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CANONICAL MEAN-FIELD MOLECULAR DYNAMICS DERIVED FROM
QUANTUM MECHANICS

XIN HuANG!, PETR PLECHAC?*®, MATTIAS SANDBERG! AND ANDERS SZEPESSY!

Abstract. Canonical quantum correlation observables can be approximated by classical molecular
dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based
on the ground state electron eigenvalue problem and the accuracy has been proven to be (’)(M _1),
provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and
M is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to
excited electron states are required to obtain (’)(M _1) accuracy and the derivations assume that all
electron eigenvalues are separated, which for instance excludes conical intersections. This work studies
a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is
the partial trace h := Tr (He ?#)/Tr (e7?7) with respect to the electron degrees of freedom and H

is the Weyl symbol corresponding to a quantum many body Hamiltonian H. 1t is proved that the
mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy
oM™+ teQ), for correlation time ¢ where €2 is related to the variance of mean value approximation
h. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs
density operator using a path integral formulation. Numerical experiments on a model problem with
one nuclei and two electron states show that the mean-field dynamics has similar or better accuracy
than standard molecular dynamics based on the ground state electron eigenvalue.
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1. CLASSICAL APPROXIMATION OF CANONICAL QUANTUM OBSERVABLES

1.1. Introduction to the approximations

We study approximation of quantum time-correlation observables at the quantum canonical ensemble for a
system consisting of nuclei (slow degrees of freedom) and electrons (fast degrees of freedom) at the inverse
temperature 8 = 1/(kgT), where kg is the Boltzmann constant and 7" > 0 is the temperature. We work in
Hartree atomic units in which the reduced Planck constant A = 1, the electron charge e = 1, the Bohr radius
ap = 1 and the electron mass m. = 1. Thus the semiclassical parameter in the subsequent analysis is given by
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the ratio of nucleus and electron masses M. For example, in the case of a proton—electron system the ratio is
M =m,/m. ~ 1836.

The full quantum system is described by the Hamiltonian operator which includes the kinetic energy of nuclei
and the electronic kinetic energy operator together with the operator describing interaction between electrons,
with coordinates z., and nuclei, with coordinates z,

LA ia, 4T
_m x T 5 Te + V;(.’ﬂ,.’be).
In this work, in the spirit of Born-Oppenheimer (adiabatic) approximation, we replace the time evolution of
electrons by the Schrodinger electron eigenvalue problem. We represent the electronic kinetic energy operator and
the interaction operator, H, = —%Aze +Ve(x, z.) as a matrix-valued potential V' (x) obtained by a representation
of the operator —3A, + V.(z,z.) on a finite-dimensional (d-dimensional) subspace of suitable normalized
electronic eigenfunctions {¢x}¢_,, as V(z)ke = (¢x, H.(z,")$¢), described precisely in Section 2. Hence we work
with the Hamiltonian operator

ﬁ:—iA@oHV(x). (1.1)

The first term —53;7 M
The second term, V' (z), is the matrix-valued potential approximation to He and does not depend on M. We
assume that this finite-dimensional approximation of the electronic operator results in a Hermitian matrix-valued
smooth confining potential V : RY — RX4 that depends on the positions x; € R3 of nuclei i = 1,2,..., N’,
where we set N = 3N’. For the sake of simplicity, we assume that the nuclei have the same mass; in the case
with different nuclei masses M becomes a diagonal matrix, which can be transformed to the formulation (1.1)

A, ® 1 represents the kinetic energy of the nuclei where I is the d x d identity matrix.

with the same mass by the change of coordinates Mll/zir = Mg,

The large nuclei/electron mass ratio M > 1 is the basis of semiclassical analysis and implies a separation of
time scales, for which nuclei represent slow and electrons much faster degrees of freedom. The Weyl quantization
takes this scale separation into account. In particular for the Hamiltonian operator H the corresponding matrix
valued Weyl symbol becomes H(z,p) = 1|p|?I + V() for the nuclei phase-space points (z,p) € RY x RV, as
described more precisely in Section 2.

In order to study correspondence between the quantum time-correlation function and its classical counter
part we work in Heisenberg representation for the time-dependent quantum observables given by self-adjoint
operators /Alt and ]§t. We employ the Weyl quantization to link the quantum dynamics given by the Heisenberg
equation to classical Hamiltonian equations of motions on the phase space (z,p) € RY x RY of nuclei positions
and momenta and to averaging with respect to a suitable canonical Gibbs distribution on the phase space.

More precisely, given a quantum system dgﬁned by the Hamiltonian H acting on wave functions in
L2(RYN,C%) = [L*(RV)]¢ we denote p = e PH the density operator for a quantum Hamiltonian operator
H at the inverse temperature § > 0 and consider quantum correlation observables based on the normalized
trace

Tr (z&ég(}fﬂﬁ)
Tr (e—ﬁﬁ ) ’
(g (AtBo + BOAt) A)

Tr (e—ﬂﬁ )
for quantum observables Et =e and Bo at times ¢ and 0, respectively. That is, the quantum

observables solve the Heisenberg-von Neumann equation dA4,/dt = iM/ 2[H Ay), where [H,A)) = HA, — A,H
is the commutator. Here M ~'/2 plays the role of the Planck constant 4. With this time scale the nuclei move a

(1.2)

and the symmetrized version

Tagm(t) :=

(1.3)

itMl/zlA{;{ —itMY2 g
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distance of order one in unit time in the classical setting. The aim is to derive a mean-field molecular dynamics
approximation

_ fRzN Ao (2¢(20))Bo(20) Tt (e_ﬁH(ZO)) dzo
Jgan Tr (e=AH(=0)) dz

of the correlation function (1.3), where Ay and By are the Weyl symbols for the initial quantum observables

and z; := (x¢, pt) solves the Hamiltonian system

‘Imd (t) . (1 4)

jjt = vph(xtv pt>7

1.5
pt = _th(xt7pt>7 ( )

with the initial data zo := (xq,po) € R2N of nuclei positions and momenta. The trace Tr (e_ﬁH(ZU)) is over the
space R¥*? of d x d matrices which can be also viewed as the trace operator with respect to electron degrees of
freedom under the finite dimensional approximation of the electronic Hamiltonian. On the other hand Tr (e =##)
represents the trace acting on the space of trace operators on L2(R™,C%) which we can view as the trace with
respect to both nuclei and electron degrees of freedom.

Two main questions arise: (a) how should the mean field Hamiltonian approximation h : R?Y — R be chosen,
and (b) how small is the corresponding estimate for the approximation error Tqm — Tma?

Assume ¥ : RN — C%* is a differentiable orthogonal matrix. Based on certain regularity assumptions on
Ag, By, V and ¥, we prove in Theorem 2.1 that for the mean-field Hamiltonian h : RY x RY — R defined by

Tr (H(z)e_ﬂH(z))

h(z) = Tr (0 PA®) (1.6)
and the symbols Ay and By, which are independent of the electron coordinates, we have
|Tqm(t) — Tma ()] = O(M " +te] + t263), (1.7)
where the parameters e? are the variances
2 HTr ((H = h)?e=7H) HLl(]R2N)
' ITr (e )1 @ony
_pH (1.8)
, T (V(Hy = h) - V(Hy = h)e )| o
€5 — ’
? [Tr (e=PH9 )| L1 gany
with the definition Hy(x,p) := @I + U*(z)V (2)¥(z) using the Hermitian transpose U*(z).
We note that the mean-field Hamiltonian can be written
2 T (V —BV ()
o) = 2 BT
2 Tr (e=AV(@) 1.9)
1.9
_ P S A@e ™ (@)
=9 d—1__gx. (2 T Ty T
2 Sl o=@ 2

where \;(x), i = 0,...,d—1, are the eigenvalues of V(z), and A, : RN — R is the obtained mean-field potential.
Therefore the mean-field A is independent of the large mass ratio parameter M, so that the dynamics (1.5) is
independent of M and consequently the nuclei move a distance of order one in unit time. We see that the
mean-field h = Tr (He PH)/Tr (e=#H) is the mean value with respect to the Gibbs density. The error term €?
can be written as the corresponding normed variance

9 HZ?:_()I(Ai — A\)Pe PN

= d—1
e BN\
|z

LY(RN)

(1.10)

L1(RN)
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and at points z where the eigenvalues \;(z) are separated a suitable choice of ¥(z) is the matrix of eigenvectors
to V(x) which implies
d—
Tr (V(Hy — h) - V(Hy — h)e "% (z,p) = Z(V(Mz) — A(2) - V(Ni(@) — M(x))e*”*w)*ﬁ‘p‘”z). (1.11)
i=0

=

On the other hand to have sets with coinciding eigenvalues is generic in dimension two and higher, see [1],
and there the matrix ¥(z) is in general not differentiable. Therefore (1.11) will typically not hold everywhere.
Section 5 presents numerical experiments where also the size of the error terms are analyzed in different settings.

In Section 2 we review necessary background on Weyl calculus and state the main theoretical result, namely
the error estimate (1.7), as Theorem 2.1, together with the ideas of its proof. Sections 3 and 4 present the proof
of the theorem. Section 5 presents numerical experiments on the approximation error Tgm(t) — Tma discussed
in the next Section 1.2.

1.2. Numerical comparisons

In Section 5 we present some numerical examples with varying settings of t,1/M,€?, related to different
potentials V' with the purpose to study the following questions: Is the estimate (1.7) sharp or does the error
in practise behave differently with respect to ¢, 1/M and 6?? Is the main contribution to the error coming
from approximation of the the matrix-valued potential by a scalar potential in the quantum setting or from the
classical approximation of quantum dynamics based on scalar potentials? Can the mean-field dynamics improve
approximation compared to using molecular dynamics based on the ground state eigenvalue A\g instead of \.7

Theorem 2.1 does not give precise answers to these questions. The aim of this section is to provide some
insight from several numerical experiments on a model problem, chosen to avoid the computational difficulties
for realistic systems with many particles. Therefore we use one nuclei in dimension one, N = 1, and two electron
states, defined by the Hamiltonian

~ 1
H——WA(@I—FV(&:), (1.12)
where I is the 2 x 2 identity matrix, V : R — R2*2 given by
4
1 1 x 0
V(m):4<x—2> I+c[5 —x]’ (x,¢,0) ER xR x R, (1.13)

with the two eigenvalues

4 4
Xo(z) = i (x - ;) —cvVaz2+82, M(z) = i <x - ;) + eV a? + 62, (1.14)
plotted in Figure 1 (Case E in Tab. 1).

Section 5 presents numerical results comparing quantum mechanics to the three different numerical approx-
imations based on: the ground state potential Ay, mean-field potential A, and excited state dynamics. The
excited state molecular dynamics studied in [2] uses several paths related to different electron eigenvalues and
is defined by

e*ﬁ <%+>‘J (w0)>

d-1
Tes(T) = Ao(#2(20))B dzo, 1.15
(7) Z - 0(27(20)) Bo(z0) —— o (B @) 20 (1.15)
3=0 > w0 Jpon € dz dp
where 24 = (z2,pl), j=0,...,d — 1 solves the Hamiltonian dynamics for state j
@l = pl,

P = =V (1),

with the initial condition zg = (xg,p0) = 20-
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Eigenvalues of potential matrix V(z)
25 T T T T

— () —ground state Ao(z)

—\(z) —excited state A\;(z)

—\.(z) —mean field A, (z)

FIGURE 1. The eigenvalue functions A\g(z) and A;(z) of the potential matrix V' (z), and the
corresponding mean-field potential A, (z), for the parameters ¢ =1, § = 0.1 (Case E).

1.2.1. Equilibrium observables

For equilibrium observables, i.e., where 7 = 0, the mean-field and excited state dynamics are equal since

then ( sr( ))
Tr (e PH{20)) dzg

Tmd(0) = Tes(0) = Ao (20)Bo(z .

wa0) = Tes0) = [ Aoe0)Boleo) 1 o

Numerical results on equilibrium observables show that mean-field and excited state molecular dynamics are

more accurate than molecular dynamics based only on the ground state. In the case of correlation observables

with 7 > 0, mean-field and excited state molecular dynamics give in general different approximations.

(1.16)

1.2.2. Correlation observables

Observations on quantum dynamics for a system in interaction with a heat bath at thermal equilibrium can
be approximated by correlations (1.2) in the canonical ensemble, cf. [3—6]. For instance, the classical observable
for the diffusion constant
13 & 1

2 2 2
— > lak(r) —ar(0) = oz (2@ + [2(0)]° = 22(7) - 2(0))
T
k=1
includes the time-correlation z(7) - 2(0). Hence the corresponding quantum correlation (1.2) would for this case
use A, = 7.1 and By = 79I, and
N/3 3
. 1/2 17 . 1/2 17
/x\‘r . 57\0 — Z ZelrM / Hi/lﬁ\nje_lTM / H/x\nj~
n=1j=1

The numerical results in Section 5 for time-dependent observables are mainly based on the momentum auto-

correlation

T ((5- - o +Fo - pr)e 1)
2Tr (e*ﬁﬁ )
which is related to the diffusion constant D by the Green-Kubo formula [7]

_ fooo f]R2N ps(T0,po) - poTr (eiﬁH(zo’pO)) dzg dpg ds
fRQN Tr (e‘ﬁH(zo,Po)) dzg dpo s

)

D
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TABLE 1. A summary of different parameter settings in each test case, where ¢; denotes the
probability of the electronic excited state, with the precise definition in (5.4). Low value of 3
means a high system temperature, the parameter ¢ measures the difference between the two
eigenvalues vy := [; [A\1 — Aol e Prody/ Iz e~ dz and the parameters ¢ and & determine the
eigenvalue gap. The value of €3 is computed following (1.11) with ¥(z) the matrix of eigenvectors

to V(x).

Case f c 1) Q €2 €2 Plot Features

A 3.3 1 1 0.0002 0.001 0.00013 Figure 6a High g, large v\, large gap

B 1 0.1 1 0.43 0.019 0.004 Figure 6b  Medium S, small vy, small gap

C 1 0.1 0.01 0.46 0.009 0.010 Figure 6c Medium g3, small 7,, smallest gap
D 028 1 1 0.30 2.011 0.416 Figure 6d Low (3, large v\, large gap

E 1 1 0.1 0.16 0.290 0.503 Figure 1 Medium g, large v, small gap

since the velocity is equal to the momentum in our case with unit particle mass.

The different numerical experiments in Table 1 are chosen by varying the parameters such that all three,
two, one or no molecular dynamics approximate well. In Case A, with low temperature and large eigenvalue
gap, all three molecular dynamics approximate the quantum observable with similar small error and also the
error terms 1/M, €3 and €3 are small. In Case B, with small difference of the eigenvalues (i.e., ¢ is small), the
mean-field and excited states dynamics is more accurate than ground state dynamics and the error terms 1/M,
€7 and €3 are still small. The result is similar in Case C, with an avoided crossing (i.e., § is small) and small
difference of the eigenvalues. In Case D, with high temperature and larger difference of the eigenvalues, only
the excited state dynamics provides accurate approximations to the quantum observables and the error terms
€2 and €3 are large. Finally in Case E, when the difference of the eigenvalues are sufficiently large and we have
an avoided crossing, molecular dynamics is accurate only for short correlation time 7 and the error terms €2
and €3 are large.

Figures 11b and 12b show that in Case D and Case E, where mean-field and ground state approximations are
not accurate, the approximation error is dominated by the part corresponding to replacing the matrix valued
potential by a scalar potential in the quantum formulation and not the part of the error resulting from classical
approximation of quantum mechanics for scalar potentials. More precise conclusions relating the error terms
1/M, te? and t?€3 in (1.7) to the numerical experiments are in Section 5. The numerical experiments here also
show that the mean-field dynamics has similar or better accuracy compared to ground state molecular dynamics.
It would be interesting to do this comparison for realistic problems.

1.3. Relation to previous work

Classical approximation of canonical quantum correlation observables have been derived with O(M *1) accu-
racy for any temperature, see, e.g., [2,8]. Computationally this accuracy requires to solve classical molecular
dynamics paths related to several electron eigenvalues, while the mean-field dynamics has the advantage to use
only one classical path at the price of loosing accuracy over long time.

Classical limits of canonical quantum observables were first studied by Wigner [9]. His proof introduces the
“Wigner” function for scalar Schréodinger equations and uses an expansion in the Planck constant % to relate
equilibrium quantum observables to the corresponding classical Gibbs phase space averages.

To derive classical limits in the case of matrix or operator-valued Schrédinger equations previous works, see
[8], diagonalize the electron eigenvalue problem, which then excludes settings where the eigenvalues coincide at
certain points due to the inherent loss of regularity at such points. The mean-field formulation presented here
avoids diagonalization of the electron eigenvalue problem at points with low eigenvalue regularity.
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The classical limit with a scalar potential V', e.g., the electron ground state eigenvalue, has been studied by
three different methods:

(1) Solutions to the von Neumann quantum Liouville equation, for the density operator, are shown to converge
to the solution of the classical Liouville equation, using the Wigner function [10], also under low regularity
of the potential, ¢f. [11]. These results use the Wigner function and compactness arguments, which do not
provide a convergence rate.

(2) In the second method, used in our work, the two main mathematical tools are a generalized version of Weyl’s
law and quantization properties, as described by semiclassical analysis, e.g., in [12,13]. The generalized
Weyl’s law links the trace for canonical quantum observables to classical phase space integrals, related
to Wigner’s work. The quantization properties compare the quantum and classical dynamics and provide
convergence rates. Our study differs from previous works that also used similar tools, e.g., [8,14]. The
standard method to bound remainder terms in semiclassical expansions, based on the Planck constant #,
use the Calder6n-Vaillancourt theorem to estimate operator norms. Such approach yields error bounds with
constants depending on the L' (R?")-norms of Fourier transforms of symbols and the potential. The L' (R?V)-
norm of a Fourier transformed function can be bounded by the L!'(R?") norm of derivatives of order N of
the function. Therefore the obtained constants in O(h®) error estimates are large in high dimension N. In
our work here we apply dominated convergence to obtain error estimates based on low regularity of symbols
and the potential, while Fourier transforms in L!'(R?") are only required to be finite and do not enter in
the final error estimates.

(3) The third alternative in [15] provides a new method that also avoids the large constants in the Calderén-
Vaillancourt theorem in high dimensions by using convergence with respect to a generalized Wasserstein
distance and different weak topologies.

A computational bottleneck in ab initio molecular dynamics simulations of canonical correlation observables
is in solving electron eigenvalue problems at each time step. An alternative to approximate quantum observables
is to use path integral Monte Carlo formulations in order to evaluate Hamiltonian exponentials. The Hamiltonian
exponentials come in two forms: oscillatory integrals in time ¢ € R, based on e for the dynamics, and integrals
for Gibbs function e ## that decay with increasing inverse temperature 3 € (0, 00). The high variance related
to the oscillatory integrand e means that standard computational path integral foArmulations for molecular
dynamics are applied only to the statistics based on the partition function Tr(e™##) while the dynamics is
approximated classically.

Two popular path integral methods are centroid molecular dynamics and ring-polymer molecular dynamics,
see, e.g., [16] or [17]. In these methods the discretized path integral is interpreted as a classical Hamiltonian
with a particle/bead for each degree of freedom in the discretized path integral. For the centroid version the
dynamics is based on the average of the particle/bead positions, i.e., the centroid, with forces related to a
free energy potential for the partition function thereby forming a mean-field approximation. It is related to
the mean-field approximation (1.4) and (1.6) but differs in that in our work the forces are based on the mean
Hamiltonian, for the partial trace over electron degrees of freedom, instead of on the partition function for the
discretized path integral with respect to both nuclei and electron degrees of freedom, centered at the centroid.
In ring-polymer molecular dynamics classical kinetic energy is added for each bead forming a Hamiltonian with
harmonic oscillators in addition to the original potential energy. Consequently the phase-space is related to
coupled ring polymers, one for each original particle.

There is so far no convergence proof for centroid nor ring-polymer molecular dynamics. Therefore it would be
interesting to further study their relation to the mean-field model we analyse here. The mean-field formulation
(1.4) and (1.6) can also offer an alternative to standard eigenvalue solutions by using a path integral formulation
of the partial trace over the electron degrees of freedom, in the case of sufficiently large temperature avoiding
the fermion sign problem, see, e.g., [18]. Another difference to previous work is that the convergence proof here
derives a precise asymptotic representation of the Weyl symbol for the Gibbs density operator using a path
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integral formulation, providing an example that using path integrals for the Gibbs density can also result in
simplification of the theory.

2. THE MAIN RESULT AND BACKGROUND FROM WEYL CALCULUS

In this section we state the main theorem and review necessary tools from semiclassical analysis and functional
integration.

To relate the quantum and classical observables we employ Weyl calculus for matrix-valued symbols. First,
we introduce functional spaces that we use in the sequel:

(i) the Schwartz space of matrix-valued functions on the phase space

S:= {A € C® (RN xRN, C™) | sup [27024;5(z)| < oo, for all indices}

z€RN xRN

where we denote a point in the phase space z = (x,p) and for a multi-index of non-negative integers
a = (ai,...,an), we have the partial derivatives 0% = 021 ... 022N of the order |a| = ), o; and similarly
we have 27 = 2]'... 203" for the multi-index 7. For a matrix-valued symbol A we also use the notation
A'(z) for the tensor (A'(2))? := 0.,, Aij(z) and A”(z) for the 4th-order tensor (A”(z))7" := 92 . Aij(2).
The dual space of tempered distributions is denoted S’'.

(ii) the space of L? vector-valued wave functions

M= L2(RY,CY) = [L2(RV)]".

We define the Weyl quantization operator of a matrix-valued symbol A € § as the mapping A — A that
assigns to the symbol A the linear operator A : H — H defined for all Schwartz functions ¢(z) by

\/M N
Ag(z) = /RN (27T> /RN M PE=0 P A(L (2 + y),p) dp dly) dy

=/, Ka(z,y)¢(y) dy,

(2.1)

and extended to all wave functions ¢ € H by density. The expression (2.1) shows that the kernel K4 on H is
the Fourier transform in the second argument of the symbol A(z,p) and consequently the Weyl quantization is
well defined for symbols in &, the space of tempered distributions.

For example, the symbol

H(z,p) = 5p|*T+ V(x)
yields the Hamiltonian operator
~ 1
H=——A1+V(z).
57 QI+ V(z)
We formulate the main result as the following theorem estimating the mean-field approximation.

Theorem 2.1. Let ¥ : RN — C%? be a differentiable mapping into orthogonal matrices and define Vg =
UV, for the Hermitian potential V : RN — C¥*¢. Assume that the components of the Hessian VY are
in the Schwartz class and the scalar symbols ag : R?N — C and by : R?N — C are infinitely differentiable
and compactly supported. Furthermore, suppose that there is a constant k such that V + kI is positive definite
everywhere, Tr (e ) is finite, and there is a constant C' such that

N
HT‘re_ﬂVHLl(RN)+HTr(VQe_BV)HLI(RN)Jr T | ). > o Vel Ve |e PV <C,

m=1|a|<3 L1(RN)
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>~ (10240l rawy + 19200l e oy ) < €

la|<3
max D 10500, hll oo oy < C,
 Jal<3
) w(%wwm))
Te (1D a0 0, Ve (@)pm|e dzdp < C,
R2N o B

2 2
—B( 21 vy (2
/ Ty <§ ;pnainvw)) ) <
R2N -

then there are constants ¢, M,t, depending on C and (3, such that the quantum canonical observable (1.3), with
Ao = agl and By = bol, can be approzimated by the mean-field molecular dynamics (1.4), (1.5) with the error

[Taqm () — FTma(t)] < (M 7' +ted +1%63), (2.2)
for M > M and 0 <t <%, where

e = |[Tr ((H = 1)) | s an /T (77 [ oy

2
&5 =||Tr (V(Hy — h) - V(Hy — h)e—ﬂHq/)HLl(RQN)/HTY (e_ﬁH)HLl(RZN)’ Hg := %1-1- Va.

2.1. Overview and background to the proof

This section provides background and motivation to the proof of the theorem in three subsections. The first
subsection reviews application of Weyl calculus for the dynamics, the second one is on a generalized form of
Weyl’s law in order to relate the quantum trace to phase space integrals and the third subsection introduces
path integrals and their application in the context of our result.

2.1.1. Weyl calculus and dynamics

This section first introduces the central relation between commutators and corresponding Poisson brackets
for the classical limit of dynamics. Given two smooth functions v(z,p), w(z, p) on the phase space we define the
Poisson bracket

{v,w} == Vyo(z,p) - Vow(z, p) — Vou(w,p) - Vyw(z, p)

2.3
= (Vs =Var) - (Vo V)o@, 0w @, p)| (2.3)

We denote the gradient operator in the variable z = (z,p) as V, = (V,,V,) and V!, = (V,,—V,), hence the
Poisson bracket is expressed as

{v,w} = (V. ~Vz)v(z’)w(z)|zzz,. (2.4)
For two operators 6, D on the space H we define their commutator
{5, f)} =CD-DC.

To relate the quantum and classical dynamics for particular observables with symbols of the type agl treated
in Theorem 2.1, we assume that the classical Hamiltonian flow z¢(20) := (2+(20), p+(20)) solves the Hamiltonian
system

Tt =Pt = vph(xtapt)a
pt = —vwh(l‘t,pt),
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with the initial data (29, po) = 20 € R?V. Given a scalar Schwartz function ag we define a smooth function on
the flow z:(z0)

at(20) := ao(2¢(20)), (2.5)
and we have that a;(zo) satisfies
drar(z0) = {h(20), ar(z0)} (2.6)

since the direct calculation gives
Brar(20) = Dsao(2(25))|,_o = 20 - Vaea0(2:(20)) = {h(20), ar(20)}-

The corresponding quantum evolution of the observable /T, for t € R, is defined by the Heisenberg-von Neumann
equation

O, A, = iMV/? [ﬁ Et} , (2.7)

which implies the representation
A, = eitMl/QﬁA‘Oe—itMl/Qﬁ

The basic property in Weyl calculus that links the quantum evolution (2.7) to the classical (2.6) is the relation
M2 [ﬁ,at} = {H,a;} +7¢ (2.8)
where the remainder symbol r{ is small. In Lemma 3.2 we show that

3
Jim M = 1% (V2 V%) Hizoao(aa(z)],, - (2.9)

The main obstacle to establish the classical limit for dynamics based on the matrix-valued operator Hamilto-
nian H is that matrix symbols do not commute, i.e., [H, A;] # 0, which implies the additional larger remainder
iM'/2[H, A;] in (2.8). Therefore the usual semiclassical analysis perform approximate diagonalization of [H, A],
see [2,8]. Diagonalization of V introduces eigenvectors that are not smooth everywhere unless the eigenvalues
are separated, due to the inherent loss of regularity for eigenvectors corresponding to coinciding eigenvalues, see
[1]. To have a conical intersection point with coinciding eigenvalues is generic in dimension two, and in higher
dimensions the intersection is typically a co-dimension two set, see [1]. The non smooth diagonalization has
been so far a difficult obstacle to handle with the tools of Weyl calculus. The aim in our work is therefore to
avoid diagonalization everywhere by analyzing a mean-field approximation differently.

In order to apply (2.8) we use Duhamel’s principle, see [19]: the inhomogeneous linear equation in the variable
A — ap = Ay — a4, where A; satisfies the evolution (2.7) and a; is defined by (2.5),

8,5 (A\t — @) = iM1/2 I:ﬁ, A\t:| — {h, at}A
— M2 [ﬁ,& —at} M2 [ff,at} ~{hya)
can be solved by integrating solutions to the homogeneous problem with respect to the inhomogeneity

t R . N . —~
A, -G, = / M2 t=0) (iMl/2 [Ha} —{h, as})e—lM”z(t—SW ds. (2.10)
0

The quantum statistics has a similar remainder term to (2.9), namely the difference p — e % of the Weyl
symbol p for the quantum Gibbs density operator p = e ## and the classical Gibbs density e “## . To characterize
asymptotic behaviour as M — oo of this difference we employ representation of the symbol p based on Feynman—
Kac path integral formulation, as presented in Section 2.1.3.
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2.1.2. Generalized Weyl law

To link the quantum trace to a classical phase space integral we will use a generalized form of Weyl’s law,
see [8,12]. The semiclassical analysis is based on the fact that the H-trace of a Weyl operator, with a d x d
matrix-valued symbol, is equal to the phase-space average of its symbol trace. Indeed we have by the definition
of the integral kernel in (2.1) for A € S

i N
Tr A= TrKa(z,z)de = [ — / Tr Az, p) dp dx. (2.11)
RN 2 RN JRN

In fact also the composition of two Weyl operators is determined by the phase-space average as follows, see [§].

Lemma 2.2. The composition of two Weyl operators A and é, with A € § and B € S satisfies

N
Tr (EE) = <\/M> /RZN Tr (A(z, p)B(z,p)) da dp,

2

where A(x,p)B(x,p) is the matriz product of the two d x d matrices A(x,p) and B(z,p).

Proof. The well-known proof is a straight forward evaluation of the integrals involved in the composition of two
kernels and it is given here for completeness. The kernel of the composition is

VM

2N
) / A(%(x + IE/),p)B(%(I/ + y)’p/) % eiM1/2((mfx/)'lﬂr(z'*y)‘ﬁ/) dp’ dpda’
2 R3N

KAB (Iv y) = <
so that the trace of the composition becomes

Tr (A\B\) =/ Tr Kap(x,x)de
R

Vi 2N
= <2ﬂ> / Tr (A3 (z + '), p)B(3(2' +x),p')) x oMY 2 ((z—a')pt(a’—2)p") dp’ dpda’ dz
RAN

\/M 2N
B () / Tr (A(y, p)B(y, p'))e™ v =) qp' dp dy’ dy
27‘(’ RAN

o 2

N
) RQNT‘Y(A(y’p)B(yup))dpd%

using the change of variables (y,y’) = ((x + 2’)/2,x — ), which verifies the claim. O

The composition of three operators does not have a corresponding phase-space representation. We will instead
use the composition operator # (Moyal product), defined by AB = m7 to reduce the number of Weyl
quantizations to two, e.g., as ABCD = A/#E C% More precisely, the Moyal product of two symbols has the
representation

A#B = ez 7 (Ve Ve VoY) 40 p) B, )| (2.12)

(z,p)=(",p")’
For general background we refer the reader to [12] or [13].

The isometry between Weyl operators with the Hilbert—Schmidt inner product, Tr (ﬁ*é), and the corre-
sponding L2(RY x RY, C?*9) symbols obtained by Lemma 2.2 shows how to extend from symbols in S to
L2(RYN x RN C¥*4) by density of S in L2(RY x RN, C¥*4), see [8]. We will use the Hilbert-Schmidt norms
|A]2,6 = Tr (A*A) = Tr (A%) and || Tr A?| 12 ren) to estimate Weyl operators and Weyl symbols, respectively.

We show in Lemma 3.2 that having the Weyl symbols and V" in the Schwartz class imply that dominated
convergence can be applied in the phase space integrals obtained from the generalized form of Weyl’s law.



2208 X. HUANG ET AL.

2.1.3. Feynman—Kac path integrals

In order to analyse the symbol p for the Gibbs density operator p = e BH e will use path integrals (in
so called imaginary time), as in [3,20,21], based on Feynman—Kac formula applied to the kernel of the Gibbs
density operator and its corresponding Weyl quantization. We start with the kernel representation

( ﬁHaﬁ / K,(z',y")o(y') dy’,

obtained from that (e % ¢)(2’) =: u(z’, 3) solves the parabolic partial differential equation

dpu(-, B) + Hu(-,f) =0, B> 0, u(-,0) = ¢.

To motivate the construction of the path integral representation we first identify the Weyl symbol of the density
operator in the case of a scalar potential V', i.e., the case d = 1. In order to emphasize that we consider the scalar
case, we denote this Weyl symbol ps(z,p), and thereby the associated kernel is denoted K, . Direct application
of the Feynman—Kac formula, see Theorem 7.6 in [22], implies that the kernel can be written as the expected
value

K, (z',y)=E|e” o V(“;)dré(w’ﬁ —y) |wpy = x’}, (2.13)
where w] solves the stochastic differential equation
dw; = M~1/? dWy,  w) =2,

with the standard Wiener process W; in RY and the delta measure & (w’ﬁ —y') concentrated at the point y'.
We recall the definition (2.1) of Weyl quantization for the (scalar) symbol ps(x, p)

N
pole) = [ N e (o)) dp o) d
Ps . o . Ps\3 Yy),p)dp Yy) 4y,

:Kps (Ly)

from which we obtain the expression for the symbol of an operator associated with the kernel K, (z,y)

ps(x’p) = /RN e_iM1/2y~prs (.CL‘ + = 2 s L — *) dy (214)

Using the substitution 2’ =z + %, and y =z — %, i.e.,
m/ + y/
2 )

y=2'—3y and z=

and letting

wézm%—%—wt

where
dw, = M~Y2dW,,  wy =0, (2.15)

imply by combining (2.14), (2.13) and the transformed path (2.15)

ps(x,p) = efMl/ziy‘pE [e_ ISV (et gmen)drs(y — wg) |wy = O} dy

[ MY 2wp o [V (2t bwp—w,) dr | wo = 0]
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We have obtained the path integral representation of the symbol corresponding to the Gibbs density operator

e=PH in the case of the scalar potential V'

s (x,p) —E [efiW[, Do~ J‘O,B V(I+M—1/2(%Wﬁfwr)) dr} , (2.16)

as derived in [20].

We can proceed along similar lines in the case of the matriz-valued potential V' studied here. The Feynman—
Kac formula has been derived for operator-valued potentials V', see [21], and in the case where the potential
V() is a general matrix, the exponential

o ffV(m+M’1/2(%WB—WT))dr7

in (2.16) for the time evolution, is replaced by the corresponding matrix-valued process T; € R%*4 which solves

=1} V(x + MV (L, — Wt)), te(0,8) and T =1L (2.17)

=v,F

We will use the notation W’G L 5Wp — W;. The steps in the derivation of (2.16) then imply that the symbol
in the case of a matrix-valued potentlal can again be expressed by

pla,p) = E[e™ W T (W) | Wy = 0].

To estimate p — e ?H we use the symmetry property that the Weyl symbol, p, for the Gibbs density operator
p=e ~BH i5 a Hermitian matrix. Indeed, we have e ~6H represented as an L?-integral operator with the kernel
K, and since

~ 1
H=—-——A®I
Wi QI+ V(x)

is real and Hermitian also e A7 = Z;:O:O(—ﬁff )™ /n! is real and Hermitian. Therefore the Weyl symbol corre-
sponding to the Gibbs density operator p satisfies

plz,p) = / e_iMl/zy'pr (:v + y,m — y) dy = / e_iMl/zy'pr (x . y,x + y) dy. (2.18)
RN 2 2 RN 2 2

Either of these integral representations show that p is Hermitian. The same steps as above leading to (2.16) can
by (2.18) be applied to the change of variables ' = z — y/2 and 3’ = x + y/2, which implies that we also have

ple,p) = E[e” ™o X5 (W) | Wo = 0],

where
T, = -1, V(x — M2 (L — Wt)), te(0,8) and Ty =1L (2.19)

=:Vi

Therefore we ha\/e the Symmetrized I‘epresentation
B p L[ + I L[/ . 2.2

Using the path-integral representation of the symbol p(z,p) we prove in Section 4.2.
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Lemma 2.3. Assume that the bounds in Theorem 2.1 hold. Then

—e PH(

Jim M (p(z, p) z,p))

8 2
— o BIpI*/2 </ (g — t) e V@IV (z)pe POV qt
0

Bt
+ / / (g - s) (g — t) e V@Y ()pe~ V@Y (1)pe= BV g5 dt)7 (2.21)
o Jo

and
HTrp2||L°°(]R2N) = 0(1),

(2.22)
HTI'IJQHL?(]R?N) < oQ.
3. PROOF OF THEOREM 2.1

The section proves Theorem 2.1 based on three steps:

Step 1. Use Duhamel’s principle recursively to analyse the dynamics based on H,

Step 2. Use estimates of remainders for Weyl compositions and the Weyl Gibbs density to analyse the statistics
at t =0,

Step 3. Repeat Step 1 and Step 2 with H replaced by H := U*#H#WV to approximately diagonalize H.

Proof of the theorem. Step 1. Lemma 3.2 shows that the commutator has the representation
M2 G| = (Hoag}+r8), (3.1)

where the remainder r® vanishes as M — oo. By Duhamel’s principle we have by (2.6) and (2.7) as in (2.10)

7 -~ 7 t carl 7y ~ A . S o~ =
Tr (AtBOe*ﬁH - EL\tBoe*ﬁH) = / Tr (elM GO (iMl/Q[ ,as] - {h,as})eﬂMl/z(t*S)HBoefﬁH> ds
0

t ~ ~ A . o= 7
- / Te | M ((H a,f + 7% = {h,a,} ) e M09 Boe0 | g
0

=:Da,

(3.2)

and the cyclic invariance of the trace together with [eiMlm(t_s)ﬁ, e_ﬁﬁ] = 0 imply

N N . t L o R N
Tr (AtBoe_ﬁH —atBOe_ﬁH) :/ Tr (Dase_lMl/2(t_s)HBoelMl/z(t_s)He_ﬁH) ds
o - R (3.3)
:/ Tr (DasBs,tefﬁH) ds.
0

The right hand side can again be estimated by applying Duhamel’s principle (3.3), now to és_t and bs_4, as
follows

t R t . R
/ Tr <DasBS_te*ﬁH> ds — / Tr (Dasbs_te*ﬁH> ds
0 0

::T(]
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t s—t ~ ~ ~
— / / Tr (e—ﬁHDaseiMl/2(s—t—T)HDbTe—iMl/Z(s—t—T)H) drds =: Ts. (34)

We have by Cauchy’s inequality and the cyclic invariance of the trace

t t—s . N . N ) .
|T3‘ < / / <TI' <(5\CLS) Dase*ﬁH) x Tr ((eiM1/2(sftf‘r)HDbTefﬁH/ge,i]\/[ /2(87t7T)H)

<1M1/ (s—t— T)HDb o= BH /2o —iM"?(s—t— T)H)>)1/2 drds

// Tr Da5> Dase BH) ((ﬁ)*zﬁe—ﬁﬁ))mdfds. (3.5)

The following two lemmas, proved in Section 4, estimate the remainder terms Ty and T5.
Lemma 3.1 (Mean-field approximation). Assume that the bounds in Theorem 2.1 hold, then

| To|

Lemma 3.2 (Composition analysis). Assume that the bounds in Theorem 2.1 hold and that ¢ and d are in the
Schwartz space S, then

C#d =cd+ Ceds
lim MY2¢,, = %(vz VL)e(2)d ()],

M —oc0

and if ¢ and d are scalar valued

1
i(c#d + d#C) =cd + Tedy

lim Mreq = é(vz VL) Pe(z)d()|_,

M —o0

and if ¢ is scalar valued

1M1/2(H#C — C#H) = {H, C} + 1 cs
Te = —— 1COS(79 . C/ )(Cz . C/ ) H(Z)C(Z/>’ (1 —8)2 ds
¢ 8M 0 2M1/2 i # Z/ z=z' ’

lim MT‘C — i(vz . V;,)SH(Z)C(Z/)|Z=Z/)

M —o0

where the limits hold in L*(R*V) and L>(R?N). Furthermore the function a; : R2N — C, defined in (2.5), is
in the Schwartz class and there holds

T3]
Tr (e_ﬂﬁ)

The combination of (3.2)—(3.5), Lemmas 3.1 and 3.2 imply

=0 (3 + M),

’Tr (/Altﬁoe*ﬁﬁ — Etﬁoe*ﬁﬁ> ‘

Tr (e—ﬂﬁ )

=O(tM ™" +te] +t%€3). (3.7)
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Similarly the symmetrized difference has the same bound

Tr ((&EG + Eoﬁt)e—ﬂff ) ~Tr ((atéo + Bya,)ePH )

=Tr ((EJ)\O Jr,b\o/Tt)e*’Bﬁ) —Tr ((Zitgo +/l;gat>e*6ﬁ> = (9(15M71 + te? + tzeg)Tr (e*BH), (3.8)

obtained by interchanging the role of A and B in (3.7).
Step 2. Here we estimate the second term in the left hand side of (3.8), which can be split into

Tr ((aﬁo +Zoat)e*ﬁﬁ ) - ((atzo +60at)efﬂ\H) +Tr ((ata) +Boat) (e*ﬁﬁ - efﬂ\H)) (3.9)

The first term in the right hand side in (3.9) has by Lemma 2.2 the classical molecular dynamics approximation

ISP N
e (atbo + boay (;B\H> _ <\/M> / Te ((at#bo + bo#at)(x,p)eahr(z,p)> dz dp
R2N

2 2 2
N (3.10)
vM
= (277) /RQN Tr (ao(zt(zo))bo(zo)e*’GH(zo)) + Tr (rab(zo)e*ﬁH(Z°)> dzo,
where by Lemma 3.2
1 2
. —BH(z0) _ —BH(z0) v !
Jim M [T (rab(zo)e 0 ) do=1g [T (e 0 ) (VZO vzé) (ao(z1(20))b0(20))] ., dzo-
(3.11)
It remains to estimate the second term in the right hand side of (3.9). We have
~ o~ N
aiby +boay (—55 VM ar#bo + bo#tar , _
20 T VP (o—BH _ = = 2t T U (o= BH
TY( (@ p)) (277) /RZNTY< 2 (e ) ) dz
and Lemmas 2.3 and 3.2 imply
bo + b
lim (M/ Tr (at#o—’—o#at(e—ﬁH _ p)) dz)
M —o0 R2N 2
8 2
= / Tr <2_1(atb0 + boat)(x,p)e_mp‘zm/ (g - 7“) e V@ TV () pe~ (B=mIV (@) dr) dzdp
R2N 0
+ [ Tr(2 M (abo +b ,p)e A2
/RW 1"( (atbo 0at)(z,p) (3.12)

B\ (B
/ / <2‘8> (2‘T)e_sv(”V’<w>pe-<r-s>v<w>V’<x>pe—<ﬁ—f>”$>dsdr dz dp
0 0
3 —BIp|?/2 Tirn _BV(2)
=57 [ (et b e (5 e V) dadp+ O(1)
20(1)7

where the second last equality follows by interchanging the order of the trace and the integration with respect
to (8 and using the cyclic invariance of the trace. The first equality is obtained by splitting the integral as

L= ]

c
m m
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over a compact set L¢, := {z € R?N : h(z) < m} and its complement L,, := {z € R* : h(z) > m} and
using that p is uniformly bounded in L>(R?V): the second integral is zero for m sufficiently large, as verified
in (3.14) below, and in the compact set we apply dominated convergence.

Verification of fJLm la;(z0)| dzg = 0. The integration with respect to the initial data measure dzy can be
replaced by integration with respect to dz; since the phase space volume is preserved, i.e., the Jacobian deter-

minant 5
20
det| —
’ ¢ <5Zt>

is constant for all time by Liouville’s theorem. We first verify that

=1

h(z) — oo as |z| — 0. (3.13)

By assumption [,y Tr e #V(@) dz < oo. Therefore the smallest eigenvalue Ao(x) of V(z) also satisfies
Jan eP20@ dz < oo and as h(z,p) > [p|?/2 + Ao(z) we have [,y e #M(@P)dzdp < oo, which combined
with the assumption ||V, h(z,p)| @2~y < C establishes (3.13). By using the two properties h(z¢(z0)) = h(z0)
and h(z) — oo as |z| — oo together with the compact support of ag we obtain

82’0
det ( 92 >

/]Lm lao(2¢(z0,Po))| d2o :/ lao(z¢(z0, po))|

m

‘dZt
(3.14)
= / lag(z)| dz =0 as m — oo.

m

In conclusion we have

1 5 VM Y
§Tr ((51530 +305t)efﬁH> = <27T> (/RzN Tr (ao(Zt(zo))bo(zo)efﬁH(Zo)) + O(Ml)),

which combined with (3.8) proves the theorem for ¥ = 1.

Step 3. To improve the error estimate €3 we study the transformed Hamiltonian operator

H:=V"HY
where ¥ : RV — C%*4 and ¥(x) is any twice differentiable orthogonal matrix with the Hermitian transpose
U*(x). This Step 3 has the three substeps:

Step 3.1. Study the dynamics under H.
Step 3.2. Analyse H = UV*#H#WU.
Step 3.3. Modify Steps 1 and 2.

Step 3.1. Let a be any complex number and define for ¢ € R the exponential
Gi = Ureted g,

Differentiation shows that R
O = aU* HUU e “H = oU* HU{,

and consequently
gt _ eta\I/ HY _ etaH.

Therefore the transformed variable

—

A(t,z) == U* AU, teR, (3.15)
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evolves with the dynamics H

A, = U* A,
a2 -~ oA rl/25 2
_ \If*eltM HA()e itM H\I/

a2 T /25
— e11£M HAoe itM H-

and the cyclic property of the trace implies that the quantum observable satisfies

Tr (Xtﬁ)e—ﬁff) — Ty (xmf Xtﬁoe—ﬁh’> — Ty (m*Emw*E)wm*e—ﬁHW) — Ty (AtBOe—ﬁﬁ), (3.16)
where the initial symbols are given by
Ay = U Hao#V,
Bo = U*#by# .
Step 3.2. We have
_ 1
A(r.p) = W HHHU(r.p) = U (@)H(z.p)¥(a) + T VI (2) - V() (317)
as derived in [2] from the composition in (2.12):
. . iM—1/2 M-t
W) = ¥ (@) Hen) ¥ + gy V) - M A))
~M—1/2 M1
= U () H (z,p) () + - p- VU (2)U(x) — —— AT (2)U(z)

2

i
MDY AN

where by the orthogonality U*¥ =1

Ur s H#V (2, p) = U () H (2, p)¥(z) + p- V(¥ (2)¥(x))

i
2M1/2

1 * *
= A (2)¥(2)) - VI (2) - VE(z))
— U () H () V() + —— VU (2) - V().

4M

Let ¥(x) be the orthogonal matrix composed of the eigenvectors to V(z), then the matrix

. _ P
U (@) H 2, )W (2) = DT+ A2)

V (2)p - V() - ﬁw*@;) V() — T () AT ()

is diagonal, with the eigenvectors \;(z) of V/(z) forming the diagonal d x d matrix A(z). The non diagonal
part - VU*(x) - V¥(z) of H(z,p) is small if ¥(z) is differentiable everywhere. If the eigenvectors to V are

4M

not differentiable in a point x,, we may use a regularized version of ¥ in a neighbourhood of z, to form an

approximate diagonalization of H.

Step 3.3. The derivation in Step 1 can now be repeated with H replaced by H and A, B by A, B. Duhamel’s

principle (2.10) implies

o~

— —~ t = ~ N . =~
A —a - (Ao _ aAo) _ / elM1/2(t—s)H(iM1/2 {H,as} — {h,a,] )e_lMl/Z(t—S)H ds,

0
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and we obtain by (3.16) as in (3.7)

Tr (;{téoe_ﬂH — atéoe_ﬁg) =Tr (ztﬁoe_ﬂH — Etﬁoe_ﬁg)
_ ~ = t — ~ =
=Ty +T5+Tr ((AO — db)BOe*QH) + / Tr (Das (Bo — bo>e7ﬁH> ds,
0

where H is replaced by H in B\a, b\b, To and T3, so that

t =
Ty = / Tr Da bs_re PH | ds,
0 ~~~

= {H—ha, F+°

tps—t . . .
T3 = / / Tr (e’ﬁHDaseiMm(S*t’T)HDbTe*iMl/z(S*t*T)H) drds.
o Jo

The two terms T and T3 have the bounds in Lemmas 3.1 and 3.2 with H replaced by H. Tt remains to show
that the initial errors satisfy

Tr ((Zo - @)?oe‘ﬁﬁ) . Jo Tr (Ea\s (§0 - ?Ao)e_ﬁﬁ) ds o). (3.18)
Tr (e—H) Tr (e=71)

To prove (3.18) let p = e_ﬂﬁ, then by the composition (2.12) and Lemma 2.2 we obtain
T (Ao — @) Boe ) = Tr (((Ao — a)#Bo) 7)
N
vM = =\
= (2 / Tr (((Ao — ao) #Bo) p) dz dp.
s R2N
To estimate the initial error Ay — ag we use Lemma 3.2
1
2V M

e EM (7,0, ()W ()(1 - ) ds

ag# ¥ (x,p) = ao(z,p)¥(z) +

1
aM J,

Vyao(z,p) -V, U(x)

which by the composition (2.12) implies
Ao(xap) = \I'*#ao#‘ll(x,p)

= V@) a V) w.p) + 5=V (@) - Vylank V) .p)

]. 1 is —1/2
—qr ), T T V)P @) a0 ) p) (1= ),
=l L2 + 5 mr Vool p) - Val(¥” (o))

1
Taa

1
Taa

' =z

\I’*(m)/o TEMTEVN (Y, V) (a0(@!, p)¥())(1 — ) ds

(Var - Vp)(Va - V) (U7 () ao (2", p) ¥ ()

o/ =x'=x
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i

! is ar—1/2
* W/ MV (T, - V)20 (@) (ap (2!, p) W (@) (1 — ) ds
0

x'=x
1

1 i —-1/2
- e~ EMTAVL Y, (Vo Vp)20*(2)(ao# %) (2, p)(1 — 5) ds
M

=z’

Here the orthogonality U*¥ =TI implies V(U*¥) = 0. We obtain as in (3.11) the limit

lim M Tr ((AO — ao)BO[)) dzdp

M—o0 R2N

]' * !
= — /RQN Tr ([8\11 (2)(Vy - Vp)2a0(x ,p)¥(x)
4 1(Var - V) (Ve V)W (@ aole”, p)¥()

z'=x

! =g =x

1 N
(Ve VW @aole! p) () }bm,p)e” <w>H<w’p>W<$>> dwdp

x'=x

and similarly

/ot“ (D (B~ b)) ds = (éﬁ‘?)N /R (Dot (Bo — b)7) dedp

where
A/}linoo (M /Rw Tr ( Das#(Bo — bo))ﬁ) dz dp)
_ 1,
/R Tr ({H z,p) — h(z,p),as(z,p)} {8\11 (2)(Va - V,)2bo(2, p) ¥ (z) i
1
+ 1(v1/ vp)(v V ) ( /)bo(x”vp)\:[j(x) =g =g

é(v FVp)*W (m)bo(I/,P)‘I’(xl){x,_w} e”“”H(z’P)W) dz dp.

which proves (3.18). O

4. PROOF OF LEMMAS

This section estimates the remainder terms T and T3 and the statistical error p — e . The error term
T3 in Lemma 3.2 is due to remainders from classical approximation while T in Lemma 3.1 is the main term
regarding the mean-field approximation. The statistical error is estimated in Lemma 2.3.

4.1. Proof of Lemma 3.1
Proof. We consider first the case ¥ =1, i.e

S H
/Ot Tr (f%Es_te*Bﬁ) / (({H as} + 7% — {h, as}) e ,@ﬁ) ds
- [

{H — h,a,} by_re™ )ds+/0tﬂ(f33”e—ﬂﬁ) ds
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(Mw) //RQNTr ({H — h,as}#bs—¢)p) dzds (4.1)

(M1/2> //RQNTT U4tbe_y)p) dzds

where the trace in the integrals over phase space R?" is with respect to d x d matrices. The inner integral in
the second term of the right hand side in (4.1) has by Lemmas 2.3 and 3.2 the limit

MliinOo (M /RQN Tr ((T?#bst)p)) dz

1 3 — z
=31 .. Tr (Vg - Vo) (H (20)a0 (2 (20)))] oy ozt (0) )00 ) dzo,

(4.2)

using splitting of the phase space integral as in (3.12). Similarly we have by Lemmas 2.3 and 3.2 the limit

lim Tr ({H — h,as }#bs—¢)p) dz = /RQN Tr ({H — h,as}tbs_e 7)) dz,

M—oo [JpaN

and integration by parts together with the mean-field definition (1.6) simplify the first term in the right hand
side of (4.1) to

/ Tr ({H — h,as}bs_e7H) dz
R2N

= Tr (V/(H — h) - Vag by_e ") dz

= _/ Tr (H — h)e P") V' - (bs—4Va,) dz
R2N

=0

B
/ Tr ((H —h) / e ™HVa, - V'(H — h)e B-Hp_, dT> dz
R2N 0

((H —h)e P")Va, - V'h Bb,_ydz

=0

(/ﬂ e "H((H - h)Vas - V'(H — h)
0

_|_

_|_
T
s

=2

Il
DN =
T
B

=

(Vas - V'(H — h)(H — h)))e <5*T>Hbs,td7)dz

/ Tr (V/(H — h)?- Vase_ﬂHbS_t) dz

R2

=— / Tr ((H — h)*Va, - V' (e7b,_y)) dz
R2N

/ Tr [ (H — 0>V - V(as) (e ™b,_y) | do
R2N T

B
__8 / Tr ((H — h)?Va, - (V’bs_te’BH —be_y / e TV Hem (B—TH dr>> dz
2 R2N 0
B
2

/ Tr (e " (H — h)*Va, - (V'bs_s — Bbs_:V'H)) dz. (4.3)
R
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The third equality uses that (H — h) commutes with e7## and the forth and the last equality is obtained by
interchanging the order of the trace and the integral with respect to 7 in combination with the cyclic invariance
of the trace. Cauchy’s inequality, the positive definiteness of e ™ (H — h)? and H — h depending only on x
imply that the right hand side has the bound

‘ﬂ Tr (e " (H — h)*Va, - (V'bs—y — Bbs—sV'H)) dz
]R2N

1/2

<[ (e (e - 1)) 1 ((Vay - (Tbey — oo 0'1)))
R2N (4.4)
< g [T ) (1 (Vo (7,0 - ﬁbs_tV’H))2>)1/2 dz
<K Tr (e PV(H — h)?) dz

RN

for a positive constant K. The combination of (4.2)-(4.4) implies (3.6) and we note that the exponential form
e PH of the Gibbs density was crucial to obtain (4.3).
In the case that U # I we have by (3.17) H=U*"HVU + £ VU* . V¥ and the factor Tr ((H — h)e #H) =0
in (4.3) is replaced by Tr ((H — h)e ) where

lim (MTr ((H = h)e 7)) = Tx (VO - Ve V),

M—o0

which as in (4.3) and (4.4) imply
To| < O(tM ™" + ).

4.2. Proof of Lemma 2.3

Proof. To estimate the difference of the symbols for the Gibbs density, p—e =7, we define the solution operator
Yi(z) = =Yy (2)V(z), Yo=1I

satisfying ¥; = e¢*V, which implies e #H@:p) — ¢=Bpl*/2+V (@) — ¢=BIPI*/2 Y, (1), We have by Duhamel’s
principle

g
Y5 -Ys= /O TE(V - VE)e OOV qt, (4.5)

which by dominated convergence implies

M —o0

lim Ml/z(Tti—Y,;) hm M1/2/ Ti V— Vi) (t=9)V Qs
t (4.6)
= :F/ e_sv(z)vl(x)Wge—(t—S)V(z) dS

0

The symmetrized relation (2.20) yields

pmeot = afemen((x5-3) « (15 1)
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which by (4.5), (4.6) and dominated convergence establish

im (o) -0 )

B
) 1E[e_iw"'p/ lim (YF 0V~ Vi) + T MV - m))&”‘“vdt]
0

2 M—00
- F e—iWB'P 1 8 lim ((TJF _ T*)M1/2>V/(x)wﬁe_(ﬁ_t)v dt
2 0 M —oco t t
L ’ : + BN\NT ! " —1/21578 B —(B—t)V
+1/o thloc(rt WP /0 V" (w4 sM2W ) dswie dt )
1 B 1
+7/ lim (T;(Wtﬂ)T/ v (x — SM’l/QWtﬂ) dst) e~ BV gt
4 0 M —o0 0

. gt
:Ele_lwﬁ'p/ / VYV (2)Whe VY ()W B0V dsdt]

1| p
L GG / eV (WTV ()Wfe” FDV dt].
0

To determine the path integrals in the right hand side of (4.7) we make a partition of [0, 3] into time intervals
[tj,tjy1), where t; = j3/J for j =0,...,J and corresponding Wiener increments AW; = W (t;41) — W (t;) and

time steps At := 3/J, to obtain

Z SAW; =) AW, = ZSkAW

1

B —

Wtk:i <k
J

where

This partition implies

B
efiW[yp/ eftV(Wtﬁ)TVl/( )Wﬂ —(B=t)V dt]

—E
0
e J—1J-1J-1
= Jim E o7 Zns0 AW SN TN 5 AW (TR Yem DAV A, A
Jme0 k=0 j=0 £=0
:.V//
J-1J-1J-1 SI=L A, . o~ |AW, 7/ (2A8) (4.8)
_ : —i ™ 7
= — IILH;O kX% ]2% ez% AtS] kSg kX / J PAW Vk) AWZ H W d(AWn)
2 J 2
= I —J|p|*At/2 Y A 2 Ty A
JLIrDloe kz_o 5 k t“p" Vi p At

3 2
— e*ﬁ|p|2/2/ (g - t) e V@ pTy (2)pe” P~V 4t = O(1).
0
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Similarly we have

—1ng/ / —SVVI Wﬁ —(t— S)Vv( )Wtﬁe—(ﬁ—t)v dsdt

= — hm Z SJ TSeyk(At)2efiZ;]n_=lo AWy p

)

o= 1AW, 2/ (2A1)

o~ TALV (k—r)AtV —(J-k)AtV
V' AWje V' AW,e H @rannE AAW)
J=1J-1 J ,
_ JILHSO Z Z At < _ ’I") <2 _ k) e—JAt|p| /Qe—rAtVV/pe—(k—r)AtVV/pe—(J—k)AtV
k=0 r=0

Bt
= e_B\P|2/2/ / (g — s) (g — t) e_sv(x)V’(x)pe_(t—S)V(x)V’(x)pe—(ﬂ—t)‘/(-’ﬂ) dsdt
0 0

so that (p — e PH) = O(M™1).

The construction (2.17) implies

d _
= ((T+) ) —Tr (Tj (—2V<x +M 1/2Wf))Tj)
and by assumption there is a constant k such that V' + kI is positive definite everywhere. Therefore we have

d

5T ((r:)Q) < kTr ((Tj)Q)

which establishes Tr ((T;)Q) < ek and shows that for independent Wiener processes W and W' we obtain by
Cauchy’s inequality

el o] e o)

<k|(m((rsm) ) ((TE(W’))?))UT
|

_E :ei(Wﬁ’Wf/f)'pTr (TE(W)TE(W/)H
)

<E :Tr ((T;(W))2>

< ef.

We also observe that the generalized Weyl’s law implies that p is in L2(R*V,C%*?) namely

(Ml/z) Tr (p*(2)) dz = Tr (pp) = Tr (e_ﬁﬁe_ﬁﬁ) =Tr (e_%ﬁ) < 00,

which proves (2.22). O
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4.3. Proof Lemma 3.2

Proof. To estimate remainder terms we will use the composition operator for Weyl symbols defined by c/#\d =ad.
The composition operator has the representation

cttd = em(vz"VP*VI'VP’)C(x,p)d(x/, ! |(I p)=(a"p")

= a7z (Ve Vo =VerVor) g ot pot pYd(x + 2 p + 1) | (@ )= =0 (+9)
::fzp(-"«'lvplvl'”vp//)
which can be written as an expansion using the Fourier transform F, defined for f : RN — R by
f{f}(&w/7€p/7gzl/7£p//) = /4N f(x/’p/7x//’p/l)e—i($ fg_,/-‘r[) .gp/"rﬂf ~£I//+[) 'Ep//) d.rl dp/ dx” dp”- (410)
R
Its inverse transform implies
efm(vzva/7Vm/-Vpn)f(x/’p/’ x//,p//)
(z’,p")=(z" p")=0
1\ s
= (2> Ff(€wr &t Eom E)ed™ (&b —6r&or) 4, gy dg,r dgy
m RAN
and Taylor expansion of the exponential function yields
(V!/V! V/V// / 1 12
o T  fop(a! 0 2" p
(e )<x P)=(a" ") =0
1/ 1 1= //
= ( ) / F fop(Ear Gy Gy G )BT 6 =80 6) e, Ay A€ Ay
(6 &y — & &)\ 1
= _— _7: T z/ ’y Q! y " ( L4 P —_—
(271') /]R2N fp(g gp 5 fp ) nz_()( 2M1/2 TL'
. m+1 1
I(Ew” ) gp' — 51' .EP”) * 1 m %M71/2 Eprr-& 1 —Epr-& 1
+ ( T xop A= ( )ds> A€, A€y A€ A€y
1 1 m”'vp’vr"vp”)> roor M
T\ f”ﬁ T ,p,r ,p
7;) n! < 2M1/2 o ) (z,/p")=(a" p"")=0
+ m i?sM_l/Q(Vm//-vp/7vml-vp//) (7'(V . v _ v . v ))erl
2M1/2 A e 1 x! p/ z’ p//
(L—s)™
X ', p, 2" p)———ds i 4.11
epla’ —— (2/p")=(a"" p")=0 -

The pointwise limit of the remainder term can be estimated by dominated convergence
1

]whmoo e—%M*1/2(VI//~Vp/—vxl~vp//)(_i(V;E” . Vp’ _ le . Vp”))7n+1
- 0

1—

A=s)" g

/ / " /!
X fxp(x yPH,T P )
m! (=,/p)=(2",p"")=0

1
(m + (@, p)=(2" ,p)=0

provided [pun [(or - & — &ar - o)™ T F fup(€)] A€ < o0. In addition we need convergence in L'(R?N), as a
function of z = (z,p), to apply dominated convergence in the phase-space integrals. We have

]:pr(gw’ ) Ep’ ) €w”a fp”) = fc(fz/, gp’)ei(x'fz/-i_p.&p/)]:d(gw”7 Ep” )ei(xfI” +p'5p//)

= (_i(vx” ' Vp/ - vz’ : vp”))m+1fmp($lvp/vm//ap )
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so that
is —1/2 118§t =& pt & 11
/ (G s G, ) TN S e 6) dEy dy e dEy
R
k k
= / (]— - Afl/ - Afp/> (1 - Afw// - AEPN) (fc(gl‘/v EP/)fd(gib”? gp”)
R4N

ei(wfz//-f—pfp//) ei<x'§z/+p‘5p/)

(L4 22+ [p"1)" (14 |2'2 + 0/ |?)

« eingl/z(gzufp,—&zwfpn)) X - €y A&y Ay A&

Therefore we obtain remainder terms that are uniformly bounded in L!(R?") provided the Fourier transform

(i)*Fe(§) of 0%c(z) satisfies
AQN

Lo

We will apply the composition expansion to functions in the Schwartz class so that (4.12) holds.
We conclude that Schwartz functions ¢ and d satisfy

1
lim (M(C#d;d#c —cd)) = lim (—i/o cos(QM%/sz-v;,)(vz-v;,)Qc(z)d(z’)L:Z,(l—s) ds>

(1= AN (€ Fel©)] dg < o0 (4.12)

and similarly for d

(1= A9 (€2 Fd(€))| g < ox.

M —oo M — o0
1
= g (Ve Vo) e(2)d(2)] _... (4.13)
and
- 1
. . 1 s -v.. Vv, / /
= N — 1/2 ¥ # z . , — .1
Mhinoo(c#d) A/}linoo (cd SYVilE /0 eznm (V.- V.,)e(z)d(z )|z:z, ds> cd, (4.14)

as limits in L*(R?Y) and in L (R2Y). We also have
Da, =iM"2|[H,a,| - {h,a,} = {H - h,a,} +7¢
where . ) .
ré = 87M/0 cos(mvz : V;) (V.- V;)SH(Z)GS(Z/)LZZ,(l —5)%ds (4.15)
so that

. a __ 1 / 3 /
lim Mro = ﬂ(v% -vzé) H(20)a0(2(2))]

—
M — o0 20=2(

and the Poisson bracket takes the form
{H — h,as} = V;(,) V. (H — h)(Z(IJ)GO(ZS(ZO))LO:Z{)
= (V% Vo = Vay - Vo) (H — h)(x{),p{))ao(zs(xo,po))|($0’p0):(w6’p6).

Based on this remainder estimate there holds

N
Tr ((5\%)2[7) - <m> /Rw Tr ((1M1/2(H#as — ag#H) — {h,as}>

2

#(iMl/Q(H#aS —as#H) — {h, a5}> p) dz
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and in the limit we obtain by (4.14), (4.15) and Lemma 2.3

Jim " Tr ((iMl/Q(H#as —as#H) — {h, as}>

#(1M1/2(H#as — ag#H) — {h,as}) p) dz

= / Tr (VZOa(zs(zo) -V, (H - h)) —BH (20 ) dzo,
R2N

using splitting of the phase space integral as in (3.12), which together with (4.13)—(4.15) and Lemma 4.1 below
proves the lemma. (I

Lemma 4.1. Assume that the bounds in Theorem 2.1 hold, then a; and by are in the Schwartz class and there
is a constant C', depending in C, such that

Z 102 a¢(2)]| Lo (m2ny + Z 10201 (2) || oo (many < . (4.16)

la|<3 |a|<3

Proof. To estimate <3 |95, a0(2t(20))[| . r2x) We use the first order flow V., z:(29) =: 2'(t), second order
flow 23, (t) = 0., (0)z,.(0)2(t) and third order flow 2" (), which are solutions to the system

4(0) = (V4,h(0), = Fi)
D=tut [ Y S al)ds, Fu) =00, )
0 W

¢
Zi g (t) = _/0 (Z Fin (26) 280 jom (8) + Z fi/,,k’m’(ZS)ZI/C’,k(S)Zflm’,m(S)> ds,
k/

k'm/
fil,/k’m’(z) = azk/zm/ f1(2)7

t
Z;:/kmn(t) = \/0 <Z fi,,k’(zs)z;cl’/,kmn + Z fz k'm/ Zs)zk’ k( ) Zm! mn(s)

k'm/’

+ Z f1 k'm/’ ZS)Zk:’ k:n( ) Zm! ,m )+ Z fi/,/k/n’ (ZS)ZI/c//,km(S)Z;L’,n(S)

k'm/’ k'n’
+ Z ”I/c’m n’ ZS Zk' k:( )Z:n’,m(s)Z;L’,n(S)> ds.
k'm'n’

By summation and maximization over indices we obtain the integral inequalities
t
n%%x‘zg,k(t)’ <1 —|—/ Z‘fl’k,(zéﬂ H1%X|z;k(s)| ds,
0 :

2
ma'XZ|zz km |</ Z|f2 k’ Zs ’maXZ’Zz km |d8+/ Z‘ 'Lk:’m’ (max‘zzk )‘) d87

m

maXZ|Z:/;€mn / Z’fz k' ZS ’maXZ’Z;/;emn
[ e ) ) e Sl 5
m

k'm/
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/ D ke (2 |(maX|2m )])3(13. (4.17)

k'm’'n’
The functions max;; 3, <o 95 0z, 2i(t, z0) can therefore be estimated as in [23] by Gronwall’s inequality, which
states: if there is a positive constant K and continuous positive functions ~,u : [0,00) — [0, 00) such that

t
u(t) < K +/ ~v(s)u(s)ds, fort >0,
0

then .
u(t) < Kelo () ds  for t > 0.

Gronwall’s inequality applied to (4.17) implies

max Y {102,022t 20) | o gaxy = O1) (4.18)
|| <2
provided that
max > 11090x,hl| g gy = O(1). (419
la|<3

"

The flows 2/, 2", 2" determine the derivatives of the scalar symbol ag(2¢(20)) = a¢(20)

0,,ar = Za'o)k,(zt)z,fc,7k(t), ag g (2) = 02,,a0(2),

Ozpz 0t = Zao 1 (20) 200 o (1) + Z ag g (20) 2 () 20 1 (1),

k'm/’
Zkzm z2n At = ZCLO k' Zt Zl/c’ kmn + Z ag,k/m’ (Zt)zl/c’,k(t)zxﬁ,mn(t)
k’'m/’
Z a’O k'm/’ Zt Zk’ kn Zm! m ZaO k'n’ Zt Zk:’ km(t) Zn! n(t)
k’'m/’ k'n’
+ Z aOIk’mn zt zk’k(t)zin’,m(t)zfz’,n(t% (420)

k'm/n’
which together with (4.18) proves (4.16).

Similarly to verify that a; is a Schwartz function, we first extend both (4.17) (for 02 2¢(z0)) and the repre-
sentation in (4.20) to order |a| to obtain the bounds

10%a,(2)] < o0, (4.21)

for all indices a. Then define the compact set LS, = {z € R?" : h(z) < m}. The property h(z) — oo as
|z| — oo, which is verified below (3.13), implies that L¢, includes the support of ag for m sufficiently large and
the invariance h(z;(z0)) = h(zo), for all zg € R?V | establishes by (4.21)

sup |270%a(2)| = sup |270%ao(z:(2))] < oo,
z€R2N zeLg,
for all indices 7 and «. We conclude that a; is a Schwartz function. (]

The constant in the right hand side of (4.18) grows typically exponentially with respect to ¢, i.e.,
max Y 1102,02z:(t 20) || e oy < €
la| <2

where ¢ is the positive constant in the right hand side of (4.19). We note that the assumptions on h and V are
compatible with the assumption to have fR2 ~ Tre 82 4z bounded.
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5. NUMERICAL EXPERIMENTS

In this section we define a model problem that allows us to systematically study approximation of canonical
quantum correlation observables. The model problem is constructed so that we can accurately approximate the
quantum dynamics, thereby avoiding the computational challenges to accurately approximate realistic quantum
systems with many particles and excited electron states, cf. [24]. Section 5.1 includes the approximations of
equilibrium density function of position observable &, applying the mean-field molecular dynamics and the
electron ground state molecular dynamics, respectively. In Section 5.2, we compare time-dependent correlation
observables obtained from molecular dynamics evolving on the ground state, on the mean-field energy surface,
and on a weighted average of all eigenstates (denoted the excited state dynamics below). In particular, we study
whether the mean-field approximation can be more accurate than using only the ground state.

In order to demonstrate the proposed mean-field molecular dynamics approximation, we devise the model
problem as described by equations (1.12) to (1.14) in Section 1.2, where the difference between two eigenvalues
A1(z) — Ao(x) = 2¢va? + 62 can be tuned by the two parameters ¢ and §. For ¢ small this model relates to
the avoided crossing phenomenon in quantum chemistry where the two potential surfaces get almost intersected
at a certain point, see [1]. The assumptions in Theorem 2.1 are satisfied for positive § but not for 6 = 0 and
therefore the approximation error is expected to vary with different 9.

5.1. Equilibrium observables

At the inverse temperature (3, the quantum canonical ensemble average of a time-independent observable A
is obtained from the normalized trace

Tr (e*ﬁﬁ A) T e fEn <<1>n, Acbn>
Tr(e=91) - dope

(5.1)

where (E,, ®,),>, are eigenvalues and the corresponding normalized eigenstates of the Hamiltonian operator
H. Consequently, for an observable depending only on the position x with symbol A(x), we have

Tr(e PHA 2)%e—BEn
( ) = A(x) pgm(z) dz, where pgm(z) = 2n|n(@)] € . (5.2)

Tr (e*ﬁﬁ) RN > e Pk

We apply a fourth-order finite difference scheme for the Laplacian operator in the Hamiltonian (1.12) to approx-
imate the equilibrium density piqm(z) in (5.2). The numerical implementation is explained with more details in
Appendix A.1.

As an approximation to the quantum canonical ensemble average (5.1), we consider the normalized trace
Tr (e=BH A) / Tr (e=FH) and apply the Lemma 2.2 and equation (1.16) to write the mean-field observable as

Tr (eiﬁHg) _ f]RZN Tr (eiﬁH(I’p)a(x’p)I) dzdp

Tmd(0) = Tes(0) = Te (efﬁ;) C Jpow Tr(emBHE2Y) da’ dpf

— _ _ Blp?
2N ) 0
 Jpen a(z,p) (e P20 4 e AME)) =75 dadp
fR2N (eiﬁ)\o(ml) + 67’8)\1(1,)) e_ﬁ\g”? dz’ dp/

where H(z,p) and A(z,p) = a(z,p)l with a : R2N — C are the Weyl symbols corresponding to the operators
H and A, respectively.
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Equilibrium density
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pointwise difference
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0.1

FIGURE 2. The density functions computed with the quantum mechanics formula (5.2), the
mean-field approximation formula (5.3), and using only the ground state in the classical formula
(5.5), with mass ratio M = 1000. The mean-field density (the dashed yellow line) is quite close
to the quantum mechanics density curve (the solid blue line), implying a better accuracy than
the ground state density (the solid violet line).

Specifically for an observable depending only on the position z, we obtain

T (=07 4) | o= Bo@) | o~ BM(2)
—_— = ) pme(x) dx, where ppe(z) = - - 5.3
Tr (e*ﬁH) /]RN (@) i () pnt () Jan (e7Fro@) 4 e=FM () day (5:3)
The classical mean-field density pm in (5.3) can also be rewritten as a weighted average
o= PN (@) Jon €PN @) da
Lt (T q; , where ¢; = R , j=0,1. (5.4)
Z 7 [ e PG dat L o Jan e PM@) da

The weights gqg and ¢; can be interpreted as the probability for the system to be in the corresponding electron
eigenstate Ay and A1, respectively obtained by integration with the corresponding Gibbs density.

We first plot the equilibrium quantum mechanics density pigm using the formula (5.2), and compare it with
the classical mean-field density piys in (5.3). They are also compared with the density based only on the ground
state g5, With the formula

e—BXro(x)

fhgs(x) = T (5.5)

which is obtained from the classical density formula (5.4) by taking the probability for the excited state as
q1 = 0, and the probability for the ground state as gg = 1.

In Figure 2 the first reference density curve with quantum mechanics formula (5.2) is plotted in blue colour
with a solid line. The density curve pm¢(z), obtained from the classical mean-field formula (5.3), is plotted as the
yellow dashed line and agrees well with the quantum mechanics density piqm (). Besides, the mean-field density
tme () incurs much smaller error than the ground-state density pgs(x) (the violet solid curve) in approximating
the pqm(z) density. For Figure 2, we use the parameters M = 1000, ¢ = 1, and 8 = 1 such that with the
eigenvalue gap 0 = 0.1, the system has a probability ¢; = 0.16 to be in the excited state.

In Figure 3 we depict a point-wise difference between the classical mean-field density pme(2) and the quantum
mechanics density piqm(x), for different values of the mass ratio M. The inverse temperature is still taken as
(B =1 for the eigenvalue gap 6 = 0.1 and ¢ = 1, so that the probability for the excited state is kept as ¢ = 0.16.
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Pointwise difference between piqm and fuys
T
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FIGURE 3. The point-wise difference between the quantum mechanics density fiqm and the
mean-field density p,s with inverse temperature § = 1. The dashed violet curve with M = 100
has so small an error that it is almost indiscernible from the solid yellow curve with M = 1000.

L'-error

©6=001,3=102¢ =0163 |1
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FIGURE 4. Dependence of the L'-error between the quantum density piqm and the classical
mean-field density approximation pn,¢, shown in log-log scale.

It is observed from Figure 3 that as M increases the error in the classical mean-field density approximation
decreases.

In order to study the dependence of the approximation error ||ftqm — ftmt||z1 on the mass ratio M, we vary M
for three different inverse temperatures, with the corresponding eigenvalue gaps d such that the probability to
be in the excited state remains to be g; = 0.16. As seen from Figure 4, the O(Mfl) dependence of the error in
the equilibrium density using the classical mean-field approximation is in accordance with the theoretical result
of Theorem 2.1.

Besides the M-dependence of the classical approximation, we also experiment with a relatively large inverse
temperature 3 = 10 for mass ratio M = 100, with parameters ¢ = 1, § = 0.1. The quantum density fiqm
together with its classical mean-field and ground state approximations pims and g are plotted in the Figure 5.
The large value of 8 implies a rather low temperature, which leads to a tiny probability for the electron excited
state as g1 = 7 x 1077, Consequently the density functions concentrate near the minimum of the ground state
eigenvalue, and there is almost no difference between the mean-field and the ground state density curves.
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Equilibrium density with large inverse temperature 8 = 10
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FIGURE 5. Equilibrium density fiqm with the classical mean-field and ground state approxima-
tions pme and figs, with inverse temperature 8 = 10, mass ratio M = 100. The probability of
electron excited state ¢g; = 7 x 1077 is tiny.

5.2. Time-correlated observables

5.2.1. The model problem

We apply the mean-field molecular dynamics to approximate the auto-correlation function between the
momentum observables Py (at time 0) and p, (at time 7). In the Heisenberg representation the time evolu-
tion of the momentum observable is given by

B, = eiT\/MﬁﬁOefi'r\/MH
T - .

We study the two-eigenvalue model with the potential matrix V(z) as defined by (1.13) in Section 1.2. For
computing the quantum correlation function, we approximate the initial position observable Zy and the initial
momentum observable py by the matrices

o 0

To ~ o =X, po~ivM(HyX — XHy) =: P,

respectively, where we discretize a sufficiently large computational domain Q = [z, z k] with uniform grid points
rp = xo + kAx, for k =0,1,--- , K and Az = % In the definition of the matrix P, the real symmetric
matrix Hy is of size 2(K + 1) x 2(K + 1), corresponding to a fourth order finite difference approximation of the
Hamiltonian operator H. More details about this approximation are provided in Section A.1, and the definition
of matrix Hy is given in (A.2). The matrix Hy generates the approximations

eirmﬁ ~ eiT\/MHd e—ﬁﬁ ~ e—ﬁHd
We apply the eig function of Matlab to obtain the eigenpairs (e, ¢, ) of the H; matrix, and rearrange them
to obtain the eigendecomposition

€1 0

Q:=1[¢1 ¢2 ¢3 -+ ¢aks)|, and D:= . ;

0 2(K+1)
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such that Hy can be diagonalized with the orthogonal matrix @ as Hy; = Q D Q*, and hence
TVMHL — QeimVMD % and e PHi = Qe PP @~
Thus the right-hand side of (1.3) with A, = pr and §0 = Do can be approximated by
T (b, o+ popr) e ) T (br (Boe " +e 9 i) )

2Tr (e—ﬁﬁ) a 2Tr (e—ﬁﬁ)

Tqm(T) =

Tr (QeiT\/MD Q* PQe—iT\/MD Q* (PQQ—BD Q* + Qe—ﬁD Q* P))
2T Qe PP QF) ’

~

(5.6)

where in the second equality we use the cyclic property of the trace.
By applying the mean-field molecular dynamics formula (1.4) with momentum observables pp and p, in the
model problem, we have the approximation for the time-correlation function as

_ f]RzN prpo Tr (e*BH(Zo)) dzo

Tt (7) = ; 5.7
f(T) fRzN ’I‘I‘ (e_ﬂH(ZO)) dZO ( )
where z; := (x¢, pt) solves the Hamiltonian system
it = vp h(fEt,pt),
pt - _vz h(xtvpt)) (58)

with an initial state zo = (zg,po) € R2.

The Hamiltonian system (5.8) is solved numerically with the second-order velocity Verlet scheme, see [25].
More details about this numerical implementation is in Appendix A.2.

We also apply the classical molecular dynamics formula for correlation functions introduced in Section 2.3.2
of [2], which considers the contribution from the ground state and the excited states. For our specific example
the excited state dynamics approximation of momentum correlation observable is given by

e*ﬁ<%+/\j($0)>

1
Telr)i= Y [ 4ol mile0) pz dzo,, (5.9)

with the weights go and ¢q; as defined in (5.4), where zZ = (z4,p?), j = 0,1 solves the Hamiltonian dynamics
Jiz_ = pJT,
Pl =~V (@),
with the initial condition 2! = (20, po) = 20 and Ag(z), A1 (z) as defined in (1.14).
In addition to these three expressions for time-correlation, ¥y, (the quantum mechanics correlation), Ty,¢ (the
mean-field approximation), and Tes (the classical excited state approximation), we also compute the approxi-

mation based only on the ground state contribution, %4, obtained by setting the probability g; for the excited
state equal to be zero, i.e.,

e—ﬁ (@‘MO(%))

Tes(7) = /]1@2 pr(20) po(z0) —ﬁ(M+>\o(z)) . dzo, (5.10)
R2 € 2 z
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where z,; = (x,, p;) solves the Hamiltonian dynamics with the potential A\o(z)

jfr = Pr,
137 = 7VA0('IT)5

with initial state zo = (o, po)-

As discussed in (1.16), the approximations with mean-field dynamics or excited state dynamics at an initial
time 7 = 0 are always identical, i.e., Ty,r(0) = Tes(0). For position-related observables, the classical ground state
dynamics approximation Tgs(0) will be, in general, different from T,,¢(0) and Tes(0), which is consistent with
our preceding observations on equilibrium density function in Section 5.1, and is confirmed in the upcoming
Figure 13.

The numerical approximations of T (7), Tes(7), and Tye(7) are computed with the Verlet method in combina-
tion with Simpson’s formula. We use S (7), Ses(T), Sgs(7), and Sqm (), to denote the numerical approximations
of Tnt(7), Tes(T), Tes(7), and Tqm (7), respectively.

In practise ground state molecular dynamics in the canonical ensemble is relatively well developed for realistic
molecular systems and successful mean-field approximations appear in centroid and ring-polymer molecular
dynamics [26]. Direct computations of excited state dynamics for realistic systems seem less attractive, due to
the challenge to efficiently compute excited electron states, cf. [24]. Here we compare these three alternatives
for a simple model problem in the hope of giving some information also on realistic systems.

5.2.2. Numerical results

Following the discussion on the variances €2 and €3 with equations (1.8), (1.10) and (1.11), we survey five
different cases with varying parameter settings of ¢, 6, and inverse temperature 3, and make a comparison
between the performances of different molecular dynamics approximations in each case. A summary of the
parameters in each case is given in the Table 1.

Case A: Low temperature with large eigenvalue gap, 3 = 3.3,c=1,0 = 1, €2 = 9.95 x 1074, € =
1.25 x 10~*, the probability for the excited state q; = 0.0002 is almost negligible.

Figure 6a presents the eigenvalues Ag(x), A1 (z) and the mean-field potential function A.(x) as defined in
(1.9) for Case A. With the parameters ¢ = 1 and § = 1, the system has a large eigenvalue gap. Particularly in
this low temperature setting, the mean-field potential A.(x) is almost identical to the ground-state eigenvalue
Ao(z). Since the probability for the excited state is very small (¢ = 0.0002), the three molecular dynamics
approximations Tm¢(7), Tes(T), and Tgs(7) are similar.

In Figure 7a, the quantum mechanics correlation function curve Sgm (7) with mass ratio M = 1000 is plotted
as a function of correlation time 7, together with the three molecular dynamics approximations Spe(7), Ses(7),
and Sgs(7). The three molecular dynamics correlation function curves are almost on top of each other, as shown
in Figure 7b with similarly small errors. This case gives an example where all the three molecular dynamics
work analogously, since ¢; < 1, and we note that the error terms €7, €3 together with 1/M are all very small.

Case B: High temperature with small difference between eigenvalues, 3 = 1,c=0.1,6 = 1, 2 =
1.9 x 1072, €3 = 3.5 x 1073, the probability for the excited state ¢; = 0.43.

In Figure 6b we observe that with the parameter setting of case B, the mean-field potential A\.(x) lies in
between the ground state eigenvalue A\g(z) and the excited state eigenvalue A;(z), indicating that by incorpo-
rating the effect of the excited state, the mean-field approximation T ,¢(7) can make a difference from simply
using the ground state molecular dynamics.

The improved accuracy of the mean-field molecular dynamics is verified by the Figure 8b, in which we observe
a smaller error of mean-field molecular dynamics approximation ||Sqm — Smtl| o< ([0,-]) (the red curve) compared
with the molecular dynamics using only the ground state ||Sqm — Sgsl[zo<(j0,+]) (the violet curve). The excited
state molecular dynamics Ses(7) has the smallest error, manifesting an effective combination of the information
from both the ground and the excited eigenstates.
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FIGURE 6. Eigenvalues of the matrix-valued potential V'(x) for test cases A to D. In the panel
(a), the mean-field potential \.(x) (the red curve) is quite close to the ground state A\g(x) (the
violet curve). (a) Case A: low temperature, large difference between eigenvalues, large gap. (b)
Case B: high temperature, small difference between eigenvalues, small gap. (c¢) Case C: high
temperature, small difference between eigenvalues, smallest gap. (d) Case D: high temperature,
large difference between eigenvalues, medium gap.
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FIGURE 7. Case A: (a) Auto-correlation function (PyP;) computed by quantum-mechanics for-
mula, Sgm, with M = 1000, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 7, ||Sqm — Small Lo (j0,7])-
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FiGURE 8. Case B: (a) Auto-correlation function (PyP,) computed by quantum-mechanics
formula, Sgy,, with M = 100, and by three molecular dynamics formulae. (b) The corresponding
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FIGURE 9. Case C: (a) Auto-correlation function (PyP;) computed by quantum-mechanics
formula, Sgy,, with M = 100, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 7 [|Sqm — Small £ ([0,7])-

Case C: High temperature, small difference between eigenvalues with avoided crossing, § = 1,
c=0.1,6=0.01, e =9.1 x 1073, €2 = 9.9 x 1073, the probability for the excited state ¢, = 0.46.

The Case C has a similar parameter setting as the preceding Case B, with the only difference of a smaller
parameter 6 = 0.01. The small parameter 0 leads to a small eigenvalue gap at z = 0, i.e., the two eigenvalues
Ao(x) and Aq(z) almost intersect at this point, as can be seen in the Figure 6¢. Compared with Case B, the
small eigenvalue gap also makes the probability for the excited state g; increase from 0.43 to 0.46 in Case C,
with the same inverse temperature 3 = 1.

The approximate p-auto-correlation function curves with their corresponding maximum errors up to time 7
are plotted in the Figures 9a and 9b, respectively. These two figures are quite similar to their corresponding plots
in Case B, where the excited state approximation Ses has the smallest error, and the mean-field approximation
Sme achieves an improved accuracy compared to the ground state approximation Sg.

The similar approximation error of the three molecular dynamics in Case B and Case C can be understood

as a result of the relatively small difference between the two eigenvalues Ao and A;. For both cases the small
parameter ¢ = 0.1 leads to small €; and €5 values, as summarized in Table 1.

Case D: High temperature, large difference between eigenvalues with large gap, § = 0.28, ¢ = 1,
§ =1, ¢ =2.01, €3 = 0.42, the probability for the excited state ¢; = 0.30.
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F1GURE 10. Case D: (a) Auto-correlation function (PyP;) computed by quantum-mechanics
formula, Sgy,, with M = 100, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 7 [|Sqm — Small > ([0,7])-

For this case, we observe from Figure 6d that although the mean-field potential \.(z) is still in between
the ground state Ag(x) and the excited state A\ (z), the distance between A.(x) and Aj(x) is much larger than
that in the previous Case B. Also A.(x) is much closer to the ground state Ao(z) than to the excited state
A1(z). The parameter 8 = 0.28 implies a relatively high temperature, with a considerable contribution from
the excited state. Hence we cannot expect the mean-field molecular dynamics to be much better than ground
state molecular dynamics. This is also verified by Figure 10b which shows that the error of mean-field molecular
dynamics is of the same order as that of ground state molecular dynamics, while the excited state molecular
dynamics remains accurate.

The mean-field and ground state molecular dynamics correlations include two approximations: replacing the
matrix-valued potential V' (z) by a scalar potential A, (z) or Ag(z) respectively, and replacing quantum dynamics
with classical dynamics,

Smt (7))
Ses(7))

where Sqm x, and Sqm, ), denote the approximation of auto-correlation function computed with quantum dynam-
ics but using scalar-valued potentials A.(x) and Ao(z), respectively. In the right hand side of (5.11), the first
terms (Sqm(7) — Sqm,. (7)) and (Sqm(7) — Sqm,r (7)) correspond to the potential approximations in quantum
dynamics, while the second terms (Sqm,x, (7) — Sme(7)) and (Sqm,r, (T) — Ses(7)) are related to classical approx-
imations of quantum dynamics using scalar potentials.

To investigate these two error contributions we compute the correlation function Sgm x, (7) and Sqm,x, (7) for
Case D, using the scalar-valued potential A, (z) or Ag(z) to replace the potential matrix V(z) in the quantum
dynamics. The corresponding auto-correlation curves and their maximum error up to time 7 are shown in
Figures 11a and 11b.

From Figure 11b, we clearly see that the errors ||Sqm — Sqm,a, ||z (j0,7)) and [[Sqm — Sqm,xo | 25 ([0,7)) caused
by substituting the potential matrix V() with the scalar-valued potentials A, (z) or Ag(z) is of the same order
as the total errors |[Sqm — S|z ([0,r)) and ||Sqm — Sgsllzo< ([0, in Figure 10b. Hence we conclude that the
main source of error in this case is the simplification by replacing the potential matrix V' (z) with a scalar-valued
potential, and not the approximation of scalar potential quantum mechanics correlation by classical molecular
dynamics.

Sqn(7) = St (7) = (Squ(7) = Samx. (1) + (Sama. (7) (5-11)

Sam(T) = Sgs(T) = (Sqm(7) = Sqm 20 (7)) + (Sam, 2, (T)

We also vary the mass ratio M between the heavy particle and the light particle, in order to study the corre-
sponding behaviour of the approximation errors ||Sqm (7) = Sqm,x. (7)[| Lo (j0,7]) and [|Sqm () = Sqm,xo (T) | o< ([0,7)
up to time 7 = 20 for the mean-field molecular dynamics and ground state molecular dynamics in Case D. As
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Autocorrelation function (PyP;) of Case D, using quantum dynamics Maximum difference up to time 7 in Case D, with different approximation formulae
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FIGURE 11. (a) Auto-correlation function (PyPr) curves Sqm, Sqm,rg» aid Sqm,x, computed
by using matrix valued potential V(z), and using scalar-valued potential Ag(x) or A.(x) in the
quantum mechanics formula (5.6) in Case D. (b) Maximum error up to time 7 in the p-auto-
correlation curves computed with quantum mechanics formula using scalar-valued potential
A«(x) or Ao(z), by comparing them with the correlation computed from quantum mechanics
formula using matrix-valued potential V (x), and with their corresponding molecular dynamics
approximations.

TABLE 2. Case D: Dependence of the error on the mass ratio M at time 7 = 20.

M [|Sam = Sama. |l ISamr. = Smell  [[Sam = Samroll [Samre = Sesll [|Sam = Ses||

100  0.2004 0.0387 0.2099 0.0081 0.0062
50 0.1985 0.0384 0.2080 0.0201 0.0220
20 0.1944 0.0375 0.2033 0.0377 0.0330

can be seen from the second and fourth column of Table 2, the main error caused by substitution of the potential
matrix V with the scalar valued potential A\, or A\g varies slightly as the M value changes.

Case E: High temperature, large difference between eigenvalues with avoided crossing, with § =1,
c=1,5=0.1, € = 0.29, €2 = 0.50, the probability for the excited state ¢; = 0.16.

This case has the same parameters as in Section 5.1. In Figure 1 we observe a pattern of the two eigenvalues
Ao(x) and Aq(z) related to avoided crossing of potential surfaces. Our numerical results suggest that for this
case all three molecular dynamics are only accurate for short time, as can be seen in Figure 12a. Compared to
Case C and Case D, where the excited state dynamics is accurate, the diminished eigenvalue regularity at the
avoided crossing may explain the loss of accuracy in Case E.

Apart from the momentum auto-correlation function, we also computed in Case E the correlation function
between position observables Ty and Z., as plotted in Figure 13. We observe that for short time range (e.g.,
0 < 7 < 0.1), the error of the ground state molecular dynamics is larger than the error of the mean-field
molecular dynamics, which is consistent with the result for equilibrium observables in Section 5.1, in which the
ground state molecular dynamics has larger error in approximating the density function pign, () than the mean-
field formula. Therefore the mean-field molecular dynamics can improve short-time approximation of position
auto-correlation function compared to the ground state molecular dynamics.

We also changed the mass ratio M in this case for the momentum auto-correlation function, from M = 100
to M = 50 and to smaller value M = 20. When M becomes smaller, we can expect the error of molecular
dynamics approximation becomes larger, since the error includes the (’)(M _1) term. For Case E, since we are
only interested in the short time approximation, the time-dependent error term is not much larger than the
(’)(M _1) term. Hence the effect of varying the mass ratio M will be considerable. The dependence of the L>°-
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Autocorrelation function (PyPr) of Case E Maximum difference up to time 7 in Case E, with different approximation formulae
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FIGURE 12. (a) Auto-correlation function (PyPr) curves Sqm, Sqm,rgs aid Sqm,x, computed
by using matrix valued potential V(z) and using scalar-valued potential Ag(z) or A.(z) in the
quantum mechanics formula (5.6) in Case E. (b) Maximum error up to time 7 in the p-auto-
correlation curves computed with quantum mechanics formula using scalar-valued potential
A«(x) or Ao(z), by comparing them with the correlation computed from quantum mechanics
formula using matrix-valued potential V (x), and with their corresponding molecular dynamics
approximations.
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FIGURE 13. Case E: Auto-correlation function (X,X,) computed by quantum-mechanics for-
mula with M = 100 and by three molecular dynamics formulae.

TABLE 3. Case E: Dependence of the error on the mass ratio M at different correlation times 7.

T M [[Sqm = Smtllpeo oy NSam = Sesllpoo oy NSam — Sesll oo 0,11y
1 20 0.1375 0.0816 0.0564
1 50 0.1324 0.0766 0.0513
1 100 0.1270 0.0712 0.0460
2 20 0.1657 0.1515 0.1043
2 50 0.1533 0.1356 0.0884
2 100 0.1425 0.1226 0.0759

error in momentum auto-correlation approximation on the mass ratio M is summarized in Table 3, from which
we observe an improved accuracy in all the three molecular dynamics approximations with an increased M
value.
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5.3. Conclusion from numerical comparisons

From the study with equilibrium observables in Section 5.1, we see that by considering the contributions
of excited states the classical mean-field approximation of quantum mechanics density at equilibrium achieves
a substantial improvement from the approximation which uses only the information from the ground state.
The error of the mean-field approximation will decrease as the mass ratio M increases, following the O(M _1)
relation.

For the time-dependent observables, specifically by studying the momentum auto-correlation function, we
know from Case A that for a low temperature setting with a large eigenvalue gap, where the probability
for an excited state is small, all three molecular dynamics with the mean-field approximation, excited state
approximation, or ground state approximation work similarly well.

From Case B and Case D, we observe that the error of the mean-field approximation decreases as the difference
between two eigenvalues diminishes (i.e., parameter ¢ becomes small). Furthermore, for Case B with a small
difference between two eigenvalues, the mean-field approximation improves the accuracy of molecular dynamics
compared to using the ground state only.

With a small eigenvalue difference, even including the avoided crossing in Case C the result is similar to Case
B, that is the mean-field approximation is still more accurate than the ground state approximation.

From Case D we know that when the system temperature is high and the difference between two eigenvalues
is not small, the excited state approximation outperforms both the mean-field and the ground state molecular
dynamics.

From Case E we see that when the difference between the eigenvalues are sufficiently large and when the
potential matrix includes avoided crossings, all three molecular dynamics approximations are accurate for a
short time range only.

The small error terms €7 and €3, in Table 1, for the Cases A, B and C is consistent with the actual error
being small for the mean-field approximation, while in Cases D and E where the mean-field approximation error
is large these error terms are in fact large. Therefore the experiments indicate that the error estimate could be
useful to estimate the mean-field approximation error also for realistic problems when the quantum observable
is not computable.

Figures 11b and 12b together with Table 2 show that in Case D and Case E, where mean-field and ground
state approximations are not accurate, the error of the mean-field and ground state molecular dynamics are
dominated by the matrix valued potential replaced by a scalar potential on the quantum level, since the classical
approximation error of the quantum dynamics for the corresponding scalar potential is clearly smaller.

APPENDIX A. NUMERICAL IMPLEMENTATIONS

A.1. Finite difference approximation of the equilibrium density

To approximate the quantum mechanics density formula (5.2), we use a fourth-order finite difference approx-
imation of the Laplacian in the Hamiltonian operator H (5.1), with the formula

_ —f(@—2h) +16f(x — h) = 30f(2) + 16f(z + h) — f(z + 2h)

" O(h*).
This discretization is performed on the computational domain 2 = [—6, 6] with a uniform mesh z, = -6+ kAxz,
for k = 0,1,--- , K, with Az = % The choice of this computational domain is obtained by checking that

the quantum mechanics density pqm(z) approximately vanishes on the boundary of this domain, so that the
homogeneous Dirichlet boundary condition can be assumed. By applying this discretization, we approximate
the eigenvalue problem R

Hq)n = En(bny

with the following algebraic eigenvalue problem

Hdd)n - en¢n7 (Al)
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where the 2(K + 1) x 2(K + 1) matrix Hy is given by

1
Ha:= 53 12(Az)?
_h1170+30 h12)0 —16 0 1 T
h2110 h22)0+30 0 —16 0 1
—16 0 h11,1+30  hio —16 0 1
0 —16 ha1,1 ha22,1+30 0 —16 0 1
1 0 —16 0 hi1,2430 hizs —16 0 1 (A.2)
« 1 0 —16 h2112 h22y2+30 0 —16 0 1
1 0 —16 0 h111K71+30 h127K71 —16 0
1 0 —16  h2i,k-1 ha22 Kk —1+30 0 —16
1 0 —16 0 h117K+30 hlsz
L 1 0 —16 ha1, K ha2 k+30 ]

and the eigenfunctions ®,, are approximated with the 2(K 4+ 1)-length vector ¢, as
On = [0n,0,1, Pn0,2, P11, Oni1,2, - - - a¢n,K,1;¢n,K,2]T~
Here, the entry terms h;j; of the Hy matrix are given by
hijg = 2M (12A2°)V;;(2), fori,j=1,2, and k=0,1,--- , K.

In practice, based on the finite difference scheme (A.1), we approximate the quantum mechanics density pgm in
(5.2) by

2on (I(bn,k,l 24+ |¢>n,k,2|2>e—ﬁen
>k Dom (\¢n,k,1|2 + |g25n7;€72|2>e—ﬁenA:,j

and the eigenvalues e,, and eigenvectors ¢, here are obtained by using the Matlab function eig.

, for k=0,1,--- K, (A.3)

A.2. Numerical solution of the mean-field Hamiltonian system

In the mean-field trace formula (5.7) for time correlation function Sy¢(7), we need to solve the Hamiltonian
system
it = vph(xtapt)a
pt = *vzh(xtapt)a
to obtain the state variable z, at time ¢ = 7. Specifically, given the initial state (g, pp) at time to = 0, we apply
the velocity Verlet method, where for each discrete time point ¢, := tg + nAt, the dynamics of state variables
(z,p) in (1.5) is approximated by

At

Tp4+1 = Tn + At ~pn+%7

At
Pt =pusy + 5 (< Vah(2napay ) )

The integrals in molecular dynamics formulas (5.7), (5.9), and (5.10) are computed with a fourth-order composite
Simpson’s method, with a discretized mesh x; = z¢ + [Ax, p; = pg + [Ap, for [ = 0,1,--- L on the phase
space (z,p) and the computational domain Q = [zg,2] X [po,pr] is taken to be sufficiently large, with Az =

(rr —z0)/L, Ap = (pr — po)/L.
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