Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2239-2253

The principal aim of this work is to provide a family of unisolvent and minimal physical degrees of freedom, called weights, for Nédélec second family of finite elements. Such elements are thought of as differential forms 𝒫 r Λ k (T) whose coefficients are polynomials of degree r. In this paper we confine ourselves in the two dimensional case ℝ2, as in this framework the Five Lemma offers a neat and elegant treatment avoiding computations on the middle space. The majority of definitions and constructions are meaningful for n > 2 as well and, when possible, they are thus given in such a generality, although more complicated techniques shall be invoked to replace the graceful role of the Five Lemma. In particular, we use techniques of homological algebra to obtain degrees of freedom for the whole diagram

𝒫 r Λ 0 (T)𝒫 r-1 Λ 1 (T)𝒫 r-2 Λ 2 (T),

being T a 2-simplex of ℝ2. This work pairs its companions recently appeared for Nédélec first family of finite elements.

DOI : 10.1051/m2an/2022088
Classification : 65D05, 65D99, 53A70
Keywords: High order elements, Whitney forms, Nédélec second family, weights, physical degrees of freedom
@article{M2AN_2022__56_6_2239_0,
     author = {Bruno, Ludovico Bruni and Zampa, Enrico},
     title = {Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2239--2253},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022088},
     mrnumber = {4519226},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022088/}
}
TY  - JOUR
AU  - Bruno, Ludovico Bruni
AU  - Zampa, Enrico
TI  - Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 2239
EP  - 2253
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022088/
DO  - 10.1051/m2an/2022088
LA  - en
ID  - M2AN_2022__56_6_2239_0
ER  - 
%0 Journal Article
%A Bruno, Ludovico Bruni
%A Zampa, Enrico
%T Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 2239-2253
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022088/
%R 10.1051/m2an/2022088
%G en
%F M2AN_2022__56_6_2239_0
Bruno, Ludovico Bruni; Zampa, Enrico. Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2239-2253. doi: 10.1051/m2an/2022088

[1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications. Vol. 75, Springer Science & Business Media (2012). | MR | Zbl

[2] A. Alonso Rodrguez, L. Bruni Bruno and F. Rapetti, Minimal sets of unisolvent weights for high order whitney forms on simplices, in Numerical Mathematics and Advanced Applications ENUMATH 2019. Springer (2021) 195–203. | MR | DOI

[3] A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti, Flexible weights for high order face based finite element interpolation. Submitted (2022). | MR

[4] A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti, Towards nonuniform distributions of unisolvent weights for Whitney finite element spaces on simplices: the edge element case. Calcolo 59 (2022).

[5] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina and S. Zampini, MFEM: a modular finite element methods library. Comput. Math. App. 81 (2021) 42–74. Development and Application of Open-source Software for Problems with Numerical PDEs.

[6] A. Apozyan, Ǵ. Avagyan and G. Ktryan, On the Gasca-Maeztu conjecture in 3 . East J. Approx. 16 (2010) 25–33. | MR

[7] D. Arnold, R. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. | MR | Zbl | DOI

[8] V. Bayramyan, H. Hakopian and S. Toroyan, A simple proof of the Gasca-Maeztu conjecture for n = 4 . Jaen J. Approx. 7 (2015) 137–147. | MR

[9] M. Bonazzoli and F. Rapetti, High-order finite elements in numerical electromagnetism: degrees of freedom and generators in duality. Numer. Algor. 74 (2017) 111–136. | MR | DOI

[10] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity. Edge Elements. Academic Press Inc., San Diego, CA (1998). | MR | Zbl

[11] A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36 (2000) 861–867. | DOI

[12] F. Brezzi, J. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Mathem. 47 (1985) 217–235. | MR | Zbl | DOI

[13] L. Bruni Bruno, Weights as degrees of freedoom for high order Whitney finite elements. Ph.D. thesis, University of Trento (2022).

[14] J. M. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation. RACSAM. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 95 (2001) 145–153. | MR | Zbl

[15] S. H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. | MR | Zbl | DOI

[16] S. H. Christiansen, Foundations of finite element methods for wave equations of Maxwell type, in Applied Wave Mathematics. Springer (2009) 335–393. | MR | Zbl | DOI

[17] S. H. Christiansen and F. Rapetti, On high order finite element spaces of differential forms. Math. Comput. 85 (2016) 517–548. | MR | DOI

[18] S. Christiansen, H. Munthe-Kaas and B. Owren, Topics in structure preserving discretization. Acta Numer. 20 (2011) 1–119. | MR | Zbl | DOI

[19] K. C. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14 (1977) 735–743. | MR | Zbl | DOI

[20] P. G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Co (1978). | MR | Zbl

[21] C. De Boor, Multivariate polynomial interpolation: conjectures concerning GC-sets. Numer. Algorithms 45 (2007) 113–125. | MR | Zbl | DOI

[22] M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in 𝐑 𝐤 . Numer. Math 39 (1982) 1–14. | MR | Zbl | DOI

[23] J. Gopalakrishnan, L. E. Garca-Castillo and L. F. Demkowicz, Nédélec spaces in affine coordinates. Comput. Math. Appl. 49 (2005) 1285–1294. | MR | Zbl | DOI

[24] H. Hakopian, K. Jetter and G. Zimmermann, The Gasca-Maeztu conjecture for n = 5 . Numer. Math. 127 (2014) 685–713. | MR | Zbl | DOI

[25] J. Harrison, Continuity of the integral as a function of the domain. J. Geometric Anal. 8 (1998) 769–795. | MR | Zbl | DOI

[26] A. Hatcher, Algebraic Topology. Cambridge Univ. Press, Cambridge (2000). | MR | Zbl

[27] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325–1346. | MR | Zbl | DOI

[28] L. Kettunen, J. Lohi, J. Räbinä, S. Mönkölä and T. Rossi, Generalized finite difference schemes with higher order Whitney forms. ESAIM: Math. Model. Numer. Anal. 55 (2021) 1439–1459. | MR | Zbl | Numdam | DOI

[29] J. M. Lee, Introduction to Smooth Manifolds. Vol. 218 of Graduate Texts in Mathematics, 2nd edition. Springer (2012). | MR | Zbl

[30] J. Lohi, Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus. Numer. Algorithms 91 (2022) 1261–1285. | MR | DOI

[31] J.-C. Nédélec, Mixed finite elements in ℝ3. Numer. Math. 35 (1980) 315–342. | MR | Zbl | DOI

[32] J.-C. Nédélec, A new family of mixed finite elements in 𝐑 3 . Numer. Math. 50 (1986) 57–81. | MR | Zbl | DOI

[33] R. A. Nicolaides, On a class of finite elements generated by Lagrange interpolation. SIAM J. Numer. Anal. 9 (1972) 435–445. | MR | Zbl | DOI

[34] F. Rapetti and A. Bossavit, Whitney forms of higher degree. SIAM J. Numer. Anal. 47 (2009) 2369–2386. | MR | Zbl | DOI

[35] T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis]. IEEE Trans. Magn. 35 (1999) 1494–1497. | DOI

[36] H. Whitney, Geometric Integration Theory. Princeton University Press (1957). | MR | Zbl | DOI

[37] E. Zampa, A. Alonso Rodríguez and F. Rapetti, Using the F.E.S. framework to derive new physical degrees of freedom for Nédélec spaces in two dimensions. Submitted (2021).

Cité par Sources :