Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425-449].
Keywords: diffusion process, adaptive estimation, regeneration method, mean square estimator, model selection, deviation inequalities
@article{PS_2011__15__197_0,
author = {L\"ocherbach, Eva and Loukianova, Dasha and Loukianov, Oleg},
title = {Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process},
journal = {ESAIM: Probability and Statistics},
pages = {197--216},
year = {2011},
publisher = {EDP Sciences},
volume = {15},
doi = {10.1051/ps/2009016},
mrnumber = {2870512},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ps/2009016/}
}
TY - JOUR AU - Löcherbach, Eva AU - Loukianova, Dasha AU - Loukianov, Oleg TI - Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process JO - ESAIM: Probability and Statistics PY - 2011 SP - 197 EP - 216 VL - 15 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ps/2009016/ DO - 10.1051/ps/2009016 LA - en ID - PS_2011__15__197_0 ER -
%0 Journal Article %A Löcherbach, Eva %A Loukianova, Dasha %A Loukianov, Oleg %T Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process %J ESAIM: Probability and Statistics %D 2011 %P 197-216 %V 15 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ps/2009016/ %R 10.1051/ps/2009016 %G en %F PS_2011__15__197_0
Löcherbach, Eva; Loukianova, Dasha; Loukianov, Oleg. Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 197-216. doi: 10.1051/ps/2009016
[1] , Nonparametric identification for diffusion processes. SIAM J. Control. Optim. 16 (1978) 380-395. | Zbl | MR
[2] , and , Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Stat. 29 (2001) 839-875. | Zbl | MR
[3] , and , Model selection for (auto-)regression with dependent data. ESAIM: P&S 5 (2001) 33-49. | Zbl | MR | Numdam
[4] , and , Risks bounds for model selection via penalization. Prob. Th. Rel. Fields 113 (1999) 301-413. | Zbl | MR
[5] , and , Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514-543. | Zbl | MR
[6] , Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Stat. 33 (2005) 507-2528. | Zbl | MR
[7] and , Asymptotically efficient trend coefficient estimation for ergodic diffusion. Math. Meth. Stat. 11 (2002) 402-427. | MR
[8] , and , Dynamics adaptive estimation of a scalar diffusion. Prpublication PMA-762, Univ. Paris 6 (2002). Available at www.proba.jussieu.fr/mathdoc/preprints/. Mathematical Reviews (MathSciNet): MR1895888 Project Euclid: euclid.bj/1078866865. | MR
[9] and , Sequential nonparametric adaptive estimation of the drift coefficient in the diffusion processes. Math. Meth. Stat. 10 (2001) 316-330. | Zbl | MR
[10] , Adaptive estimation in diffusion processes. Stochastic Processes Appl. 79 (1999) 135-163. | Zbl | MR
[11] , Statistical inference for ergodic diffusion processes. Springer Series in Statistics. London: Springer (2004). | Zbl | MR
[12] , One problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1999) 459-470. | Zbl | MR
[13] , and , Constructive approximation: advanced problems. Grundlehren der Mathematischen Wissenschaften 304. Berlin: Springer (1996). | Zbl | MR
[14] and , Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions. Ann. Inst. Henri Poincaré 44 (2008) 771-786. | Zbl | MR | Numdam
[15] and , On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl. 118 (2008) 301-1321. | Zbl | MR
[16] , and , Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times. Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425-449. | Zbl | MR | Numdam
[17] , Nonparametric estimation of the drift coefficient in the diffusion equation. Math. Operationsforsch. Statist., Ser. Statistics 1 (1981) 61-73. | Zbl | MR
[18] , Statistical Inference for Diffusion Type Processes. London: Edward Arnold. MR1717690 (1999) | Zbl | MR
[19] and , Continuous martingales and Brownian motion. 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Berlin: Springer (2005). | Zbl
[20] , Adaptive drift estimation for nonparametric diffusion model. Ann. Stat. 28 (2000) 815-836. | Zbl | MR
[21] , On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70 (1997) 115-127. | Zbl | MR
Cité par Sources :






