Canonical mean-field molecular dynamics derived from quantum mechanics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2197-2238

Canonical quantum correlation observables can be approximated by classical molecular dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based on the ground state electron eigenvalue problem and the accuracy has been proven to be 𝒪M -1 , provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and M is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to excited electron states are required to obtain 𝒪M -1 accuracy and the derivations assume that all electron eigenvalues are separated, which for instance excludes conical intersections. This work studies a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is the partial trace h := Tr(He$$)/Tr(e$$) with respect to the electron degrees of freedom and H is the Weyl symbol corresponding to a quantum many body Hamiltonian H ^. It is proved that the mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy 𝒪(M -1 +tϵ 2 ), for correlation time t where ϵ2 is related to the variance of mean value approximation h. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs density operator using a path integral formulation. Numerical experiments on a model problem with one nuclei and two electron states show that the mean-field dynamics has similar or better accuracy than standard molecular dynamics based on the ground state electron eigenvalue.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2022079
Classification : 35Q40, 81Q20, 82C10
Keywords: Quantum canonical ensemble, correlation observables, molecular dynamics, excited states, mean-field approximation, semi-classical analysis, Weyl calculus, path integral
@article{M2AN_2022__56_6_2197_0,
     author = {Huang, Xin and Plech\'a\v{c}, Petr and Sandberg, Mattias and Szepessy, Anders},
     title = {Canonical mean-field molecular dynamics derived from quantum mechanics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2197--2238},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/m2an/2022079},
     mrnumber = {4519223},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2022079/}
}
TY  - JOUR
AU  - Huang, Xin
AU  - Plecháč, Petr
AU  - Sandberg, Mattias
AU  - Szepessy, Anders
TI  - Canonical mean-field molecular dynamics derived from quantum mechanics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2022
SP  - 2197
EP  - 2238
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2022079/
DO  - 10.1051/m2an/2022079
LA  - en
ID  - M2AN_2022__56_6_2197_0
ER  - 
%0 Journal Article
%A Huang, Xin
%A Plecháč, Petr
%A Sandberg, Mattias
%A Szepessy, Anders
%T Canonical mean-field molecular dynamics derived from quantum mechanics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2022
%P 2197-2238
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2022079/
%R 10.1051/m2an/2022079
%G en
%F M2AN_2022__56_6_2197_0
Huang, Xin; Plecháč, Petr; Sandberg, Mattias; Szepessy, Anders. Canonical mean-field molecular dynamics derived from quantum mechanics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 56 (2022) no. 6, pp. 2197-2238. doi: 10.1051/m2an/2022079

[1] E. Teller, The crossing of potential surfaces. J. Phys. Chem. 41 (1937) 109–116. | DOI

[2] A. Kammonen, P. Plecháč, M. Sandberg and A. Szepessy, Canonical quantum observables for molecular systems approximated by ab initio molecular dynamics. Ann. Henri Poincare 19 (2018) 2727–2781. | MR | DOI

[3] R. F. Feynman, Statistical Mechanics: A Set of Lectures. Westview Press, Boulder, CO (1998). | MR | Zbl

[4] G. Morandi, F. Napoli and E. Ercolessi, Statistical Mechanics: An Intermediate Course. World Scientific Publishing, Singapore (2001). | Zbl | DOI

[5] G. W. Ford and M. Kac, On the quantum Langevin equation. J. Statist. Phys. 46 (1987) 803–810. | MR | Zbl | DOI

[6] H. Hoel and A. Szepessy, Classical Langevin dynamics derived from quantum mechanics. Discrete Continuous Dyn. Syst. B 25 (2020) 4001–4038. | MR | DOI

[7] J.-P. Hansen and I. R. Mcdonald, Theory of Simple Liquids. Academic Press, London and New York (1985). | Zbl

[8] H.-M. Stiepan and S. Teufel, Semiclassical approximations for Hamiltonians with operator-valued symbols. Comm. Math. Phys. 320 (2013) 821–849. | MR | Zbl | DOI

[9] E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40 (1932) 749–759. | JFM | DOI

[10] P.-L. Lions and T. Paul, Sur les mesures de Wigner. Revista Matemática Iberoamericana 9 (1993) 553–618. | MR | Zbl | DOI

[11] A. Figalli, M. Ligabò and T. Paul, Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61 (2012) 193–222. | MR | Zbl | DOI

[12] M. Zworski, Semiclassical Analysis. American Mathematical Society, Providence, RI (2012). | MR | Zbl | DOI

[13] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis. Springer Verlag, New York (2002). | MR | Zbl | DOI

[14] A. Bouzounia and D. Robert, Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J. 111 (2002) 223–252. | MR | Zbl | DOI

[15] G. François and T. Paul, Semiclassical evolution with low regularity. J. Math. Pures App. 151 (2021) 257–311. | MR | DOI

[16] S. Habershon, D. E. Manolopoulos, T. E. Markland and T. F. Miller 3Rd, Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Ann. Rev. Phys. Chem. 64 (2013) 387–413. | DOI

[17] A. Pérez, M. E. Tuckerman and M. H. Müser, A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. J. Chem. Phys. 130 (2009) 184105. | DOI

[18] T. Dornheim, S. Groth, A.V. Filinov and M. Bonitz, Path integral Monte Carlo simulation of degenerate electrons: permutation-cycle properties. J. Chem. Phys. 151 (2019) 014108. | DOI

[19] L. C. Evans, Partial Differential Equation. American Mathematical Society, Providence, RI (1998). | MR

[20] L. Amour, L. Jager and J. Nourrigat, The Weyl symbol of Schrödinger semigroups. Ann. Henri Poincare 16 (2015) 1479–1488. | MR | DOI

[21] G. Papanicolaou and R. Hersh, Non-commuting random evolutions, and an operator-valued Feynman-Kac formula. Comm. Pure Appl. Math. XXV (1972) 337–367. | MR | Zbl

[22] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus. Springer Verlag, New York (1998). | MR | Zbl | DOI

[23] T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919) 292–296. | MR | JFM | DOI

[24] E. Cancès, C. Le Bris and P.-L. Lions, Molecular simulation and related topics: some open mathematical problems. Nonlinearity 21 (2008) T165–T176. | MR | Zbl | DOI

[25] B. Leimkuhler and C. Matthews, Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. Springer, Berlin (2015). | MR | DOI

[26] D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009). | DOI

Cité par Sources :