪ {v} contains at most (cdK)d−1 sites where cd ≥ 1 is a constant depending
only on the dimension, the sum over the sites v(0), . . . , v(τ) contains at most

(cdK)(d−1)τ ≤ (cdK)
2n(d−1)

K := Cn2

terms for n large enough. For any fixed v(0), . . . , v(τ), D(v(0), . . . , v(τ)) contains at most

(τ + 1)(2K + 1)d ≤ (n/K + 2)(2K + 1)d ≤ 2n(3K)d := C3n

macroscopic sites. The constants C2 and C3 only depend on ε and d. Let us recall that for a bad macroscopic
site i, C(i) denotes the connected cluster of bad macroscopic sites containing i. Let us notice that the following
event 

∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


is included in the event: there exist an integer ρ ≤ C3n and distinct bad macroscopic sites i1, . . . , iρ ∈
D(v(0), . . . , v(τ)), disjoint connected components C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and∑ρ
k=1 |C̄k| = j. Therefore, for any fixed v(0), . . . , v(τ),

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| = j


≤
C3n∑
ρ=1

∑
i1∈D(v(0),...,v(τ))

...
iρ∈D(v(0),...,v(τ))
∀k 6=l,ik 6=il

∑
j1,...,jρ≥1
j1+···+jρ=j

∑
C̄1∈Animals

j1
i1...

C̄ρ∈Animals
jρ
iρ

P
(
∀1 ≤ k ≤ ρ
C(ik) = C̄k

)
(5.2)

where Animalskv is the set of connected macroscopic sites of size k containing the site v. We have |Animalskv | ≤
(7d)k (see for instance Grimmett [8], p. 85). There are at most

(
C3n
ρ

)
ways of choosing the sites i1, . . . , iρ. Thus,

if we fix the sites i1, . . . , iρ the number of possible choices of the connected components C̄1, . . . , C̄ρ such that
for all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j is at most:

∑
j1,...,jρ≥1
j1+···+jρ=j

(7d)j1 · · · (7d)jρ = (7d)j
∑

j1,...,jρ≥1
j1+···+jρ=j

1 .

Next we need to estimate, for given sites i1, . . . , iρ and disjoint connected components C̄1, . . . , C̄ρ, the probability
that for all 1 ≤ k ≤ ρ, C(ik) = C̄k. For all sites i ∈ ∪ρk=1C̄k, the N -box BN (i) is bad. There is a short range
of dependence between the state of the boxes. Indeed, by definition of a p-good box, the state of BN (i) only
depends on boxes BN (j) such that ‖i− j‖∞ ≤ 13β. Thus, if ‖i− j‖∞ ≥ 27β the state of the boxes BN (i) and
BN (j) are independent. We can deterministically extract from ∪ρk=1C̄k a set of macroscopic sites E such that
|E| ≥ j/(27β)d and for any i 6= j ∈ E , the state of the boxes BN (i) and BN (j) are independent. Therefore, we
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have using Proposition 4.1

P
(
∀1 ≤ k ≤ ρ, C(ik) = C̄k

)
≤ P (∀i ∈ E , BN (i) is p-bad)

≤ P(BN (0) is p-bad)j/(27β)d

≤ (A(p0) exp(−B(p0)N(ε)))
j/(27β)d

. (5.3)

In what follows, we set

α = α(ε) = (A(p0) exp(−B(p0)N(ε)))
1/(27β)d

(5.4)

in order to lighten the notations. We aim to find an expression of α(ε) such that we get the upper bound stated
in the Proposition. The expression of N(ε) will be determined by the choice of α(ε). Combining inequalities
(5.2) and (5.3), we obtain

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j

 ≤ C3n∑
ρ=1

(
C3n

ρ

)
(7dα)j

∑
j1,...,jρ≥1
j1+···+jρ=j

1

and so

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ Cn2

∑
j≥εn

(7dα)j
C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 .

Notice that

C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 =
∑

j1,...,jC3.n
≥0

j1+···+jC3.n
=j

1 =

(
C3n+ j − 1

j

)
.

To bound those terms we will need the following inequality, for r ≥ 3, N ∈ N∗ and a real z such that 0 <
ez(1 + r

N ) < 1:

∞∑
j=N

zj
(
r + j − 1

j

)
≤ ν

(ez(1 + r
N ))N

1− ez(1 + r
N )

(5.5)

where ν is an absolute constant. This inequality was present in [16] but without proof, for completeness we
will give a proof of (5.5) at the end of the proof of Proposition 5.1. Using inequality (5.5) and assuming
0 < e7dα(ε)(1 + C3

ε ) < 1, we get,

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


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≤ Cn2
∑
j≥εn

(7dα)j
(
C3n+ j − 1

j

)

≤ νCn2

[
e7dα(ε)(1 + C3

ε )
]εn

1− e7dα(ε)(1 + C3

ε )
.

Let us recall that C2 = (cdK)2(d−1)/K , C3 = 2(3K)d and that K(ε) was defined in (5.1). We have to choose
α(ε) and a constant 0 < Cε < 1 such that C2

[
e7dα(ε)(1 + C3

ε )
]ε
< Cε that is to say

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
< Cε . (5.6)

Note that the condition (5.6) implies the condition 0 < e7dα(ε)(1 + C3

ε ) < 1. Thus, using (5.1), we have

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ (cdK)

2d
K

[
e7dα(ε)

4(3K)d

ε

]ε
≤ exp

[
2d

K
log(cdK) + ε log

(
e7dα(ε)

4(3K)d

ε

)]
≤ exp

[
2dε log

(
2cd
ε

)
+ ε log

(
e7dα(ε)

4(3 2
ε )d

ε

)]

≤ exp

[
− 2dε log ε+ dε log(2cd) + ε log

(
4e(42)dα(ε)

1

εd+1

)]
.

We set

α(ε) =
εr

(8ecd(42))d

where r = 3d+ 2. We obtain

(cdK)
d
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ exp((r − (3d+ 1))ε log ε)

≤ exp(ε log ε) < 1 .

By definition of α in (5.4), it follows that there exists a positive constant C1 depending on β, d, p0 such that

N(ε) = C1| log ε| .

It remains now to prove inequality (5.5) to conclude. To show this inequality, we need a version of Stirling’s
formula with bounds: for all n ∈ N∗, one has

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n ,
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thus,

∞∑
j=N

zj
(
r + j − 1

j

)
=

∞∑
j=N

zj
(r + j − 1)!

j!(r − 1)!

≤
∞∑
j=N

zj
e (r + j − 1)r+j−

1
2 e−(r+j−1)

2π jj+
1
2 (r − 1)r−

1
2 e−(r+j−1)

=

∞∑
j=N

e

2π
zj
(
r + j − 1

j

)j (
r + j − 1

r − 1

)r− 1
2

j−
1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j (
1 +

j

r − 1

)r−1(
1

j
+

1

r − 1

) 1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j
e(r−1) log(1+j/(r−1))

≤
∞∑
j=N

e

2π
(ez)j

(
1 +

r

N

)j
=

e

2π

(ez(1 + r
N ))N

1− ez(1 + r
N )

where we use in the last inequality the fact that for all x > 0, log(1 + x) ≤ x.

6. Regularity of the time constant

In this section, we prove the main result Theorem 1.1 and its Corollary 1.2. Before proving this Theorem,
we need to prove two lemmas. The following Lemma enables to control the number of p-closed edges |γc| in a
geodesic γ between two given points y and z in the infinite cluster Cp. We denote by Fx the event that 0, x ∈ Cp
and the N -boxes containing 0 and x belong to an infinite cluster of p-good boxes.

Lemma 6.1. Let pc(d) < p0 ≤ p ≤ q. We fix some β > 0 and let ρ0 be the constant given in Lemma 3.2. Then
for every integer N , for every δ > 0 and x ∈ Zd, we have

P

Fx, DCp(0, x) > DCq (0, x)

(
1 + ρ0N

(
q − p
q

+ δ

))
+ ρ0N

∑
C∈Bad:
C∩Γ6=∅

|C|


≤ e−2δ2‖x‖1 .

where Γ is the lattice animal of N -boxes visited by an optimal path γ between 0 and x in Cq.

Proof. On the event Fx, we have 0, x ∈ Cp ⊂ Cq so there exists a q-open path joining 0 to x, let γ be an optimal
one. Necessarily, we have |γ| ≥ ‖x‖1. We consider the modification γ′ given by Lemma 3.2. As γ′ is p-open,

DCp(0, x) < |γ′| ≤ |γ ∩ γ′|+ |γ′ \ γ|

≤ |γ|+ ρ0

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|


≤ DCq (0, x) + ρ0

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|

 . (6.1)
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We want to control the size of γc. For that purpose, we want to introduce a coupling of the percolations q
and p, such that if any edge is p-open then it is q-open, and we want the random path γ, which is an optimal
q-open path between 0 and x, to be independent of the p-state of any edge, i.e., any edge is p-open or p-closed
independently of γ. This is not the case when we use the classic coupling with a unique uniform random variable
for each edge. Here we introduce two sources of randomness to ease the computations by making the choice of
γ independent from the p-state of its edges. We proceed in the following way: with each edge we associate two
independent Bernoulli random variables V and Z of parameters respectively q and p/q. Then W = Z V is also
a Bernoulli random variable of parameter p. This implies

P(W = 0|V = 1) = P(Z = 0|V = 1) = P(Z = 0) = 1− p

q
=
q − p
q

.

Thus, we can now bound the following quantity by summing on all possible self-avoiding paths for γ. For short,
we use the abbreviation s.a. for self-avoiding.

P

(
|γc| ≥ |γ|

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |γc| ≥ |γ|

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : e is p-closed}| ≥ k

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r)P
(
|{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))

≤
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r) e−2δ2k ≤ e−2δ2‖x‖1 (6.2)

where we use Chernoff bound in the second to last inequality (see Thm. 1 in [10]). On the event Fx ∩{
|γc| < |γ|

(
q−p
q + δ

)}
, by (6.1), we get

DCp(0, x) ≤ DCq (0, x) + ρ0

N |γ|(q − p
q

+ δ

)
+N

∑
C∈Bad:C∩Γ6=∅

|C|


= DCq (0, x)

(
1 + ρ0N

(
q − p
q

+ δ

))
+ ρ0N

∑
C∈Bad:C∩Γ6=∅

|C|

and the conclusion follows.

The proof of the following Lemma is the last step before proving Theorem 1.1.
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Lemma 6.2. Let p0 > pc(d). Take β > 0 given by Theorem 4.1. Fix ε ∈ (0, 1− p0). There exist constants C ′1
(depends on p0 and d) and p (depends on p0, d and ε) such that if we set N(ε) = C ′1| log ε|, for every q ≥ p ≥ p0,
for every x ∈ Zd with ‖x‖1 large enough,

P
(
DCp(0̃Cp , x̃Cp) ≤ DCq (0̃Cp , x̃Cp)

(
1 + ρ0

q − p
q

N(ε)

)
+ η0ε‖x‖1

)
≥ p

where η0 > 0 is a constant depending only on d and p0.

Proof. Let us fix ε > 0. Let C1 be the constant given by Proposition 5.1. Let N ≥ C1| log ε|. Fix an x ∈ Zd
such that ‖x‖1 ≥ 3dN . We denote by iN (0) (respectively iN (x)) the i ∈ Zd such that 0 ∈ BN (i) (resp. such
that x ∈ BN (i)). Let us define for i ∈ Zd, Yi = 1{BN (i) is p-good} and by Cp the union of infinite cluster in the
macroscopic site percolation (Yi)i∈Zd . We recall that

Fx =
{

0 ∈ Cp, x ∈ Cp
}
∩
{
iN (0) ∈ Cp, iN (x) ∈ Cp

}
.

We have

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρ0

q − p
q

N

)
+ 3εβρ0‖x‖1

)
≤ P

(
Fx, D

Cp(0, x) ≥ DCq (0, x)

(
1 + ρ0

q − p
q

N

)
+ 3εβρ0‖x‖1

)
+ P(F cx) . (6.3)

We have

P(F cx) ≤ P ({0 ∈ Cp, x ∈ Cp}c) + P
(
{iN (0) ∈ Cp, iN (x) ∈ Cp}c

)
.

Using FKG inequality, we have

P(0 ∈ Cp, x ∈ Cp) ≥ P(0 ∈ Cp)P(x ∈ Cp) ≥ θ2
p0

where θp0 = P(0 ∈ Cp0). First note that the field (Yi)i∈Zd has a finite range of dependence that depends on β
and d. Using the stochastic comparison in [12], for every p1, there exists a positive constant α depending on β,
d and p1 such that if P(Y0 = 0) ≤ α then the field (Yi)i∈Zd stochastically dominates a family of independent
Bernoulli random variables with parameter p1. Let us choose p1 large enough such that

1− θ2
site,p1

≤
θ2
p0

2

where θsite,p1
denotes the probability for a site to belong to the infinite cluster of i.i.d. Bernoulli site percolation

of parameter p1. Thanks to Theorem 4.1, there exists a positive integer N0 depending only on α, p0 and d such
that for every N ≥ N0,

P(Y0 = 0) ≤ α .

For every ε ≤ 1− p0, we have | log ε| ≥ | log(1− p0)|. We set

C ′1 = max

(
N0

| log(1− p0)|
, C1

)
.
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If we set N(ε) = C ′1| log ε|, then we have N(ε) ≥ N0 so that using the stochastic domination and FKG we obtain

P(iN(ε)(0) ∈ Cp, iN(ε)(x) ∈ Cp) ≥ θ2
site,p1

.

Finally, we get

P(F cx) ≤ 1− θ2
p0 + 1− θ2

site,p1
≤ 1−

θ2
p0

2
. (6.4)

On the event Fx, we have 0, x ∈ Cp ⊂ Cq, we can consider γ a geodesic from 0 to x in Cq, and let Γ be the set
of N(ε)-boxes that γ visits.

By Lemma 6.1, we have for every δ > 0

P
(
Fx, D

Cp(0, x) ≥ DCq (0, x)

(
1 + ρ0

q − p
q

N(ε)

)
+ 3εβρ0‖x‖1

)
≤P

Fx, ρ0N(ε)

DCq (0, x)δ +
∑

C∈Bad:C∩Γ6=∅

|C|

 ≥ 3εβρ0‖x‖1


+ P

 Fx, D
Cp(0, x) > DCq (0, x)

(
1 + ρ0N(ε)

(
q−p
q + δ

))
+ρ0N(ε)

∑
C∈Bad:
C∩Γ6=∅

|C|


≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ 3εβ‖x‖1
N(ε)

− δ|γ|


+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1

≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε

N(ε)
− δ
)

+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1 . (6.5)

We set δ = ε/N(ε). We know by Lemma 3.5 that |Γ̃| ≤ 1 + (|γ|+ 1)/N(ε). Moreover as |γ| ≥ 3dN(ε), we have

|Γ̃| ≤ 2|γ|/N(ε). Using Proposition 5.1,

P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε

N(ε)
− δ
)

≤ P

 ∃γ starting from 0 such that |Γ̃| ≤ 2β‖x‖1
N(ε) ,∑

C∈Bad:C∩Γ6=∅
|C| ≥ ε 2β‖x‖1

N(ε)

 ≤ C2β‖x‖1/N(ε)
ε (6.6)

where Cε < 1. Moreover, by Lemma 4.3, we get

P (Fx, |γ| > β‖x‖1) ≤ P(β‖x‖1 ≤ DCq (0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (6.7)
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Finally, combining (6.3), (6.4), (6.5), (6.6) and (6.7), we obtain that

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρ0

q − p
q

N(ε)

)
+ 3εβρ0‖x‖1

)
≤ 1−

θ2
p0

2
+ C2β‖x‖1/N(ε)

ε + Âe−B̂‖x‖1 + e−2ε2‖x‖1/N(ε)2

≤ 1− p(ε, p0)

for an appropriate choice of p > 0 (depending on p0, ε and d) and for every x such that ‖x‖1 is large enough.

Proof of Theorem 1.1. Let ε > 0, δ > 0, p0 > pc(d) and x ∈ Zd, consider N(ε) = C ′1| log ε| and p as in Lemma 6.2
and q ≥ p ≥ p0. With the convergence of the regularized times given by Proposition 2.1, we can choose n large
enough such that

P

(
µp(x)− δ ≤ DCp(0̃Cp , ñx

Cp)

n

)
≥ 1− p

3

P

(
DCq (0̃Cp , ñx

Cp)

n
≤ µq(x) + δ

)
≥ 1− p

3

P
(
DCp(0̃Cp , ñx

Cp) ≤ DCq (0̃Cp , ñxCp)

(
1 + ρ0

q − p
q

N(ε)

)
+ η0εn‖x‖1

)
≥ p .

The intersection of these three events has positive probability, we obtain on this intersection

µp(x)− δ ≤ (µq(x) + δ)

(
1 + ρ0

q − p
q

N(ε)

)
+ η0ε‖x‖1 .

By taking the limit when δ goes to 0 we get

µp(x) ≤ µq(x)

(
1 + ρ0

q − p
q

N(ε)

)
+ η0ε‖x‖1 .

By Corollary 2.2, we know that the map p→ µp is non-increasing. We also know that µp(x) ≤ ‖x‖1µp(e1) for
e1 = (1, 0, . . . , 0), for any p > pc(d) and any x ∈ Zd. Thus, for every ε > 0,

µp(x)− µq(x) ≤ µq(x)ρ0
q − p
q

N(ε) + η0ε‖x‖1

≤ µp0(e1)‖x‖1ρ0
q − p
pc(d)

N(ε) + η0ε‖x‖1

≤ η′0(p0)‖x‖1(N(ε)(q − p) + ε)

where η′0 is a constant depending on d and p0. Using the expression of N(ε) stated in Lemma 6.2, we obtain

µp(x)− µq(x) ≤ η′0‖x‖1 (C ′1| log ε|(q − p) + ε) . (6.8)
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By setting ε = q − p in the inequality, we get

µp(x)− µq(x) ≤ η′′0‖x‖1(q − p)| log(q − p)|

where η′′0 > 0 depends only on p0 and d. Thanks to Corollary 2.2, we have µp(x)− µq(x) ≥ 0, so that

|µp(x)− µq(x)| ≤ η′′0‖x‖1(q − p)| log(q − p)| . (6.9)

By homogeneity, (6.9) also holds for all x ∈ Qd. Let us recall that for all x, y ∈ Rd and p ≥ pc(d),

|µp(x)− µp(y)| ≤ µp(e1)‖x− y‖1 , (6.10)

see for instance Theorem 1 in [2]. Moreover, there exists a finite set (y1, . . . , ym) of rational points of Sd−1 such
that

Sd−1 ⊂
m⋃
i=1

{
x ∈ Sd−1 : ‖yi − x‖1 ≤ (q − p)| log(q − p)|

}
.

Let x ∈ Sd−1 and yi such that ‖yi − x‖1 ≤ (q − p)| log(q − p)|. Using inequality (6.10), we get

|µp(x)− µq(x)|
≤ |µp(x)− µp(yi)|+ |µp(yi)− µq(yi)|+ |µq(yi)− µq(x)|
≤ µp(e1)‖yi − x‖1 + η′′0‖yi‖1(q − p)| log(q − p)|+ µq(e1)‖yi − x‖1
≤ (2µp0(e1) + η′′0 ) (q − p)| log(q − p)| .

This yields the result.

Proof of Corollary 1.2. Let p0 > pc(d). We consider the constant κ0 appearing in the Theorem 1.1. Let p ≤ q
in [p0, 1]. We recall the following definition of the Hausdorff distance between two subsets E and F of Rd:

dH(E,F ) = inf
{
r ∈ R+ : E ⊂ F r and F ⊂ Er

}
where Er = {y : ∃x ∈ E, ‖y − x‖2 ≤ r}. Thus, we have

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∥∥∥∥ y

µp(y)
− y

µq(y)

∥∥∥∥
2

.

Note that y/µp(y) (resp. y/µq(y)) is in the unit sphere for the norm µp (resp. µq). Let us define µminp =

infx∈Sd−1 µp(x). As the map p→ µp is uniformly continuous on the sphere Sd−1 (see Thm. 1.2 in [7],) the map
p→ µminp is also continuous and µmin = infp∈[p0,1] µ

min
p > 0. Finally

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∣∣∣∣ 1

µp(y)
− 1

µq(y)

∣∣∣∣
≤ sup
y∈Sd−1

1

µq(y)µp(y)
|µp(y)− µq(y)|

≤ sup
y∈Sd−1

1

(µmin)2
|µp(y)− µq(y)|
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≤ κ0

(µmin)2
(q − p)| log(q − p)| .

This yields the result.

Remark 6.3. At this stage, we were not able to obtain Lipschitz continuity for p→ µp. The difficulty comes
from the fact that we do not know the correlation between γ and the state of the boxes that γ visits. At first
sight, it may seem that the renormalization is responsible for the appearance of the log terms in Theorem 1.1.
However, when p is very close to 1, we can avoid renormalization and bypass p-closed edges at a microscopic scale
as in [15] but even in that case, we cannot obtain Lipschitz continuous regularity with the kind of combinatorial
computations made in Section 5. A similar issue arises, it is hard to deal with the correlation between p-closed
edges of γ and the length of the microscopic bypasses.
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