Let (X, d) be a proper ultrametric space. Given a measure m on X and a function B↦C(B) defined on the set of all non-singleton balls B we consider the hierarchical Laplacian L = L$$. Choosing a sequence {ε(B)} of i.i.d. random variables we define the perturbed function C(B, ω) and the perturbed hierarchical Laplacian L$$ = L$$. We study the arithmetic means $$ of the L$$-eigenvalues. Under certain assumptions the normalized arithmetic means $$ converge in law to the standard normal distribution. In this note we study convergence in the total variation distance and estimate the rate of convergence.
Accepté le :
DOI : 10.1051/ps/2018010
Keywords: Ultrametric space, p-adic numbers, hierarchical Laplacian, fractional derivative, total variation and entropy distance
Bendikov, Alexander 1 ; Cygan, Wojciech 1
@article{PS_2019__23__68_0,
author = {Bendikov, Alexander and Cygan, Wojciech},
title = {On the rate of convergence in the central limit theorem for hierarchical {Laplacians}},
journal = {ESAIM: Probability and Statistics},
pages = {68--81},
year = {2019},
publisher = {EDP Sciences},
volume = {23},
doi = {10.1051/ps/2018010},
mrnumber = {3922820},
zbl = {1416.60042},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2018010/}
}
TY - JOUR AU - Bendikov, Alexander AU - Cygan, Wojciech TI - On the rate of convergence in the central limit theorem for hierarchical Laplacians JO - ESAIM: Probability and Statistics PY - 2019 SP - 68 EP - 81 VL - 23 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2018010/ DO - 10.1051/ps/2018010 LA - en ID - PS_2019__23__68_0 ER -
%0 Journal Article %A Bendikov, Alexander %A Cygan, Wojciech %T On the rate of convergence in the central limit theorem for hierarchical Laplacians %J ESAIM: Probability and Statistics %D 2019 %P 68-81 %V 23 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2018010/ %R 10.1051/ps/2018010 %G en %F PS_2019__23__68_0
Bendikov, Alexander; Cygan, Wojciech. On the rate of convergence in the central limit theorem for hierarchical Laplacians. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 68-81. doi: 10.1051/ps/2018010
[1] and , Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157 (1993) 245–278. | MR | Zbl | DOI
[2] and , A random walk on p-adic numbers: generator and its spectrum. Stoch. Process. Appl. 53 (1994) 1–22. | MR | Zbl | DOI
[3] , and , Oscillating heat kernels on ultrametric spaces. J. Spectr. Theory 9 (2019) 195–226. | MR | Zbl | DOI
[4] , , and , On a class of random perturbations of the hierarchical Laplacian. Izv. Math. 79 (2015) 859–893. | MR | Zbl | DOI
[5] , and , On a class of Markov semigroups on discrete ultrametric spaces. Potential Anal. 37 (2012) 125–169. | MR | Zbl | DOI
[6] , , and , Isotropic Markov semigroups on ultrametric spaces. Russ. Math. Surv. 69 (2014) 589–680. | MR | Zbl | DOI
[7] and , On the spectrum of the hierarchical Laplacian. Potential Anal. 41 (2014) 1247–1266. | MR | Zbl | DOI
[8] , and , Berry- Esseen bounds in the entropic central limit theorem. Probab. Theory Relat. Fields 159 (2014) 435–478. | MR | Zbl | DOI
[9] and , Diffusion on locally compact ultrametric spaces. Expositiones Math. 22 (2004) 197–211. | MR | Zbl | DOI
[10] and , Anisotropic diffusion on totally disconnected abelian groups. Pac. J. Math. 225 (2006) 221–229. | MR | Zbl | DOI
[11] , Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12 (1969) 91–107. | MR | Zbl | DOI
[12] , Information Theory and the Central Limit Theorem. Imperial College Press (2004). | MR | Zbl | DOI
[13] , Pseudo-Differential Equations and Stochastics Over Non-Archimedian Fields. Vol. 244 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc. (2001). | MR | Zbl
[14] , Hierarchical Anderson Model. Vol. 42 of CRM Proceedings and Lecture Notes. Centre de Recherches Mathématiques (2007). | MR | Zbl | DOI
[15] , Spectral localization in the hierarchical Anderson model. Proc. Am. Math. Soc. 135 (2007) 1431–1440. | MR | Zbl | DOI
[16] , Poisson Statistics of Eigenvalues in the Hierarchical Anderson Model. Annales Henri Poincaré 9 (2008) 685–709. | MR | Zbl | DOI
[17] , Hierarchical andom matrices and operators, application to Anderson model, in Proceedings of 6th Lucacs Symposium (1996) 179–194. | MR | Zbl
[18] , Information and Information Stability of Random Variables and Processes. Holden-Day (1964). | MR | Zbl
[19] , Probability, 2nd edn. Springer (1996). | MR | DOI
[20] , Fourier Analysis on Local Fields. Princeton University Press (1975). | MR | Zbl
[21] , Asymptotic Statistics. Cambridge University Press (1998). | MR | Zbl | DOI
[22] , Generalized functions over the field of p-adic numbers. Uspekhi Matematicheskikh Nauk 43 (1988) 17–53. | MR | Zbl
[23] , and , p-adic analysis and mathematical physics. Vol. 1 of Series on Soviet and East European Mathematics. World Scientific Publishing Co. Inc. River Edge (1994). | MR | Zbl
Cité par Sources :





