Cardinality estimation for random stopping sets based on Poisson point processes
ESAIM: Probability and Statistics, Tome 25 (2021), pp. 87-108

We construct unbiased estimators for the distribution of the number of points inside random stopping sets based on a Poisson point process. Our approach is based on moment identities for stopping sets, showing that the random count of points inside the complement $$ of a stopping set S has a Poisson distribution conditionally to S. The proofs do not require the use of set-indexed martingales, and our estimators have a lower variance when compared to standard sampling. Numerical simulations are presented for examples such as the convex hull and the Voronoi flower of a Poisson point process, and their complements.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2021004
Classification : 60G55, 60D05, 60G40, 60G57, 60G48
Keywords: Stochastic geometry, Poisson point process, factorial moments, stopping sets, random convex hull, Voronoi tessellation
@article{PS_2021__25_1_87_0,
     author = {Privault, Nicolas},
     title = {Cardinality estimation for random stopping sets based on {Poisson} point processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {87--108},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {25},
     doi = {10.1051/ps/2021004},
     mrnumber = {4234133},
     zbl = {1487.60096},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ps/2021004/}
}
TY  - JOUR
AU  - Privault, Nicolas
TI  - Cardinality estimation for random stopping sets based on Poisson point processes
JO  - ESAIM: Probability and Statistics
PY  - 2021
SP  - 87
EP  - 108
VL  - 25
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ps/2021004/
DO  - 10.1051/ps/2021004
LA  - en
ID  - PS_2021__25_1_87_0
ER  - 
%0 Journal Article
%A Privault, Nicolas
%T Cardinality estimation for random stopping sets based on Poisson point processes
%J ESAIM: Probability and Statistics
%D 2021
%P 87-108
%V 25
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ps/2021004/
%R 10.1051/ps/2021004
%G en
%F PS_2021__25_1_87_0
Privault, Nicolas. Cardinality estimation for random stopping sets based on Poisson point processes. ESAIM: Probability and Statistics, Tome 25 (2021), pp. 87-108. doi: 10.1051/ps/2021004

[1] P.K. Agarwal, S. Har-Peled, S. Suri, H. Yılıdz and W. Zhang, Convex hulls under uncertainty. Algorithmica 79 (2017) 340–367. | MR | Zbl | DOI

[2] A. Baddeley and R. Turner, spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12 (2005) 1–42. | DOI

[3] N. Baldin and M. Reiß, Unbiased estimation of the volume of a convex body. Stochastic Process. Appl. 126 (2016) 3716–3732. | MR | Zbl | DOI

[4] J.-C. Breton and N. Privault, Factorial moments of point processes. Stochastic Process. Appl. 124 (2014) 3412–3428. | MR | Zbl | DOI

[5] P. Calka, An explicit expression for the distribution of the number of sides of the typical Poisson-Voronoi cell. Adv. Appl. Probab. 35 (2003) 863–870. | MR | Zbl | DOI

[6] R. Cowan, A more comprehensive complementary theorem for the analysis of Poisson point processes. Adv. Appl. Probab. 38 (2006) 581–601. | MR | Zbl | DOI

[7] R. Cowan, M. Quine and S. Zuyev, Decomposition of gamma-distributed domains constructed from Poisson point processes. Adv. Appl. Probab. 35 (2003) 56–69. | MR | Zbl | DOI

[8] Y. Davydov and S. Nagaev, On the convex hulls of point processes. Manuscript (2000).

[9] L. Decreusefond and I. Flint, Moment formulae for general point processes. J. Funct. Anal. 267 (2014) 452–476. | MR | Zbl | DOI

[10] T.G. Kurtz, The optional sampling theorem for martingales indexed by directed sets. Ann. Probab. 8 (1980) 675–681. | MR | Zbl | DOI

[11] J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie Verw. Geb. 9 (1967) 36–58. | MR | Zbl | DOI

[12] R.E. Miles, On the homogeneous planar Poisson point process. Math. Biosci. 6 (1970) 85–127. | MR | Zbl | DOI

[13] I. Molchanov, Theory of random sets. Probability and its Applications. Springer-Verlag, London, New York (2005). | MR | Zbl

[14] X.X. Nguyen and H. Zessin, Integral and differential characterization of the Gibbs process. Math. Nachr. 88 (1979) 105–115. | MR | Zbl | DOI

[15] N. Privault, Moment identities for Poisson-Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris 347 (2009) 1071–1074. | MR | Zbl | DOI

[16] N. Privault, Invariance of Poisson measures under random transformations. Ann. Inst. Henri Poincaré Probab. Statist. 48 (2012) 947–972. | MR | Zbl | Numdam | DOI

[17] N. Privault, Moments of Poisson stochastic integrals with random integrands. Prob. Math. Stat. 32 (2012) 227–239. | MR | Zbl

[18] N. Privault, Laplace transform identities for the volume of stopping sets based on Poisson point processes. Adv. Appl. Probab. 47 (2015) 919–933. | MR | Zbl | DOI

[19] R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin, New York (2008). | MR | Zbl

[20] I.M. Slivnyak, Some properties of stationary flows of homogeneous random events. Theory Probab. Appl. 7 (1962) 336–341. | MR | Zbl | DOI

[21] S. Zuyev, Stopping sets: gamma-type results and hitting properties. Adv. Appl. Probab. 31 (1999) 355–366. | MR | Zbl | DOI

Cité par Sources :

This research is supported by the Ministry of Education, Singapore, under its Tier 1 Grant MOE2018-T1-001-201 RG25/18.