In this paper we are interested in multifractional stable processes where the self-similarity index H becomes time-dependent, while the stability index α remains constant. Using β- negative power variations ( − 1∕2 < β < 0), we propose estimators for the value at a fixed time of the multifractional function H which satisfies an η-Hölder condition and for α in two cases: multifractional Brownian motion (α = 2) and linear multifractional stable motion (0 < α < 2). We get the consistency of our estimates for the underlying processes together with the rate of convergence.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019012
Keywords: Stable processes, multifractional processes, negative power variations, multifractional function
@article{PS_2020__24_1_1_0,
author = {Dang, Thi-To-Nhu},
title = {Estimation of the multifractional function and the stability index of linear multifractional stable processes},
journal = {ESAIM: Probability and Statistics},
pages = {1--20},
year = {2020},
publisher = {EDP Sciences},
volume = {24},
doi = {10.1051/ps/2019012},
mrnumber = {4052999},
zbl = {1447.60067},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2019012/}
}
TY - JOUR AU - Dang, Thi-To-Nhu TI - Estimation of the multifractional function and the stability index of linear multifractional stable processes JO - ESAIM: Probability and Statistics PY - 2020 SP - 1 EP - 20 VL - 24 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2019012/ DO - 10.1051/ps/2019012 LA - en ID - PS_2020__24_1_1_0 ER -
%0 Journal Article %A Dang, Thi-To-Nhu %T Estimation of the multifractional function and the stability index of linear multifractional stable processes %J ESAIM: Probability and Statistics %D 2020 %P 1-20 %V 24 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2019012/ %R 10.1051/ps/2019012 %G en %F PS_2020__24_1_1_0
Dang, Thi-To-Nhu. Estimation of the multifractional function and the stability index of linear multifractional stable processes. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 1-20. doi: 10.1051/ps/2019012
[1] and , On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoch. Process. Appl. 111 (2004) 119–156. | MR | Zbl | DOI
[2] and , Linear multifractional stable motion: wavelet estimation of H(⋅) and α parameter. Lithuanian Math. J. 55 (2015) 159–192. | MR | Zbl | DOI
[3] and , Linear multifractional stable motion: an a.s. uniformly convergent estimator for Hurst function. Bernoulli 23 (2017) 1365–1407. | MR | Zbl | DOI
[4] and , Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion. Bernoulli 23 (2017) 1365–1407. | MR | Zbl | DOI
[5] , and , Wavelet construction of generalized multifractional processes. Rev. Matemát. Iberoamer. 23 (2007) 327–370. | MR | Zbl | DOI
[6] and , Nonparametric estimation of the local Hurst function of multifractional processes. Stoch. Process. Appl. 123 (2013) 1004–1045. | MR | Zbl | DOI
[7] , and , On limit theory for Lévy semi-stationary process. Bernoulli 24 (2018) 3117–3146. | MR | Zbl | DOI
[8] , , and , Identification of the Hurst index of a step fractional Brownian motion. Stat. Inf. Stoc. Proc. 3 (2000) 101–111. | MR | Zbl | DOI
[9] , and , Identifying the multifractional function of a Gaussian process. Stat. Proba. Lett. 39 (1998) 337–345. | MR | Zbl | DOI
[10] , and , Gaussian processes and pseudodifferential elliptic operators. Rev. Math. Iberoamer. 13 (1997) 19–90. | MR | Zbl | DOI
[11] , Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. 4 (2001) 199–227. | MR | Zbl | DOI
[12] , Identification of multifractional Brownian motion. Bernoulli 11 (2005) 987–1008. | MR | Zbl | DOI
[13] , Erratum: Identification of multifractional Brownian motion. Bernoulli 12 (2006) 381–382. | MR | Zbl | DOI
[14] and , Fractional fields and applications. Springer-Verlag, Berlin (2013). | Zbl | DOI
[15] and , Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electr. J. Stat. 11 (2017) 4103–4150. | MR | Zbl
[16] and , Self-similar processes. Princeton University Press, Princeton, NJ (2002). | MR | Zbl
[17] and , Multifractional, multistable, and other processes with prescribed local form. J. Theor. Prob. 22 (2009) 375–401. | MR | Zbl | DOI
[18] , and , Localizable moving average symmetric stable and multistable processes. Stoch. Models 25 (2009) 648–672. | MR | Zbl | DOI
[19] , Estimating self-similarity through complex variations. Electr. J. Stat. 6 (2012) 1392–1408. | MR | Zbl
[20] , Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré Probab. Statist 40 (2004) 259–277. | MR | Zbl | Numdam | DOI
[21] , An estimation of the stability and the localisability functions of multistable processes. Electr. J. Stat. 7 (2013) 1129–1166. | MR | Zbl
[22] , and , Estimation of the linear fractional stable motion. Preprint (2018). | arXiv | MR
[23] , , and , Local times of multifractional Brownian sheets. Bernoulli 14 (2008) 865–898. | MR | Zbl | DOI
[24] and , Multifractional Brownian motion: definition and preliminary results. Technical Report 2645, Rapport de recherche de l’INRIA (1995).
[25] and , Stable Non-Gaussian Random Processes. Chapmann and Hall, New York (1994). | MR | Zbl
[26] and , Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115. | MR | Zbl | DOI
[27] and , How rich is the class of multifractional Brownian motions? Stoch. Process. Appl. 116 (2006) 200–221. | MR | Zbl | DOI
[28] , and , Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process. 82 (2002) 1873–1901. | Zbl | DOI
Cité par Sources :





