@article{AIHPB_1986__22_4_425_0,
author = {Kesten, Harry},
title = {Subdiffusive behavior of random walk on a random cluster},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {425--487},
year = {1986},
publisher = {Gauthier-Villars},
volume = {22},
number = {4},
mrnumber = {871905},
zbl = {0632.60106},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1986__22_4_425_0/}
}
TY - JOUR AU - Kesten, Harry TI - Subdiffusive behavior of random walk on a random cluster JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1986 SP - 425 EP - 487 VL - 22 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1986__22_4_425_0/ LA - en ID - AIHPB_1986__22_4_425_0 ER -
Kesten, Harry. Subdiffusive behavior of random walk on a random cluster. Annales de l'I.H.P. Probabilités et statistiques, Tome 22 (1986) no. 4, pp. 425-487. https://www.numdam.org/item/AIHPB_1986__22_4_425_0/
[1] and , Density of states on fractals: « fractons » ; J. Physique Lett., t. 43, 1982, L625-631.
[2] and , Branching Processes, 1972, Springer-Verlag. | Zbl | MR
[3] and , Probability Theory, 1978, Springer-Verlag. | Zbl | MR
[4] , La percolation : un concept unificateur, La Recherche, t. 7, 1976, p. 919-927.
[5] , , and , An invariance principle for reversible Markov processes with application to random motions in random environments, (1985, preprint).
[6] and , Random Walk and Electric Networks, Carus Math. Monograph, No. 22, 1984, Math. Assoc. of America. | Zbl | MR
[7] , Conditioned limit theorems for some null recurrent Markov processes, Ann. Probab., t. 6, 1978, p. 798-828. | Zbl | MR
[8] , An Introduction to Probability Theory and its Applications, Vol. I, 3rd ed., John Wiley and Sons, 1968. | Zbl | MR
[9] and , Critical phenomena for Spitzer's reversible nearest particle systems, Ann. Probab., t. 10, 1982, p. 881-895. | Zbl | MR
[10] , The Theory of Branching Processes, Springer-Verlag and Prentice Hall, 1963. | Zbl | MR
[11] , , and , Probability densities for the displacement of random walks on percolation clusters, J. Phys. A. Math. Gen., t. 18, 1985, L719-722.
[12] , On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhya, Ser. A, t. 30, 1968, p. 253-258. | Zbl | MR
[13] , Branching Processes with Biological Applications, John Wiley and Sons, 1950. | Zbl
[14] , The critical probability of bond percolation on the square lattice equals 1/2, Comm. Math. Phys., t. 74, 1980, p. 41-59. | Zbl | MR
[15] , Percolation Theory for Mathematicians, Birkhauser-Boston, 1982. | Zbl | MR
[16] , The incipient infinite cluster in two-dimensional percolation, to appear in Theor. Prob. Rel. Fields, 1986. | Zbl | MR
[17] , The diffusion limit for reversible jump processes on Zd with periodic random bond conductivities, Comm. Math. Phys., t. 90, 1983, p. 27-68. | Zbl | MR
[18] and , To what class of fractals does the Alexander-Orbach conjecture apply? Phys. Rev. Lett., t. 51, 1983, p. 2048-2051.
[19] , Probability Theory, 4th ed., Springer Verlag, 1977. | Zbl | MR
[20] and , Solvable fractal family, and its possible relation to the backbone at percolation, Phys. Rev. Lett., t. 47, 1981, p. 1771-1774. | MR
[21] , Martingales and Stochastic Integrals I, Lecture Notes in Math, t. 284, 1972, Springer-Verlag. | Zbl | MR
[22] and , Diffusion on percolation structures, in Percolation Structures and Processes, Ann. Israel. Phys. Soc., t. 5, 1983, Eds. G. Deutscher, R. Zallen and J. Adler.
[23] , Some limit theorems for the total progeny of a branching process, Adv. Appl. Prob., t. 3, 1971, p. 176-192. | Zbl | MR
[24] and , Random walk on fractal structures and percolation clusters, J. Physique-Lett., t. 44, 1983, L13-22.
[25] and , Percolation probabilities on the square lattice, Ann. Discrete Math., t. 3, 1978, p. 227-245. | Zbl | MR
[26] , A branching process with mean one and possibly infinite variance, Z. Wahrsch. verw. Geb., t. 9, 1968, p. 139-145. | Zbl | MR
[27] , The ant in the labyrinth: diffusion in random networks near the percolation threshold, J. Phys., Solid State Phys., t. C13, 1980, p. 2991-3002.
[28] and , Inequalities with applications to percolation and reliability, J. Appl. Prob., t. 22, 1985, p. 556-569. | Zbl | MR





