In this paper, we study the problem of non parametric estimation of an unknown regression function from dependent data with sub-gaussian errors. As a particular case, we handle the autoregressive framework. For this purpose, we consider a collection of finite dimensional linear spaces (e.g. linear spaces spanned by wavelets or piecewise polynomials on a possibly irregular grid) and we estimate the regression function by a least-squares estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization of a penalized criterion akin to the Mallows’ . We state non asymptotic risk bounds for our estimator in some -norm and we show that it is adaptive in the minimax sense over a large class of Besov balls of the form with .
Keywords: nonparametric regression, least-squares estimator, adaptive estimation, autoregression, mixing processes
@article{PS_2001__5__33_0,
author = {Baraud, Yannick and Comte, F. and Viennet, G.},
title = {Model selection for (auto-)regression with dependent data},
journal = {ESAIM: Probability and Statistics},
pages = {33--49},
year = {2001},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1845321},
zbl = {0990.62035},
language = {en},
url = {https://www.numdam.org/item/PS_2001__5__33_0/}
}
TY - JOUR AU - Baraud, Yannick AU - Comte, F. AU - Viennet, G. TI - Model selection for (auto-)regression with dependent data JO - ESAIM: Probability and Statistics PY - 2001 SP - 33 EP - 49 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/PS_2001__5__33_0/ LA - en ID - PS_2001__5__33_0 ER -
Baraud, Yannick; Comte, F.; Viennet, G. Model selection for (auto-)regression with dependent data. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 33-49. https://www.numdam.org/item/PS_2001__5__33_0/
[1] , Information theory and an extension of the maximum likelihood principle, in Proc. 2nd International Symposium on Information Theory, edited by P.N. Petrov and F. Csaki. Akademia Kiado, Budapest (1973) 267-281. | Zbl | MR
[2] , A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1984) 716-723. | Zbl | MR
[3] , Geometric and subgeometric rates for markovian processes in the neighbourhood of linearity. C. R. Acad. Sci. Paris 326 (1998) 371-376. | Zbl | MR
[4] , Model selection for regression on a fixed design. Probab. Theory Related Fields 117 (2000) 467-493. | Zbl | MR
[5] , Model selection for regression on a random design, Preprint 01-10. DMA, École Normale Supérieure (2001). | MR | Numdam
[6] , and, Adaptive estimation in autoregression or -mixing regression via model selection. Ann. Statist. (to appear). | Zbl | MR
[7] , and, Risks bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. | Zbl | MR
[8] and, An adaptive compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. | Zbl | MR
[9] and, How many bins must be put in a regular histogram. Working paper (2001).
[10] , and, Wavelet and fast wavelet transform on an interval. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. | Zbl | MR
[11] , Ten lectures on wavelets. SIAM: Philadelphia (1992). | Zbl | MR
[12] and, Constructive Approximation. Springer-Verlag (1993). | Zbl | MR
[13] and, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. | Zbl | MR
[14] , Mixing properties and examples. Springer-Verlag (1994). | Zbl | MR
[15] , Random Iterative Models. Springer, Berlin, New-York (1997). | Zbl | MR
[16] , On nonparametric estimation in nonlinear AR(1)-models. Statist. Probab. Lett. 44 (1999) 29-45. | Zbl | MR
[17] , On the spectrum of stationary Gaussian sequences satisfying the strong mixing condition I: Necessary conditions. Theory Probab. Appl. 10 (1965) 85-106. | Zbl | MR
[18] , On optimal rates of convergence for nonparametric regression with random design, Working Paper. Stuttgart University (1997).
[19] and, On the strong mixing conditions for stationary Gaussian sequences. Theory Probab. Appl. 5 (1960) 204-207. | Zbl
[20] , Asymptotic optimality for , cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 (1987) 958-975. | Zbl | MR
[21] , and, Constructive Approximation, Advanced Problems. Springer, Berlin (1996). | Zbl | MR
[22] , Some comments on . Technometrics 15 (1973) 661-675. | Zbl
[23] , Quelques inégalités sur les martingales d'après Dubins et Freedman, Séminaire de Probabilités de l'Université de Strasbourg. Vols. 68/69 (1969) 162-169. | Zbl | Numdam
[24] and, Minimum complexity regression estimation with weakly dependent observations. IEEE Trans. Inform. Theory 42 (1996) 2133-2145. | Zbl | MR
[25] and, Memory-universal prediction of stationary random processes. IEEE Trans. Inform. Theory 44 (1998) 117-133. | Zbl | MR
[26] and, Regression-type inference in nonparametric autoregression. Ann. Statist. 26 (1998) 1570-1613. | Zbl | MR
[27] and, A family of asymptotically optimal methods for choosing the order of a projective regression estimate. Theory Probab. Appl. 37 (1992) 471-481. | Zbl | MR
[28] , Selection of the order of an autoregressive model by Akaike's information criterion. Biometrika 63 (1976) 117-126. | Zbl
[29] , An optimal selection of regression variables. Biometrika 68 (1981) 45-54. | Zbl | MR
[30] , Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23 (1995) 1779-1801. | Zbl | MR
[31] and, Some limit theorems for random functions. I. Theory Probab. Appl. 4 (1959) 179-197. | Zbl | MR






