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CARDINALITY ESTIMATION FOR RANDOM STOPPING SETS
BASED ON POISSON POINT PROCESSES*

NicorAs PrivauLT**

Abstract. We construct unbiased estimators for the distribution of the number of points inside
random stopping sets based on a Poisson point process. Our approach is based on moment identities
for stopping sets, showing that the random count of points inside the complement S of a stopping
set S has a Poisson distribution conditionally to S. The proofs do not require the use of set-indexed
martingales, and our estimators have a lower variance when compared to standard sampling. Numerical
simulations are presented for examples such as the convex hull and the Voronoi flower of a Poisson
point process, and their complements.
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1. INTRODUCTION

The probability distribution of the area of certain random domains constructed from Poisson distributed
points has been studied via Gamma-type complementary theorems in [12]. More precise Gamma-type distri-
bution results have been obtained in [21] for the volume content of stopping sets, which are random sets that
carry over the notion of stopping time to set-indexed processes, see [13, 21]. The proofs of [21], see also [6] and
Theorem 10.4.8 in [19], rely on Laplace transform arguments and on the martingale property for set-indexed
stochastic exponentials and martingales, see e.g. [10]. A different approach to the distribution of stopping sets
has been developed in [18] using an anticipating Girsanov theorem for the underlying Poisson point process,
instead of changes of intensities as in the above references. In [3], unbiased estimators have been constructed
for the volume of the convex hull generated by a point process, which is the complement of a stopping set.

In this paper, we characterize the distribution of the number of points in stopping sets and their complements
using moment identities for point processes, and we derive new unbiased estimators for those distributions.
Given a Poisson point process with a finite and diffuse intensity measure o on a measure space (X, B(X),0),
we consider identities of the form

P(N(B)=n) = = E[e P ((B)"], n>0, (1.1)
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for the probability distribution of the count N(B) of Poisson points within a random subset B of X, extending
the formula

P(N(B) =n) = oo [7(B)" n >0, (1.2)

which is known for deterministic B € B(X) such that ¢(B) < co.

Clearly, (1.1) cannot hold for any random set. For example, when X = [0, 7], T > 0, with o(dz) = dz, taking
By, :=[0,T,,] where T,,, m > 1, denotes the mth jump time of the standard Poisson process (N;)icr, , we have
P(N(By) =n) = 1{—m} and

B [ B o (B))"] = B [0 OTD (o((0, T)))"]

1 o0
_ — / 672I(£n+m71d$
nim: Jo

_ (n+m)!
" plmlgntm’ nz0,

which does not match (1.2). B
On the other hand, for the random set By, := [0, min(7,T},)] and its complement B,, := X \ B,,, the
probability

. B Tn+m
e T

P(N(By) =n) =P(N([0,T]) =n+m) = CETk n,m >0,

matches the expected value

1 B - 1 ; _ "
— [e=Bm)(5(B,))"] = — [e=o(intTn DT (6 (min(T,, T), T1))"]
1 7 , axmTt
=/ (T —x) (m—l)'dx
_ Tner
T (it m)!

as in (1.1).

We will show that (1.1) remains true for a large family of random sets S := X \ S which are the complements
of stable and non-increasing stopping sets S in X, see Definitions 3.1 and 3.3. More precisely, denoting by Fg
the sigma-algebra generated by the random stopping set S, see Definition 3.2, we show in Corollary 4.2 that
such random sets S satisfy the relation

P(NE) =n| Fs) = e "®(0(5)",  n>0. (13)

which implies (1.1) and provides an unbiased estimator of P(N(S) = n). This also shows that, given Fg, the
count of points N (S) in the complement S of the stopping set S has the Poisson distribution with parameter
0(8)7 a fact already noted in the literature when S is the convex hull of a Poisson point process, see e.g. [8],
[3, 16].

Our approach to the proof of (1.3) relies on moment identities for Poisson and more general point processes,
see [15]-[4, 9, 17]. In particular, we show in Section 3 that, when S is the complement of a stopping set S, the
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factorial moments of N (g) coincide with the moments of o(g) given Fg, t.e.
E[N(S),, | Fs]=c(S)", n=>1, (1.4)
where () := z(z —1)--- (r —n + 1) is the descending factorial, which implies

=E[+(S)"], n>1, (1.5)

=o(S), (1.6)

which has been applied in [3] to unbiased volume estimation when S is the open convex hull of a Poisson point
process.
From (1.5) we also obtain the probability generating function identity

E[(1+0)¥® | Fs] =e®) e (-2,0),
see Proposition 4.1, which implies Relation (1.3) and yields the conditional moment generating function
E [eO‘N(g) ’ .FS] = e(ea_l)”(g), a <0,
which shows that the conditional cumulant &, (N (§) ’ fs) of order n > 1 of NV (§) given Fg is given by
wn(N(S) | Fs) = o(S),

extending (1.6) to n > 3.

In Section 5 we present numerical simulations that illustrate the results of Section 4, based on examples of com-
plements of stopping sets such as annuli, convex hulls, and the Voronoi flower and cell, based on Poisson-Voronoi
tessellations. Although our estimators are typically built from a single point process sample, their performance
is measured by their mean square error, evaluated over a larger number of samples. Those simulations show
that (1.3) has a lower variance than that of the standard sampling estimator.

Based on the results of Section 4, in Section 6 we construct an unbiased estimator of the form

-1 n—N(X)

Q ”_N(X) o(S
1{N(X)§n}m(0(s)) e”®), n >0,

for the probability distribution P(N(S) = n) of the count N(S) of points in a stopping set S, see Corollary 4.4,
and we present related numerical estimates based on the above stopping set examples.

2. MOMENTS OF POINT PROCESSES

We start with a brief presentation of point processes admitting a Papangelou intensity, for use in the moment
identities of Section 3. Let X be a Polish space with Borel o-algebra B(X), equipped with a finite non-atomic
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measure o(dz). We let
Q¥ ={wc X : #(ANw) < oo for all compact A € B(X)}

denote the space of locally finite configurations on X, whose elements w € Q¥ are identified with the Radon
point measures w = Z dz, where 0, denotes the Dirac measure at z € X and w(K) € N U {oo} represents

rew
the cardinality of K Nw. A point process is a probability measure P on Q¥ equipped with the o-algebra F
generated by the topology of vague convergence. It can be characterized by its Campbell measure C' defined on
B(X)® F by

C(AxB)::IE[Z 1w\ {z})|, A€B(X), BeF,

r€ANW

which satisfies the Georgii-Nguyen-Zessin [14] identity

]E[/Xu(:v;w)w(dx)} :EUQX/Xu(x;wux)C(dx,dw) , (2.1)

for all measurable processes u : X x Q% — R such that both sides of (2.1) make sense. In Sections 2 and 3 we
deal with point processes whose Campbell measure C(dz, dw) is absolutely continuous with respect to o ® P,
i.e.

C(dz,dw) = ¢(z;w)o(dz) P(dw),

where the density ¢(z;w) is called the Papangelou density. We will also use the random measure 6™ (dy,,) defined
on X™ by

6" (drp) = é(tn;w)o(dxy) - - - o(day,),

where ¢, = (71,...,7,) € X™ and é(x,;w) is the compound Campbell density ¢ : QF x QX — Ry defined
inductively on the set QF of finite configurations in Q¥ by

é({x1,y .,y w) = c(y;w)é({z, - -y xn b w U {y}), n >0,

see Relation (1) in [9]. In particular, the Poisson point process with intensity o(dz) is a point process with
Campbell measure C' = ¢ ® P and c¢(z;w) = 1, and in this case the identity (2.1) becomes the Slivnyak-Mecke
formula, see [11, 20].

In the sequel, we consider (possibly random) sets A such that

{we® . Aw)CcK}eF

for all K € KC(X), where K(X) denotes the collection of (deterministic) compact subsets of X. For such random
sets we let N(A)(w) denote the cardinality of w N A(w). We first consider the factorial moment I[N (A) )],
where A is a (possibly random) measurable subset of X. We denote by ¢ the addition operator defined on
random variables F : QX — R as

efF(w) := F(wu{z}), reX, weX,
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and we use the notation
—— _ n
€ =E i Eq = (21,...,2,) € X™

Proposition 2.1. ([4], Prop. 2.1) Let A be a random measurable subset of X. For all n > 1 and sufficiently
integrable random variable F', we have

E[F N(A)u] = E U eF (Flan(@n,...,,)) 6" (dan.... day)

n

Standard moment identities for the count N(A) of process points within A can be obtained as a consequence
of factorial moment identities, see [17] for Poisson stochastic integrals and [9] for point processes with random
integrands. By Proposition 2.1 and the relation

" = Z S(n, k),
k=0
where S(n, k) denotes the Stirling number of the second kind, we find the moment identity

B[OV = S0 E | [ o (P 00) o). (22)
k=0 X

k

for the random set A, see Lemma 4.1 of [4]. As a consequence of Proposition 2.1 and the relation
x - tn
I+t =1+ (), (2.3)
n=1""

we also obtain the following corollary on the Probability Generating Function (PGF) of the count N(A) of
process points in a (random) set A.

Corollary 2.2. For A a random set and F' a bounded random variable we have
o) tk )
E [F(1 +t)N(A)] = [E[F] +ZHE [/ . ed (Flan(z, ... 21)) (w) ot (dxy,. .. dxy)|,
k=1"" X

t e (—2,0).
Corollary 2.2 and the relation

1 o

- Y N(A)
n!asn]E[F(lJrs) } n >0,

E [Fl{n(a)=n}] = =1

allows us to recover the distribution of the discrete random variable N(A) in the next corollary.

Corollary 2.3. For A a random set and F a bounded random variable, we have
E [F1{n()=n)]

1 <& (_1)k + sk+n
= kzzo o E [/Xun Ernin (Flaren (21, Tpgn)) (W) 657" (dw1, . .. dagegn) |
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3. MOMENTS OF STOPPING SETS

In this section and the following ones, the measure o is assumed to be finite on (X, B(X)). We recall the
definition of stopping set, cf. [21] and Definition 2.27 page 335 of [13]. Given K in the collection K(X) of compact
subsets of X, let

Fri=c0wU) : UCK, o(U) < 0) (3.1)

denote the sigma-algebra generated by w +— w(U), with U C K and ¢(U) < co.

Definition 3.1. A random set S is called a stopping set if it is a.s. compact and satisfies
{we X : S(w)Cc K} eFx forall K€ K(X).

We refer to e.g. Definition 1 in [21] for the following definition of sigma-algebra generated by a stopping set.

Definition 3.2. Given S a stopping set, we consider the stopped sigma-algebra
Fsi=0(BeF : Bn{we Q¥ : S(w) C K} € Fg, K € K(X)). (3.2)

In addition to the stopping set property, we will need the following two conditions.

Definition 3.3. i) A stopping set S is said to be non-increasing if
S(wU{z}) C S(w), weQ¥, zreX.
ii) A stopping set S is said to be stable if
z € S(w) = = € S(wU {x}), weX, reX. (3.3)

The above monotonicity and stability conditions are satisfied by common examples of stopping sets, starting
with deterministic compact subsets of X. Examples of random stopping sets include:

— the minimal closed ball B,, centered at the origin and containing exactly m > 1 points,

— the closed complement S of the convex hull S of a point process inside a convex subset of RY,

— the Voronoi flower S, which is the union of balls centered at the vertices of the Voronoi polygon that contain
the point 0 and exactly two other process points,

see also [6, 7] for other examples of stopping sets, such as the Voronoi sausage or the Delaunay lunes.
The following lemma, which is needed for the proof of the next Proposition 3.5, is proved in appendix.

Lemma 3.4. Let S be a non-increasing stopping set. Then, for any Fs-measurable random variable F(w) we
have

el F(w) = F(w), reSw), we¥,
Letting y € X and taking F' := 1g(y) € Fs, Lemma 3.4 shows that
(eX15(y)) (w) = 15 (¥), yeX, zeSw), weX. (3.4)

The next Proposition 3.5 is also proved in appendix.
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Proposition 3.5. The complement S of a stable and non-increasing stopping set S fulfills the condition
s;; (1§(x1) e lg(xn)) = 1g(z1) - --1g(n), ®1,...,2p€ X, n>1

By Proposition 3.5 we obtain the following consequences of Proposition 2.1, starting with the next factorial
moment identity.

Proposition 3.6. Let S be the complement of a stable and non-increasing stopping set S. For alln > 1 we have

B[P NG),,) =8| [ r o) 5)
for F' a bounded random variable.
Similarly, from (2.2) we have
E[F(NE)"] =S St k) E [ / 5;F&k(dzck)} . (3.6)
Sk

k=0

In addition, by (3.6) the moments of stopping sets can also be expressed as

St

)
(

=S (3) s [ e v o)
(

where we took F := (N(X))"* in (3.6).
As a consequence of Proposition 3.6 and of Relation (2.3) we have the next extension of Corollary 2.2.

Corollary 3.7. Let S denote the complement of a stable, non-increasing stopping set S. The Probability
Generating Function ofN(S) satisfies

_ s tk .
E[F1+t)V®)] = Z o E [/Sk el Fo*(day,... ,dxk)] : (3.7)
k=0

for F a bounded random variable, t € (—2,0).

Multiple differentiation of (3.7) at ¢ = —1 yields the distribution of N (S) as

Sk+n

1 - (_1)k ~ n
E [F1y@—n]) = — Z W F [/ e F et (day, . ,dxk+n)], n > 0. (3.8)
L
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Corollary 3.8. Let S be the complement of a stable and non-increasing stopping set S. We have the conditional
distribution

P(N(S)=n| Fs) = %i ( o CE [65 (SM) | ], n>o. (3.9)

Proof. Taking F to be Fg-measurable in (3.7)—(3.8), by Lemma 3.4 we have ] ---ef F=F, x1,...,2 €S,
hence from Corollary 3.7 we find

oo tk

k!
k=0

E[F1+t)N®] = E [F&*(S)],

which implies

k!
k=0

E[(1+)V® | 7] = E [6%(S%) | Fs],

t € (—2,0), and yields (3.9) by multiple differentiation. O

4. STOPPING SETS BASED ON POISSON POINT PROCESSES

In the remainder of this paper we specialize the results of Sections 2 and 3 to the setting of a Poisson
point process having a finite diffuse intensity measure o on (X,B(X)). In this case we have c¢(z,w) = 1,
6"(drn) = o(dzy)---o(dx,), and for all compact disjoint subsets Ki,...,K, of X, n > 1, the mapping
wr (w(Ky),...,w(Ky,)) is a vector of independent Poisson distributed random variables on N with respective
parameters o(K1),...,0(K,). From (3.5), we have

E[N(S),, | Fs]=a(S)", n=0, (4.1)

where S the complement of a stable, non-increasing stopping set S, hence the factorial moments of N (§) coincide
with the moments of o(S). From (2.3) and (4.1) we obtain the following result as in Corollary 3.7.

Proposition 4.1. Let S be the complement of a stable and non-increasing stopping set S. We have
E[1+0)"® | Fs] =e®, 1€ (-2,0).
From Proposition 4.1 we recover the distribution of N (g) as in Corollary 3.8.
Corollary 4.2. Let S be the complement of a stable and non-increasing stopping set S. We have

o e®)
—— ()", n=xo. (4.2)

P(N(S) =n | Fs) =

Corollary 4.2 shows in particular that, given the stopping set S, the count IV (§) is a Poisson random variable
with intensity a(g), see Theorem 3.1 of [3, 16], when § is the closed complement of the Poisson convex hull S.

In the remainder of this section we construct an estimator for the number of Poisson points inside a stopping
set S, using the information provided by S. The following result is a consequence of (3.8), and will be used for
the construction of stopping set estimators.
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Lemma 4.3. Let S be the complement of a stable and non-increasing stopping set S. The distribution ofN(g)

and N(S) satisfies

l4+n—N(X)
. Cur [(=e®)
P(N(S) = dNS)=1) = E 1
( (S) n.an (S) ) nl (I—N(X)) {N(x)<i}
l,n>0.
Proof. Applying (3.8) to F' = 1{n(x)=i4+n} With the relation
Ef,le{N(x):ern} = 1iN(x)=1-k} Than = (T1,. oo, Thgn) € Xk+n7

we have

P(N(S) =nand N(S) =1) = E [F1;yE)_,,]

= 1 S (_l)k + k+n
o Icz:;) k! . |:~/'Sk+n Ctesnl @ (dzy, ... dzpgn)
Lo~ (1) / .
= E|1 —i- 1 (day, ... AT
n! = k! |: {N(X)=l-k} Shin o ( L1, y ATk )
1
1 (*1 k =\ k+n
) o (Lneo=i—ky (0(S)" 1, l,n>0.
k=0

From (4.3) we can recover the relation

P(N(S) = n) = i_o:IP(N(S) — n and N(S) = 1)

Cn . 0o o (SN
B R Y TN
=0

=$EW®Vw@L

which also follows from (4.2).
On the other hand, Lemma 4.3 allows us to construct an unbiased estimator

—\ = N(X)
1 - U(S)) o(8)
{N(X)<i} (- NX))! €

for the distribution P(N(S) =) of the number of points in a stopping set S, as in the next corollary.

Corollary 4.4. Let S be a stable and non-increasing stopping set S(w). We have

(G N
P(N(S)=1)=E 1{N(X)gz}((l_(sj\)[)(x))!e”(s) . 1>0.

(4.3)

(4.4)
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Proof. By (4.3), we have
P(N(S)=1) = Y P(N(S) =nand N(S) =1)
n=0

(—o(E) " 3 (U(S))"]

(I = N(X))!

= [1{N(X)Sl}

n=0
,l)l*N(X)

~E [1vonan i (0®) e

In particular, we have P(N(S) =0) = IE [1{N(X):O}ef’(§)}’

P(N(S) =1) = E [(Lineo-1y — Liveo-00 (5))e”®)],

and

1 _ _ ]
P(N(S)=2)=E Kzl{N(X):c)} (0(5))" ~ Livo=nyo(S) + 1{N<X)=2}> e”(s)} :

5. DISTRIBUTION OF STOPPING SET COMPLEMENTS

The simulations presented in this section and the next one use a Poisson point process with flat intensity A > 0,
i.e. o(dz) = Adz, and are done with the R Spatstat package [2].

In this section we estimate the distribution IP’(N (g) = n) of the number of Poisson points inside the com-
plement S of a stopping set S using both the standard sampling estimator 1 (N©)=n} and the alternative
estimator

P(N(g) =n ’ fs) = (U(:!))ne_”(s) (5.1)

obtained from Corollary 4.2. The performances of the estimators 1 (N(S)=n} and (5.1) are compared via their
respective variances given by ]P’(N (§) = n) (1 - ]P’(N (g) = n))7 and

S B[(0(5) e O] - (B(N(S

2
) =) 5.2
As (5.1) is clearly satisfied when S is deterministic, we only consider examples of random stopping sets S.

5.1. Annuli in finite volume

In this case, X := B(0, R) is the ball of radius R > 0 centered at 0 in R? and we consider the stable and
non-increasing stopping set S := B,,, defined as the smallest closed ball centered at the origin and containing
m > 1 process points in w (see Fig. 1).
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FIGURE 1. Sample disc By, (in blue) with m = 5.

In this setting, the distribution of N(Em) is explicitly known as

P(N(By) =n) =PB(N(B(0,R)) — N(By) = n)
=P(N(B(0, R)) = n +m)
—o(B(0,R)) (U(B(()7 R)))n+m

N
N

=e

and

_ oo (BO.R) zm: (o(B(O, R))* (5.4)

and we have the identity

which shows that the distribution of o(B,,) is given by

dP(o(B,,) <r) = —dP(c(Bm) > 1)

,r.mfl

= BIN(B(0, B)) < m)da(dr) + e o —dr,

where dr(dr) denotes the Dirac measure at R € (0,00). In particular, it can be checked by closed form
calculations that

E [etU(Em)] —E [(1 + t)N(EM)]’ te (—23 0)7
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FIGURE 2. Distribution and standard error for Bs, with N = 1000 and X\ = 10.
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(A) Probability distribution

FIGURE 3. Distribution and standard error for

as in Proposition 4.1, and

in agreement with Corollary 4.2.

(B) Standard error

Bs, with N = 10,000 and A = 10.

Using the estimator 1y g_,, (“Sampling”) and the alternative estimator (5.1) (“Averaging”), the following

simulations provide estimates of the distribution ]P’(N (Eg,) = n) of the count of points strictly inside the convex
hull Bs complement of Bs in X = B(0,1/2). Figures 2 and 3 are plotted with N = 1000 and N = 10,000 Monte
Carlo samples respectively, together with the exact estimates (5.3)—(5.4) and the Poisson probability function

with parameter A > 0.

The standard errors plotted in Figure 2b show that the estimator (5.1) (“Averaging”) is more accurate and
has a lower variance than the standard estimator 1 (N(S)=n} (“Sampling”). In this figure and the following ones,

error estimates are provided in two different forms:
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0.00 0.25 0.50 0.75 1.00

FI1GURE 4. Sample convex hull of a Poisson point process.

— Monte Carlo error estimates for the standard estimator 1 (N@)=n} (“Sampling”) together with the
corresponding error estimator

VB(N(S) = n) (1= P(N(S) =n))/N, (5.5)

where N is the number of Monte Carlo samples;
— Monte Carlo error estimates for (5.1) (“Averaging”), together with the corresponding estimator (5.2)

(“Error estimator”), which can be computed as

S LB o) e 9] (e(vE) =)
_ \/ L B[(20())*"e-2®] - (B(N(S) = n))’

nl222n

- \/%P(N(ﬁ) = 2n) — (B(N(S) = n))”

by applying (5.1).

5.2. Open convex hull of a Poisson point process

The closed complement S = C of the (open) convex hull S = C of a Poisson point process in a convex domain
X of finite intensity measure in R? is a stable and non-increasing stopping set, see Section 3, and Figure 4
for an illustration. The study of the convex hull of a random set of points is a classical topic in computational
geometry, with numerous applications in statistics and computing, see e.g. [1] and references therein.
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FIGURE 5. Distribution and standard error for the inside of the Poisson convex hull, A\ = 4.
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FIGURE 6. Distribution and standard error for the inside of the Poisson convex hull, A = 10.

In Figures 5 and 6 we provide estimates for the distribution JP’(N (§) = n) of the count of points strictly
inside the convex hull S complement of S, generated by the Poisson point process on X = [0,1]?, which are
plotted with N = 500 Monte Carlo samples.

As in Figures 2-3, we check that the estimator (5.1) (“Averaging”) is more accurate, as it has a lower variance
than standard sampling when estimating the count of points in the complement S of the Poisson convex hull S
for two different values of the Poisson intensity parameter .

The estimates are plotted together with the Poisson probability function with parameter A > 0 as in Figures 2
and 3. The Monte Carlo error estimates “Sampling” and “Averaging” are respectively complemented with their
estimators (5.2) (“Error estimator”) and (5.5).

5.3. Voronoi flower complement

We consider the stopping set given by the Voronoi flower S based on a typical cell containing the point
(1/2,1/2) in the unit square X = [0, 1] x [0, 1], see Section 3, up to a translation of the Poisson point process
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FIGURE 7. Sample Voronoi flower S.
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Fi1GURE 8. Distribution and standard error for the Voronoi flower complement, A = 4.

with flat intensity A > 0 (see Fig. 7). In case the window X = [0, 1] x [0, 1] does not contain any Voronoi cell
around the point (1/2,1/2) we let S = [0, 1] x [0, 1], which is the case in particular when N(X) < 3.

Similarly to Figures 5 and 6, the next simulations provide estimates for the distribution P(N (S) = n) of the
count of points in the complement S of the Voronoi flower S around the point (1/2,1/2), generated by a Poisson
point process with flat intensity A > 0 on the unit square X = [0, 1]2.

In Figures 8-10, which are plotted with N = 1000 Monte Carlo samples, we also check that the estimator
(5.1) (“Averaging”) has lower variance than the standard sampling estimator 1 (NGE)=n} when estimating the
count of points in the complement S of the Voronoi flower S for two different values of the Poisson intensity

parameter A.
As in Figures 5 and 6, the Monte Carlo error estimates are respectively complemented with their estimators

(5.2) (“Error estimator”) and (5.5).



102 N. PRIVAULT

Sampling Sampling
e —— Averaging —— Averaging
- - - Poisson(}) S \\ — p(1-p)/N
\ - = = Error estimator
£ < R
]
i B i B T T T T T T T T T T T T T T T T T T T T 1
0O 1 2 3 4 5 6 7 8 9 11 13 15 17 19
n n
(A) Probability distribution (B) Standard error
FIGURE 9. Distribution and standard error for the Voronoi flower complement, A = 10.
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FiGURE 10. Distribution and standard error for the Voronoi flower complement, \ = 20.

6. DISTRIBUTION OF STOPPING SETS

In this section we estimate the distribution IP’(N (S) = n) of the number of Poisson points inside a stopping
set S using both the standard sampling estimator 1{y )=y} and the alternative estimator

\\n—N(X)
1 (_ U(S)) o(8)
{N(X)<n} (n — N(X))! €

(6.1)

obtained from Corollary 4.4. We note however that here, this estimator does not improve in precision over the
standard sampling estimator 1{n(g)=n}-

6.1. Annuli in finite volume

In this setting we have X = B(0, R), S = By,, h(R) = o(B(0, R)) and ¢(S) = h(R) — 0(By,), and the result
of Corollary 4.4 can be recovered in closed form.
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(1) When 0 <1 < m, we have
dP(c(B,,) <rand N(B(0,R)) =1) =P(N(B(0,R)) = )dg(dr),
and o(B,,) = h(R) if N(X) < m, hence the estimator (4.4) coincides with the standard sampling estimator, as

(0(Bn) = h(R))'N)  py o
Liveosy (= N(X))! M7 = 1y (x)=1y-

(#i) When | > m, we have

P(o(B,,) > h(r) and N(B(0,R)) = 1) = P(N(B(0,r)) < m and N(B(0,R)) =)
P(N(B(0, R)) = N(B(0,7)) > —m and N(B(0,r) + N(B(0, R)) = N(B(0,7)) = 1)
l

| | A

Lu-p>1-m}P(N(B(0, R)) — N(B(0,7)) = I = p)P(N(B(0,7)) = p)

hS]
,_\

m—

h(r))'™? (h(r))?

|
=0 ) p'

, 0<r<R,

3

and

dP(o(B,,) <rand N(B(0,R)) =1) = —dIP’( ( (0,7)) <m and N(B(0,R)) =1)

m—1 l —p— 1 1 _ l —p p—1
_R (R— T) r
— S d
¢ (;_% (—p _1 ol p; _1).> "
_ efR (R _ r)lfm Tmfl dr’

(l—m) (m-—1)!

hence when ! = m, the right hand side of (4.5) reads

_1)m—N(X)
E 1oz ey

—~
—~

h(R) - o(Bm>)m—N<X>eh<R>—o<Bm>} = B [1y ()75

while when [ > m we find

—1)N ) I=N(X) h(R)=o(Bm)
E 1{N<X>s1}m(h(3)—0(3m)) e "

[ (0= (B(R) = 7(Bp))! e M=o )]

b
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F1GURrE 11. Distribution and standard error for the Poisson convex hull boundary, A = 4.
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Ficure 12. Distribution and standard error for the Voronoi flower, A = 4.

h(R) . o aml l—m (—1)-m—k
:/0 e (h(R) — 2 (m—l)!dxkz:;(l—m—k)!k!

which recovers the equality (4.5).

6.2. Convex hull of a Poisson point process

Next, we apply Corollary 4.4 to estimate the distribution P(N(S) = n) of the count of boundary points

in the convex hull of Section 5.2. Unlike in Section 5, in this example and in the next one, no particular
improvement is observed when applying the estimator (6.1) (“Averaging”) instead of the standard estimator
1¢n(s)=n} (“Sampling”) in Figure 11, which is plotted with N = 10,000 Monte Carlo samples. In this case, we
have S = X when N(X) < 2, hence P(N(S) =n) =P(N(X)=n) forn=0,1,2.



CARDINALITY ESTIMATION FOR RANDOM STOPPING SETS 105

8 - Sampling ® s Sampling S
—— Averaging - —— Averaging P
& | --- Poisson()\) ® S --- Poisson(\)
—— [Cal03] _ | —— [calo3]
& dq S 7 @
g ° E
= b 2 | <D
= @ =1 D
§ B e ® é 1
- @ &2 @
D -9 P
8 J —o = =0 — “® -] 8 | @& o) < o - e -0
< T T T T T T T T T T 1 < T T T T T T T T T T 1
o] 1 2 3 4 5 6 7 8 9 10 1 2 4 5 6 7 8 9 10
n n
(A) A=15 (B) A =50

FI1GURE 13. Distributions of the Voronoi flower for different values of .

Figure 11b compares the variance of 1{x(s)=pn} (“Sampling”) to that of (6.1) (“Averaging”) when estimating
the number of boundary vertices of the convex hull of a Poisson point process on the unit square X = [0, 1] x [0, 1].
The error estimates are provided as Monte Carlo error estimates for the estimator 1yyg)—pn} (“Sampling”)
together with (5.5) and (6.1) (“Averaging”).

6.3. Voronoi flower

Here we consider the Voronoi flower S of Section 5.3 based on a typical cell containing the point (1/2,1/2) in
the square X = [0, 1] x [0, 1], up to a translation of the Poisson point process. Closed form expressions for the
distribution of the number of points of the typical Voronoi cell have been obtained using the Slivnyak-Mecke
identity and integration on simplexes in [5] and references therein.

Figure 12, which is plotted with N = 10,000 Monte Carlo samples, compares the accuracy of the standard
estimator 1{y(g)—n} (“Sampling”) to the estimator (6.1) (“Averaging”) when estimating the count of points in
the Voronoi flower S around the point (1/2,1/2). In this case we have N(S) = N(X) when N(X) < 3, and we
check that P(N(S) =n) =P(N(X) =n) forn=0,1,2,3.

As we are dealing with a finite volume, our estimates can be compared with the distribution estimates of e.g.
Table 1 in [5] for the typical Voronoi cell only when the intensity of the underlying Poisson process tends to
infinity, in which case the number of points in the Voronoi flower becomes the number of points in the typical
Voronoi cell plus one, see the next Figure 13 with N = 10,000 Monte Carlo samples. However, the loss of
performance of the averaging estimator (6.1) observed in Figure 12 becomes even stronger as A becomes large.

APPENDIX A

Proof of Lemma 3.4.
Let B € Fs. For any compact set K € K(X), by (3.2) we have

Bn{we Q¥ : S(w)c K} € Fg,

hence the random variable 1pl¢scxy} is Fx-measurable, and by the definition (3.1) of Fx its value is not
affected by Poisson points outside of K. Thus, for all w € QX and z in the complement K of K, we find

ex (1B1gscky) (W) = 13(w)1{s(w)ckY
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i.e.
+ _ X 7=
1{S(wu{x})CK} ({;‘z 13)((,0) = 1{S(w)CK}]—B(w>7 w €N , T E K. (Al)

In addition, since (A.1) is valid for all w € QX and K € K(X), we can fix ' € QX and apply (A.1) to a compact
K (w') depending on w’, which yields

Lis@ufahere)) (E518) W) = Lswckwnlew), weQ¥, zeK(W),
or, in the particular case where we let w := w’,
1{S(wlu{x})cK(wl)}(E;_].B)(w/) = 1{S(w’)CK(w’)}1B(w/)a w’ S QX, T € [?(w’). (A2)

Let now w € QX and x € S(w). Since S(w) is a closed (and compact) set in X, there exists K (w) € K(X) such
that

z € K(w) C S(w),
with
S(wuU{z}) C S(w) C K(w)
since S(w) is non-increasing. Hence, by (A.2) we have

eX15(w) = swuien ck(@)1es 18(w)
= 1{s(w)ck(w)}1B(W)
= 1p(w), z € S(w).

This conclusion extends from B € Fg to any Fg-measurable random variable F(w) by a monotone class
argument. O

Proof of Proposition 3.5. (See also Prop. 3.3 of [4]).

Let x1,...,z, € X. We consider the following cases.

(i) If {z1,...,7,} C S(w) then we have {x1,...,2,} C S(wU {w1,...,2,}) because S(w) is non-decreasing,
hence by Lemma 3.4 we have

(i) In case {x1,...,2,} C S(w), it follows from Lemma A.1 below that there exists z. € {x1,...,z,} such that
Ze € S(wU{z1,...,2,}), hence

ee, (Is(@1) - Ig(@n)) = Ig(21) -+ Ig(an) = 0.
(t30) If {x1,..., 2, } N S(w) # 0 we partition {x1,...,2,} as
{z1,. . xn} ={21,.. ., 2} U{Tky1, .., Tn}
with {z1,...,2x} C S(w) and {Zy1,...,7,} C S(w), for some k € {1,...,n}. By point (ii) above we have

E;rk (1§(1‘1) cee 1§($k)) = 1§(ZE1) e lg(xk) =0
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and by Lemma 3.4 we have S(w) = S(w U {Zg41,...,7n}), hence

ef, (A5(z1) - 15(z0)) = €f, (5(z1) -+~ Lg(zn)) ey, (Ls(@nrr) -+ Lg(an))
= 5;; (lg(:cl) lg(xk))ssz (lg(ka) e lg(xn))
= 15(21) -+ 1g(zn)ey, (5(whs1) -+ 1g(wn)
=0
=1g(21) - 1g(zn),  w=(z1,...,2%)
O
The next lemma has been used in the proof of Proposition 3.5.
Lemma A.1. Let S be a stable and non-increasing stopping set. For any w € QX and x1,..., 2, € S(w), there

exists i € {1,...,k} such that z; € S(wU {z1,...,2x}).

Proof. We do the proof by contradiction by assuming that {z1,...,zx} C S(wU{z1,...,2x}). We will show by
induction on j = 1,...,k + 1 that

k
Swu{zy,...,ax}) =S [wulJ{=i} |, (A.3)

=]

with the convention UF_, {2} = 0. For j = k + 1 this leads to S(w U {z1,...,2}) = S(w) and to z; € S(w),
j=1,...,k, which contradicts {z1,...,2} C S(w).

Relation (A.3) clearly holds for j = 1, and we suppose that it holds for some j € {1,..., k}. By assumption
we have

T € g(w U {xla s 7mk}) = g(w U U?:j{xi})a
hence
z; € S(wUU;, {2:})

by the stability condition (3.3). Consequently, by (3.4) or Lemma 3.4 we have

k
S(wU{zjs1,...,2x}) =S [wU U {z;}
=
since S(w) is a stable and non-increasing stopping set. a
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