We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central schemes for systems of hyperbolic conservation laws to balance laws. Special attention is paid to the discretization of the source term such as to preserve stationary steady-state solutions. We also prove that the second-order version of our schemes preserves the nonnegativity of the height of the water. This important feature allows one to compute solutions for problems that include dry areas.
Keywords: Saint-Venant system, shallow water equations, high-order central-upwind schemes, balance laws, conservation laws, source terms
@article{M2AN_2002__36_3_397_0,
author = {Kurganov, Alexander and Levy, Doron},
title = {Central-upwind schemes for the {Saint-Venant} system},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {397--425},
year = {2002},
publisher = {EDP Sciences},
volume = {36},
number = {3},
doi = {10.1051/m2an:2002019},
mrnumber = {1918938},
zbl = {1137.65398},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an:2002019/}
}
TY - JOUR AU - Kurganov, Alexander AU - Levy, Doron TI - Central-upwind schemes for the Saint-Venant system JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 397 EP - 425 VL - 36 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2002019/ DO - 10.1051/m2an:2002019 LA - en ID - M2AN_2002__36_3_397_0 ER -
%0 Journal Article %A Kurganov, Alexander %A Levy, Doron %T Central-upwind schemes for the Saint-Venant system %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 397-425 %V 36 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an:2002019/ %R 10.1051/m2an:2002019 %G en %F M2AN_2002__36_3_397_0
Kurganov, Alexander; Levy, Doron. Central-upwind schemes for the Saint-Venant system. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 397-425. doi: 10.1051/m2an:2002019
[1] , Fourth Order Chebyshev Methods with Recurrence Relation. SIAM J. Sci. Comput. 23 (2002) 2041-2054. | Zbl
[2] and, Second Order Chebyshev Methods Based on Orthogonal Polynomials. Numer. Math. 90 (2001) 1-18. | Zbl
[3] and, Généralisation du schéma de Nessyahu-Tadmor pour une équation hyperbolique à deux dimensions d'espace. C. R. Acad. Sci. Paris Sér. I Math. t. 320 (1995) 85-88. | Zbl
[4] , and, A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. | Zbl
[5] , and, Kinetic Schemes for Saint-Venant Equations With Source Terms on Unstructured Grids. INRIA Report RR-3989 (2000).
[6] and, Upwind Methods for Hyperbolic Conservation Laws With Source Terms. Comput. & Fluids 23 (1994) 1049-1071. | Zbl
[7] , and, High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci. Comput. 21 (1999) 294-322. | Zbl
[8] , and, A Sequel to a Rough Godunov Scheme. Application to Real Gas Flows. Comput. & Fluids 29-7 (2000) 813-847. | Zbl
[9] , and, High Order Time Discretization Methods with the Strong Stability Property. SIAM Rev. 43 (2001) 89-112. | Zbl
[10] and, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686-1688. | Zbl
[11] , and, Some Approximate Godunov Schemes to Compute Shallow-Water Equations with Topography. Computers and Fluids (to appear). | Zbl | MR
[12] and, Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl
[13] , A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservation Laws With Source Terms. Math. Models Methods Appl. Sci. 11 (2001) 339-365. | Zbl
[14] ,, and, Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput. Phys. 71 (1987) 231-303. | Zbl
[15] and, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | Zbl
[16] , A Steady-state Capturing Method for Hyperbolic System with Geometrical Source Terms. ESAIM: M2AN 35 (2001) 631-645. | Zbl | Numdam
[17] and, A Third-Order Semi-Discrete Scheme for Conservation Laws and Convection-Diffusion Equations. SIAM J. Sci. Comput. 22 (2000) 1461-1488. | Zbl
[18] , and, Semi-Discrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations. SIAM J. Sci. Comput. 23 (2001) 707-740. | Zbl
[19] and, A Third-Order Semi-Discrete Genuinely Multidimensional Central Scheme for Hyperbolic Conservation Laws and Related Problems. Numer. Math. 88 (2001) 683-729. | Zbl
[20] and, Central Schemes and Contact Discontinuities. ESAIM: M2AN 34 (2000) 1259-1275. | Zbl | Numdam
[21] and, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. J. Comput. Phys. 160 (2000) 214-282. | Zbl
[22] , Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method. J. Comput. Phys. 32 (1979) 101-136. | Zbl
[23] , Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. J. Comput. Phys. 146 (1998) 346-365. | Zbl
[24] and, Wave Propagation Methods for Conservation Laws with Source Terms, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 609-618. | Zbl
[25] , and, Central WENO Schemes for Hyperbolic Systems of Conservation Laws. ESAIM: M2AN 33 (1999) 547-571. | Zbl | Numdam
[26] , and, Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM J. Sci. Comput. 22 (2000) 656-672. | Zbl
[27] , and, Central Schemes for Systems of Balance Laws, Hyperbolic Problems: Theory, Numerics, Applications, Vol. II, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 130 (1999) 651-660. | Zbl
[28] and, Nonoscillatory High Order Accurate Self Similar Maximum Principle Satisfying Shock Capturing Schemes. I. SIAM J. Numer. Anal. 33 (1996) 760-779. | Zbl
[29] , and, Weighted Essentially Non-Oscillatory Schemes. J. Comput. Phys. 115 (1994) 200-212. | Zbl
[30] and, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math. 79 (1998) 397-425. | Zbl
[31] , High Order Explicit Methods for Parabolic Equations. BIT 38 (1998) 372-390. | Zbl
[32] and, Non-Oscillatory Central Differencing for Hyperbolic Conservation Laws. J. Comput. Phys. 87 (1990) 408-463. | Zbl
[33] , A Comparison of Third and Second Order Accurate Finite Volume Schemes for the Two-Dimensional Compressible Euler Equations, Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, Zürich (1998). Birkhäuser, Basel, Internat. Ser. Numer. Math. 129 (1999) 757-766. | Zbl
[34] and, A Kinetic Scheme for the Saint-Venant System with a Source Term. École Normale Supérieure, Report DMA-01-13. Calcolo 38 (2001) 201-301. | Zbl
[35] , Central Schemes for Balance Laws, Proceedings of HYP2000. Magdeburg (to appear).
[36] , Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. | JFM
[37] , Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Comput. 6 (1988) 1073-1084. | Zbl
[38] and, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. J. Comput. Phys. 77 (1988) 439-471. | Zbl
[39] , High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. | Zbl
[40] , Convenient Total Variation Diminishing Conditions for Nonlinear Difference Schemes. SIAM J. Numer. Anal. 25 (1988) 1002-1014. | Zbl
Cité par Sources :





