Let τ$$ be a random tree distributed as a Galton-Watson tree with geometric offspring distribution conditioned on {Z$$ = a$$} where Z$$ is the size of the nth generation and $$ is a deterministic positive sequence. We study the local limit of these trees τ$$ as n →∞ and observe three distinct regimes: if $$ grows slowly, the limit consists in an infinite spine decorated with finite trees (which corresponds to the size-biased tree for critical or subcritical offspring distributions), in an intermediate regime, the limiting tree is composed of an infinite skeleton (that does not satisfy the branching property) still decorated with finite trees and, if the sequence $$ increases rapidly, a condensation phenomenon appears and the root of the limiting tree has an infinite number of offspring.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019026
Keywords: Galton-Watson tree, random discrete tree, local limit, non extinction, branching process, geometric Galton-Watson process
@article{PS_2020__24_1_294_0,
author = {Abraham, Romain and Bouaziz, Aymen and Delmas, Jean-Fran\c{c}ois},
title = {Very fat geometric {Galton-Watson} trees},
journal = {ESAIM: Probability and Statistics},
pages = {294--314},
year = {2020},
publisher = {EDP Sciences},
volume = {24},
doi = {10.1051/ps/2019026},
mrnumber = {4126978},
zbl = {1455.60112},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2019026/}
}
TY - JOUR AU - Abraham, Romain AU - Bouaziz, Aymen AU - Delmas, Jean-François TI - Very fat geometric Galton-Watson trees JO - ESAIM: Probability and Statistics PY - 2020 SP - 294 EP - 314 VL - 24 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2019026/ DO - 10.1051/ps/2019026 LA - en ID - PS_2020__24_1_294_0 ER -
%0 Journal Article %A Abraham, Romain %A Bouaziz, Aymen %A Delmas, Jean-François %T Very fat geometric Galton-Watson trees %J ESAIM: Probability and Statistics %D 2020 %P 294-314 %V 24 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2019026/ %R 10.1051/ps/2019026 %G en %F PS_2020__24_1_294_0
Abraham, Romain; Bouaziz, Aymen; Delmas, Jean-François. Very fat geometric Galton-Watson trees. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 294-314. doi: 10.1051/ps/2019026
[1] and , Local limits of conditioned Galton-Watson trees: the condensation case. Electr. J. Probab. 19 (2014) 56. | MR | Zbl
[2] and , Local limits of conditioned Galton-Watson trees: the infinite spine case. Electr. J. Probab. 19 (2014) 2. | MR | Zbl
[3] and , Asymptotic properties of expansive Galton-Watson trees. Electr. J. Probab. 24 (2019) 15. | MR | Zbl
[4] and , Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer-Verlag, New York-Heidelberg (1972). | MR | Zbl
[5] , Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv. 9 (2012) 103–252. | MR | Zbl | DOI
[6] and , Condensation in nongeneric trees. J. Stat. Phys. 142 (2011) 277–313. | MR | Zbl | DOI
[7] , Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré Probab. Stat. 22 (1986) 425–487. | MR | Zbl | Numdam
[8] , Limit theorems for conditioned non-generic Galton-Watson trees. Ann. Inst. Henri Poincaré, Probab. Stat. 51 (2015) 489–511. | MR | Zbl | Numdam | DOI
[9] , Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré 22 (1986) 199–207. | MR | Zbl | Numdam
[10] , Martin boundaries of some branching processes. Ann. Inst. Henri Poincaré Probab. Statist. 30 (1994) 181–195. | MR | Zbl | Numdam
Cité par Sources :





