Generalized finite difference schemes with higher order Whitney forms
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1439-1460

Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee’s scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee’s scheme for all problems of a class characterised on a Minkowski manifold by (i) a pair of first order partial differential equations and by (ii) a constitutive relation that couple the differential equations with a Hodge relation. In addition, we introduce a strategy to systematically exploit higher order Whitney elements in Yee-like approaches. This makes higher order interpolation possible both in time and space. For this, we show that Yee-like schemes preserve the local character of the Hodge relation, which is to say, the constitutive laws become imposed on a finite set of points instead of on all ordinary points of space. As a result, the usage of higher order Whitney forms does not compel to change the actual solution process at all. This is demonstrated with a simple example.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021026
Classification : 35L05, 35L10, 58G16, 58G20, 58G40
Keywords: Finite difference method, whitney forms, differential geometry, differential forms, vector-valued forms, co-vector valued forms, electromagnetism, elasticity
@article{M2AN_2021__55_4_1439_0,
     author = {Kettunen, Lauri and Lohi, Jonni and R\"abin\"a, Jukka and M\"onk\"ol\"a, Sanna and Rossi, Tuomo},
     title = {Generalized finite difference schemes with higher order {Whitney} forms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1439--1460},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021026},
     mrnumber = {4284398},
     zbl = {07523504},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021026/}
}
TY  - JOUR
AU  - Kettunen, Lauri
AU  - Lohi, Jonni
AU  - Räbinä, Jukka
AU  - Mönkölä, Sanna
AU  - Rossi, Tuomo
TI  - Generalized finite difference schemes with higher order Whitney forms
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1439
EP  - 1460
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021026/
DO  - 10.1051/m2an/2021026
LA  - en
ID  - M2AN_2021__55_4_1439_0
ER  - 
%0 Journal Article
%A Kettunen, Lauri
%A Lohi, Jonni
%A Räbinä, Jukka
%A Mönkölä, Sanna
%A Rossi, Tuomo
%T Generalized finite difference schemes with higher order Whitney forms
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1439-1460
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021026/
%R 10.1051/m2an/2021026
%G en
%F M2AN_2021__55_4_1439_0
Kettunen, Lauri; Lohi, Jonni; Räbinä, Jukka; Mönkölä, Sanna; Rossi, Tuomo. Generalized finite difference schemes with higher order Whitney forms. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1439-1460. doi: 10.1051/m2an/2021026

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition. Addison-Wesley (1987). | MR | Zbl

[2] J. Baez and J. P. Muniain, Gauge Fields, Knots and Gravity. Series on Knots and Everything. World Scientific (1994). | MR | Zbl

[3] D. Bleecker, Gauge Theories and Variational Principles. Addison-Wesley (1981). | MR | Zbl

[4] A. Bossavit, How weak is the ‘weak solution’ in finite element methods? IEEE Trans. Magn. 34 (1998) 2429–2432. | DOI

[5] A. Bossavit, On the geometry of electromagnetism, 1. Affine space. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 17–28.

[6] A. Bossavit, On the geometry of electromagnetism, 2. Geometrical objects. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 114–123.

[7] A. Bossavit, On the geometry of electromagnetism, 3. Integration, stokes, faraday’s law. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 223–240.

[8] A. Bossavit, On the geometry of electromagnetism, 4. Maxwell’s house. J. Jpn. Soc. Appl. Electromag. Mech. 6 (1998) 318–326.

[9] A. Bossavit, Computational electromagnetism and geometry: building a finite-dimensional “Maxwell’s house”. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 150–159.

[10] A. Bossavit, Computational electromagnetism and geometry: convergence. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 401–408.

[11] A. Bossavit, Computational electromagnetism and geometry: network constitutive laws. J. Jpn. Soc. Appl. Electromag. Mech. 7 (1999) 294–301.

[12] A. Bossavit, Computational electromagnetism and geometry: from degrees of freedom to fields. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 102–109.

[13] A. Bossavit, Computational electromagnetism and geometry: some questions and answers. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 372–377.

[14] A. Bossavit, Computational electromagnetism and geometry: the “Galerkin hodge’’. J. Jpn. Soc. Appl. Electromag. Mech. 8 (2000) 203–209.

[15] A. Bossavit, ‘Generalized finite differences’ in computational electromagnetics. edited by F. L. Teixeira. In: Progress in Electromagnetics Research, PIER, EMW, Cambridge, MA (2001) 45–64. | DOI

[16] A. Bossavit, On the notion of anisotropy of constitutive laws: some implications of the ‘Hodge implies metric’ result. Compel 20 (2001) 233–239. | DOI

[17] A. Bossavit and L. Kettunen, Yee-like schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Numer. Model. Electron. Networks Devices Fields 12 (1999) 129–142. | Zbl | DOI

[18] A. Bossavit and L. Kettunen, Correction to ‘Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches’. IEEE Trans. Magn. 36 (2000) 4050. | DOI

[19] A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36 (2000) 861–867. | DOI

[20] L. Codecasa and M. Politi, Explicit, consistent, and conditionally stable extension of fd-td to tetrahedral grids by fit. IEEE Trans. Magn. 44 (2008) 1258–1261. | DOI

[21] H. Flanders, Differential Forms with Application to the Physical Sciences. Dover (1989). | MR | Zbl

[22] T. Frankel, The Geometry of Physics, an Introduction, 3rd edition. Cambridge Univ. Press, Cambridge, USA (2012). | MR | Zbl

[23] A. Frölicher and A. Nijenhuis, Theory of vector–valued differential forms: part I. Derivations in the graded ring of differential forms. Indagationes Mathematicae (Proceedings) 59 (1956) 338–350. | Zbl | DOI

[24] A. N. Hirani, Discrete exterior calculus. PhD thesis, Caltech, Pasadena, California, 5 (2003). | MR

[25] W. V. D. Hodge, The Theory and Applications of Harmonic Integrals. Cambridge Univ. Press, Cambridge, USA (1941). | MR | Zbl

[26] E. Kanso, M. Arroyo, Y. Tong, A. Yavari, J. E. Marsden and M. Desbrun, On the geometric character of stress in continuum mechanics. Z. Angew. Math. Phys. 58 (2007) 1–14. | MR | Zbl | DOI

[27] J. Keäränen, E. Koljonen, T. Tarhasaari and L. Kettunen, Effect of cell type on convergence of wave propagation schemes. IEEE Trans. Magn. 40 (2004) 1452–1455. | DOI

[28] L. Kettunen, S. Mönkölä, J. Parkkonen and T. Rossi, General conservation law for a class of physics field theories. | arXiv

[29] T. Kovanen, T. Tarhasaari and L. Kettunen, Formulation of small-strain magneto-elastic problems. | arXiv

[30] J. Lohi, Discrete exterior calculus and higher order Whitney forms. Master’s thesis, University of Jyväskylä (2019).

[31] J. Räbinä, L. Kettunen, S. Mönkölä and T. Rossi, Generalized wave propagation problems and discrete exterior calculus. ESAIM : M2AN 52 (2018) 1195–1218. | MR | Zbl | Numdam | DOI

[32] F. Rapetti and A. Bossavit, Whitney forms of higher degree. SIAM J. Numer. Anal. 47 (2009) 2369–2386. | MR | Zbl | DOI

[33] R. Segev and G. Rodnay, Cauchy’s theorem on manifolds. J. Elasticity 56 (1999) 129–144. | MR | Zbl | DOI

[34] T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35 (1999) 1494–1497. | DOI

[35] F. Teixeira and W. C. Chew, Lattice electromagnetic theory from a topological viewpoint. J. Math. Phys. 40 (1999) 169–187. | MR | Zbl | DOI

[36] E. Tonti, A direct discrete formulation of field laws: the Cell method. CMES Comput. Model. Eng. Sci. 2 (2001) 237–258.

[37] E. Tonti, The Mathematical Structure of Classical and Relativistic Physics. Birkhäuser (2013). | MR | Zbl | DOI

[38] T. Weiland, Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model. Electron. Networks Devices Fields 9 (1996) 295–319. | DOI

[39] H. Whitney, Geometric Integration Theory. Princeton Univ. Press, USA (1957). | MR | Zbl | DOI

[40] A. Yavari, On geometric discretization of elasticity. J. Math. Phys. 49 (2008). | MR | Zbl | DOI

[41] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. | Zbl | DOI

[42] K. Yosida, Functional Analysis. Springer-Verlag, Berlin Heidelberg (1995). | MR | Zbl

Cité par Sources :