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CANONICAL MEAN-FIELD MOLECULAR DYNAMICS DERIVED FROM
QUANTUM MECHANICS

Xin Huang1, Petr Plecháč2,* , Mattias Sandberg1 and Anders Szepessy1

Abstract. Canonical quantum correlation observables can be approximated by classical molecular
dynamics. In the case of low temperature the ab initio molecular dynamics potential energy is based
on the ground state electron eigenvalue problem and the accuracy has been proven to be 𝒪

(︀
𝑀−1

)︀
,

provided the first electron eigenvalue gap is sufficiently large compared to the given temperature and
𝑀 is the ratio of nuclei and electron masses. For higher temperature eigenvalues corresponding to
excited electron states are required to obtain 𝒪

(︀
𝑀−1

)︀
accuracy and the derivations assume that all

electron eigenvalues are separated, which for instance excludes conical intersections. This work studies
a mean-field molecular dynamics approximation where the mean-field Hamiltonian for the nuclei is
the partial trace ℎ := Tr (𝐻e−𝛽𝐻)/Tr (e−𝛽𝐻) with respect to the electron degrees of freedom and 𝐻

is the Weyl symbol corresponding to a quantum many body Hamiltonian ̂︀𝐻. It is proved that the
mean-field molecular dynamics approximates canonical quantum correlation observables with accuracy
𝒪(𝑀−1 + 𝑡𝜖2), for correlation time 𝑡 where 𝜖2 is related to the variance of mean value approximation
ℎ. Furthermore, the proof derives a precise asymptotic representation of the Weyl symbol of the Gibbs
density operator using a path integral formulation. Numerical experiments on a model problem with
one nuclei and two electron states show that the mean-field dynamics has similar or better accuracy
than standard molecular dynamics based on the ground state electron eigenvalue.
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1. Classical approximation of canonical quantum observables

1.1. Introduction to the approximations

We study approximation of quantum time-correlation observables at the quantum canonical ensemble for a
system consisting of nuclei (slow degrees of freedom) and electrons (fast degrees of freedom) at the inverse
temperature 𝛽 = 1/(𝑘B𝑇 ), where 𝑘B is the Boltzmann constant and 𝑇 > 0 is the temperature. We work in
Hartree atomic units in which the reduced Planck constant ~ = 1, the electron charge 𝑒 = 1, the Bohr radius
𝑎0 = 1 and the electron mass 𝑚𝑒 = 1. Thus the semiclassical parameter in the subsequent analysis is given by
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the ratio of nucleus and electron masses 𝑀 . For example, in the case of a proton–electron system the ratio is
𝑀 = 𝑚𝑝/𝑚𝑒 ≈ 1836.

The full quantum system is described by the Hamiltonian operator which includes the kinetic energy of nuclei
and the electronic kinetic energy operator together with the operator describing interaction between electrons,
with coordinates 𝑥𝑒, and nuclei, with coordinates 𝑥,

− 1
2𝑀

∆𝑥 −
1
2

∆𝑥𝑒
+ ̂︀𝑉𝑒(𝑥, 𝑥𝑒).

In this work, in the spirit of Born-Oppenheimer (adiabatic) approximation, we replace the time evolution of
electrons by the Schrödinger electron eigenvalue problem. We represent the electronic kinetic energy operator and
the interaction operator, ̂︀𝐻𝑒 = − 1

2∆𝑥𝑒
+̂︀𝑉𝑒(𝑥, 𝑥𝑒) as a matrix-valued potential ̂︀𝑉 (𝑥) obtained by a representation

of the operator − 1
2∆𝑥𝑒

+ ̂︀𝑉𝑒(𝑥, 𝑥𝑒) on a finite-dimensional (𝑑-dimensional) subspace of suitable normalized
electronic eigenfunctions {𝜑𝑘}𝑑

𝑘=1, as 𝑉 (𝑥)𝑘ℓ = ⟨𝜑𝑘, ̂︀𝐻𝑒(𝑥, ·)𝜑ℓ⟩, described precisely in Section 2. Hence we work
with the Hamiltonian operator ̂︀𝐻 = − 1

2𝑀
∆⊗ I + 𝑉 (𝑥). (1.1)

The first term − 1
2𝑀 ∆𝑥 ⊗ I represents the kinetic energy of the nuclei where I is the 𝑑 × 𝑑 identity matrix.

The second term, 𝑉 (𝑥), is the matrix-valued potential approximation to ̂︀𝐻𝑒 and does not depend on 𝑀 . We
assume that this finite-dimensional approximation of the electronic operator results in a Hermitian matrix-valued
smooth confining potential 𝑉 : R𝑁 → R𝑑×𝑑 that depends on the positions 𝑥𝑖 ∈ R3 of nuclei 𝑖 = 1, 2, . . . , 𝑁 ′,
where we set 𝑁 = 3𝑁 ′. For the sake of simplicity, we assume that the nuclei have the same mass; in the case
with different nuclei masses 𝑀 becomes a diagonal matrix, which can be transformed to the formulation (1.1)
with the same mass by the change of coordinates 𝑀

1/2
1 𝑥̄ = 𝑀1/2𝑥.

The large nuclei/electron mass ratio 𝑀 ≫ 1 is the basis of semiclassical analysis and implies a separation of
time scales, for which nuclei represent slow and electrons much faster degrees of freedom. The Weyl quantization
takes this scale separation into account. In particular for the Hamiltonian operator ̂︀𝐻 the corresponding matrix
valued Weyl symbol becomes 𝐻(𝑥, 𝑝) = 1

2 |𝑝|
2I + 𝑉 (𝑥) for the nuclei phase-space points (𝑥, 𝑝) ∈ R𝑁 × R𝑁 , as

described more precisely in Section 2.
In order to study correspondence between the quantum time-correlation function and its classical counter

part we work in Heisenberg representation for the time-dependent quantum observables given by self-adjoint
operators ̂︀𝐴𝑡 and ̂︀𝐵𝑡. We employ the Weyl quantization to link the quantum dynamics given by the Heisenberg
equation to classical Hamiltonian equations of motions on the phase space (𝑥, 𝑝) ∈ R𝑁 ×R𝑁 of nuclei positions
and momenta and to averaging with respect to a suitable canonical Gibbs distribution on the phase space.

More precisely, given a quantum system defined by the Hamiltonian ̂︀𝐻 acting on wave functions in
𝐿2(R𝑁 , C𝑑) ≡ [𝐿2

(︀
R𝑁
)︀
]𝑑 we denote ̂︀𝜌 = e−𝛽 ̂︀𝐻 the density operator for a quantum Hamiltonian operator̂︀𝐻 at the inverse temperature 𝛽 > 0 and consider quantum correlation observables based on the normalized

trace
Tr
(︁ ̂︀𝐴𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻
)︁

Tr
(︁

e−𝛽 ̂︀𝐻
)︁ , (1.2)

and the symmetrized version

Tqm(𝑡) :=
Tr
(︁

1
2

(︁ ̂︀𝐴𝑡
̂︀𝐵0 + ̂︀𝐵0

̂︀𝐴𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
Tr
(︁

e−𝛽 ̂︀𝐻
)︁ , (1.3)

for quantum observables ̂︀𝐴𝑡 = ei𝑡𝑀1/2 ̂︀𝐻 ̂︀𝐴0e−i𝑡𝑀1/2 ̂︀𝐻 and ̂︀𝐵0 at times 𝑡 and 0, respectively. That is, the quantum
observables solve the Heisenberg-von Neumann equation d ̂︀𝐴𝑡/ d𝑡 = i𝑀1/2[ ̂︀𝐻, ̂︀𝐴𝑡], where [ ̂︀𝐻, ̂︀𝐴𝑡] = ̂︀𝐻 ̂︀𝐴𝑡 − ̂︀𝐴𝑡

̂︀𝐻
is the commutator. Here 𝑀−1/2 plays the role of the Planck constant ~. With this time scale the nuclei move a
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distance of order one in unit time in the classical setting. The aim is to derive a mean-field molecular dynamics
approximation

Tmd(𝑡) :=

∫︀
R2𝑁 𝐴0(𝑧𝑡(𝑧0))𝐵0(𝑧0)Tr

(︀
e−𝛽𝐻(𝑧0)

)︀
d𝑧0∫︀

R2𝑁 Tr
(︀
e−𝛽𝐻(𝑧0)

)︀
d𝑧0

(1.4)

of the correlation function (1.3), where 𝐴0 and 𝐵0 are the Weyl symbols for the initial quantum observables
and 𝑧𝑡 := (𝑥𝑡, 𝑝𝑡) solves the Hamiltonian system

𝑥̇𝑡 = ∇𝑝ℎ(𝑥𝑡, 𝑝𝑡),
𝑝̇𝑡 = −∇𝑥ℎ(𝑥𝑡, 𝑝𝑡),

(1.5)

with the initial data 𝑧0 := (𝑥0, 𝑝0) ∈ R2𝑁 of nuclei positions and momenta. The trace Tr (e−𝛽𝐻(𝑧0)) is over the
space R𝑑×𝑑 of 𝑑× 𝑑 matrices which can be also viewed as the trace operator with respect to electron degrees of
freedom under the finite dimensional approximation of the electronic Hamiltonian. On the other hand Tr (e−𝛽 ̂︀𝐻)
represents the trace acting on the space of trace operators on 𝐿2(R𝑁 , C𝑑) which we can view as the trace with
respect to both nuclei and electron degrees of freedom.

Two main questions arise: (a) how should the mean field Hamiltonian approximation ℎ : R2𝑁 → R be chosen,
and (b) how small is the corresponding estimate for the approximation error Tqm − Tmd?

Assume Ψ : R𝑁 → C𝑑×𝑑 is a differentiable orthogonal matrix. Based on certain regularity assumptions on
𝐴0, 𝐵0, 𝑉 and Ψ, we prove in Theorem 2.1 that for the mean-field Hamiltonian ℎ : R𝑁 × R𝑁 → R defined by

ℎ(𝑧) :=
Tr
(︀
𝐻(𝑧)e−𝛽𝐻(𝑧)

)︀
Tr (e−𝛽𝐻(𝑧))

, (1.6)

and the symbols 𝐴0 and 𝐵0, which are independent of the electron coordinates, we have

|Tqm(𝑡)− Tmd(𝑡)| = 𝒪
(︀
𝑀−1 + 𝑡𝜖21 + 𝑡2𝜖22

)︀
, (1.7)

where the parameters 𝜖2𝑗 are the variances

𝜖21 =

⃦⃦
Tr
(︀
(𝐻 − ℎ)2e−𝛽𝐻

)︀⃦⃦
𝐿1(R2𝑁 )

‖Tr (e−𝛽𝐻)‖𝐿1(R2𝑁 )

,

𝜖22 =

⃦⃦
Tr
(︀
∇(𝐻Ψ − ℎ) · ∇(𝐻Ψ − ℎ)e−𝛽𝐻Ψ

)︀⃦⃦
𝐿1(R2𝑁 )

‖Tr (e−𝛽𝐻Ψ)‖𝐿1(R2𝑁 )

,

(1.8)

with the definition 𝐻Ψ(𝑥, 𝑝) := |𝑝|2
2 I + Ψ*(𝑥)𝑉 (𝑥)Ψ(𝑥) using the Hermitian transpose Ψ*(𝑥).

We note that the mean-field Hamiltonian can be written

ℎ(𝑥, 𝑝) =
|𝑝|2

2
+

Tr
(︀
𝑉 (𝑥)e−𝛽𝑉 (𝑥)

)︀
Tr
(︀
e−𝛽𝑉 (𝑥)

)︀
=
|𝑝|2

2
+
∑︀𝑑−1

𝑖=0 𝜆𝑖(𝑥)e−𝛽𝜆𝑖(𝑥)∑︀𝑑−1
𝑖=0 e−𝛽𝜆𝑖(𝑥)

=:
|𝑝|2

2
+ 𝜆*(𝑥),

(1.9)

where 𝜆𝑖(𝑥), 𝑖 = 0, . . . , 𝑑−1, are the eigenvalues of 𝑉 (𝑥), and 𝜆* : R𝑁 → R is the obtained mean-field potential.
Therefore the mean-field ℎ is independent of the large mass ratio parameter 𝑀 , so that the dynamics (1.5) is
independent of 𝑀 and consequently the nuclei move a distance of order one in unit time. We see that the
mean-field ℎ = Tr (𝐻𝑒−𝛽𝐻)/Tr (e−𝛽𝐻) is the mean value with respect to the Gibbs density. The error term 𝜖21
can be written as the corresponding normed variance

𝜖21 =

⃦⃦⃦∑︀𝑑−1
𝑖=0 (𝜆𝑖 − 𝜆*)

2e−𝛽𝜆𝑖

⃦⃦⃦
𝐿1(R𝑁 )⃦⃦⃦∑︀𝑑−1

𝑖=0 e−𝛽𝜆𝑖

⃦⃦⃦
𝐿1(R𝑁 )

(1.10)
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and at points 𝑥 where the eigenvalues 𝜆𝑖(𝑥) are separated a suitable choice of Ψ(𝑥) is the matrix of eigenvectors
to 𝑉 (𝑥) which implies

Tr
(︀
∇(𝐻Ψ − ℎ) · ∇(𝐻Ψ − ℎ)e−𝛽𝐻Ψ

)︀
(𝑥, 𝑝) =

𝑑−1∑︁
𝑖=0

(︁
∇(𝜆𝑖(𝑥)− 𝜆*(𝑥)) · ∇(𝜆𝑖(𝑥)− 𝜆*(𝑥))e−𝛽𝜆𝑖(𝑥)−𝛽|𝑝|2/2

)︁
. (1.11)

On the other hand to have sets with coinciding eigenvalues is generic in dimension two and higher, see [1],
and there the matrix Ψ(𝑥) is in general not differentiable. Therefore (1.11) will typically not hold everywhere.
Section 5 presents numerical experiments where also the size of the error terms are analyzed in different settings.

In Section 2 we review necessary background on Weyl calculus and state the main theoretical result, namely
the error estimate (1.7), as Theorem 2.1, together with the ideas of its proof. Sections 3 and 4 present the proof
of the theorem. Section 5 presents numerical experiments on the approximation error Tqm(𝑡) − Tmd discussed
in the next Section 1.2.

1.2. Numerical comparisons

In Section 5 we present some numerical examples with varying settings of 𝑡, 1/𝑀, 𝜖2𝑖 , related to different
potentials 𝑉 with the purpose to study the following questions: Is the estimate (1.7) sharp or does the error
in practise behave differently with respect to 𝑡, 1/𝑀 and 𝜖2𝑖 ? Is the main contribution to the error coming
from approximation of the the matrix-valued potential by a scalar potential in the quantum setting or from the
classical approximation of quantum dynamics based on scalar potentials? Can the mean-field dynamics improve
approximation compared to using molecular dynamics based on the ground state eigenvalue 𝜆0 instead of 𝜆*?

Theorem 2.1 does not give precise answers to these questions. The aim of this section is to provide some
insight from several numerical experiments on a model problem, chosen to avoid the computational difficulties
for realistic systems with many particles. Therefore we use one nuclei in dimension one, 𝑁 = 1, and two electron
states, defined by the Hamiltonian ̂︀𝐻 = − 1

2𝑀
∆⊗ I + 𝑉 (𝑥), (1.12)

where I is the 2× 2 identity matrix, 𝑉 : R → R2×2 given by

𝑉 (𝑥) =
1
4

(︂
𝑥− 1

2

)︂4

I + 𝑐

[︂
𝑥 𝛿
𝛿 −𝑥

]︂
, (𝑥, 𝑐, 𝛿) ∈ R× R× R, (1.13)

with the two eigenvalues

𝜆0(𝑥) =
1
4

(︂
𝑥− 1

2

)︂4

− 𝑐
√︀

𝑥2 + 𝛿2, 𝜆1(𝑥) =
1
4

(︂
𝑥− 1

2

)︂4

+ 𝑐
√︀

𝑥2 + 𝛿2, (1.14)

plotted in Figure 1 (Case E in Tab. 1).
Section 5 presents numerical results comparing quantum mechanics to the three different numerical approx-

imations based on: the ground state potential 𝜆0, mean-field potential 𝜆* and excited state dynamics. The
excited state molecular dynamics studied in [2] uses several paths related to different electron eigenvalues and
is defined by

Tes(𝜏) :=
𝑑−1∑︁
𝑗=0

∫︁
R2𝑁

𝐴0(𝑧𝑗
𝜏 (𝑧0))𝐵0(𝑧0)

e
−𝛽

(︂
|𝑝0|

2

2 +𝜆𝑗(𝑥0)

)︂

∑︀𝑑−1
𝑘=0

∫︀
R2𝑁 e−𝛽

(︁
|𝑝|2
2 +𝜆𝑘(𝑥)

)︁

d𝑥 d𝑝

d𝑧0, (1.15)

where 𝑧𝑗
𝜏 = (𝑥𝑗

𝜏 , 𝑝𝑗
𝜏 ), 𝑗 = 0, . . . , 𝑑− 1 solves the Hamiltonian dynamics for state 𝑗

𝑥̇𝑗
𝜏 = 𝑝𝑗

𝜏 ,

𝑝̇𝑗
𝜏 = −∇𝜆𝑗(𝑥𝑗

𝜏 ),

with the initial condition 𝑧𝑗
0 = (𝑥0, 𝑝0) = 𝑧0.
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Figure 1. The eigenvalue functions 𝜆0(𝑥) and 𝜆1(𝑥) of the potential matrix 𝑉 (𝑥), and the
corresponding mean-field potential 𝜆*(𝑥), for the parameters 𝑐 = 1, 𝛿 = 0.1 (Case E).

1.2.1. Equilibrium observables

For equilibrium observables, i.e., where 𝜏 = 0, the mean-field and excited state dynamics are equal since
then

Tmd(0) = Tes(0) =
∫︁

R2𝑁

𝐴0(𝑧0)𝐵0(𝑧0)
Tr
(︀
e−𝛽𝐻(𝑧0)

)︀
d𝑧0∫︀

R2𝑁 Tr
(︀
e−𝛽𝐻(𝑧)

)︀
d𝑧
· (1.16)

Numerical results on equilibrium observables show that mean-field and excited state molecular dynamics are
more accurate than molecular dynamics based only on the ground state. In the case of correlation observables
with 𝜏 > 0, mean-field and excited state molecular dynamics give in general different approximations.

1.2.2. Correlation observables

Observations on quantum dynamics for a system in interaction with a heat bath at thermal equilibrium can
be approximated by correlations (1.2) in the canonical ensemble, cf. [3–6]. For instance, the classical observable
for the diffusion constant

1
6𝜏

3
𝑁

𝑁/3∑︁
𝑘=1

|𝑥𝑘(𝜏)− 𝑥𝑘(0)|2 =
1

2𝑁𝜏

(︀
|𝑥(𝜏)|2 + |𝑥(0)|2 − 2𝑥(𝜏) · 𝑥(0)

)︀
includes the time-correlation 𝑥(𝜏) ·𝑥(0). Hence the corresponding quantum correlation (1.2) would for this case
use ̂︀𝐴𝜏 = ̂︀𝑥𝜏 I and ̂︀𝐵0 = ̂︀𝑥0I, and

̂︀𝑥𝜏 · ̂︀𝑥0 =
𝑁/3∑︁
𝑛=1

3∑︁
𝑗=1

ei𝜏𝑀1/2 ̂︀𝐻̂︀𝑥𝑛𝑗
e−i𝜏𝑀1/2 ̂︀𝐻̂︀𝑥𝑛𝑗

.

The numerical results in Section 5 for time-dependent observables are mainly based on the momentum auto-
correlation

Tr
(︁

(̂︀𝑝𝜏 · ̂︀𝑝0 + ̂︀𝑝0 · ̂︀𝑝𝜏 )e−𝛽 ̂︀𝐻
)︁

2Tr
(︁

e−𝛽 ̂︀𝐻
)︁ ,

which is related to the diffusion constant 𝐷 by the Green-Kubo formula [7]

𝐷 =

∫︀∞
0

∫︀
R2𝑁 𝑝𝑠(𝑥0, 𝑝0) · 𝑝0Tr

(︀
e−𝛽𝐻(𝑥0,𝑝0)

)︀
d𝑥0 d𝑝0 d𝑠∫︀

R2𝑁 Tr
(︀
e−𝛽𝐻(𝑥0,𝑝0)

)︀
d𝑥0 d𝑝0

,
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Table 1. A summary of different parameter settings in each test case, where 𝑞1 denotes the
probability of the electronic excited state, with the precise definition in (5.4). Low value of 𝛽
means a high system temperature, the parameter 𝑐 measures the difference between the two
eigenvalues 𝛾𝜆 :=

∫︀
R |𝜆1 − 𝜆0| e−𝛽𝜆0 d𝑥/

∫︀
R e−𝛽𝜆0 d𝑥 and the parameters 𝑐 and 𝛿 determine the

eigenvalue gap. The value of 𝜖22 is computed following (1.11) with Ψ(𝑥) the matrix of eigenvectors
to 𝑉 (𝑥).

Case 𝛽 𝑐 𝛿 𝑞1 𝜖21 𝜖22 Plot Features

A 3.3 1 1 0.0002 0.001 0.00013 Figure 6a High 𝛽, large 𝛾𝜆, large gap
B 1 0.1 1 0.43 0.019 0.004 Figure 6b Medium 𝛽, small 𝛾𝜆, small gap
C 1 0.1 0.01 0.46 0.009 0.010 Figure 6c Medium 𝛽, small 𝛾𝜆, smallest gap
D 0.28 1 1 0.30 2.011 0.416 Figure 6d Low 𝛽, large 𝛾𝜆, large gap
E 1 1 0.1 0.16 0.290 0.503 Figure 1 Medium 𝛽, large 𝛾𝜆, small gap

since the velocity is equal to the momentum in our case with unit particle mass.
The different numerical experiments in Table 1 are chosen by varying the parameters such that all three,

two, one or no molecular dynamics approximate well. In Case A, with low temperature and large eigenvalue
gap, all three molecular dynamics approximate the quantum observable with similar small error and also the
error terms 1/𝑀 , 𝜖21 and 𝜖22 are small. In Case B, with small difference of the eigenvalues (i.e., 𝑐 is small), the
mean-field and excited states dynamics is more accurate than ground state dynamics and the error terms 1/𝑀 ,
𝜖21 and 𝜖22 are still small. The result is similar in Case C, with an avoided crossing (i.e., 𝛿 is small) and small
difference of the eigenvalues. In Case D, with high temperature and larger difference of the eigenvalues, only
the excited state dynamics provides accurate approximations to the quantum observables and the error terms
𝜖21 and 𝜖22 are large. Finally in Case E, when the difference of the eigenvalues are sufficiently large and we have
an avoided crossing, molecular dynamics is accurate only for short correlation time 𝜏 and the error terms 𝜖21
and 𝜖22 are large.

Figures 11b and 12b show that in Case D and Case E, where mean-field and ground state approximations are
not accurate, the approximation error is dominated by the part corresponding to replacing the matrix valued
potential by a scalar potential in the quantum formulation and not the part of the error resulting from classical
approximation of quantum mechanics for scalar potentials. More precise conclusions relating the error terms
1/𝑀 , 𝑡𝜖21 and 𝑡2𝜖22 in (1.7) to the numerical experiments are in Section 5. The numerical experiments here also
show that the mean-field dynamics has similar or better accuracy compared to ground state molecular dynamics.
It would be interesting to do this comparison for realistic problems.

1.3. Relation to previous work

Classical approximation of canonical quantum correlation observables have been derived with 𝒪
(︀
𝑀−1

)︀
accu-

racy for any temperature, see, e.g., [2, 8]. Computationally this accuracy requires to solve classical molecular
dynamics paths related to several electron eigenvalues, while the mean-field dynamics has the advantage to use
only one classical path at the price of loosing accuracy over long time.

Classical limits of canonical quantum observables were first studied by Wigner [9]. His proof introduces the
“Wigner” function for scalar Schrödinger equations and uses an expansion in the Planck constant ~ to relate
equilibrium quantum observables to the corresponding classical Gibbs phase space averages.

To derive classical limits in the case of matrix or operator-valued Schrödinger equations previous works, see
[8], diagonalize the electron eigenvalue problem, which then excludes settings where the eigenvalues coincide at
certain points due to the inherent loss of regularity at such points. The mean-field formulation presented here
avoids diagonalization of the electron eigenvalue problem at points with low eigenvalue regularity.
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The classical limit with a scalar potential 𝑉 , e.g., the electron ground state eigenvalue, has been studied by
three different methods:

(1) Solutions to the von Neumann quantum Liouville equation, for the density operator, are shown to converge
to the solution of the classical Liouville equation, using the Wigner function [10], also under low regularity
of the potential, cf. [11]. These results use the Wigner function and compactness arguments, which do not
provide a convergence rate.

(2) In the second method, used in our work, the two main mathematical tools are a generalized version of Weyl’s
law and quantization properties, as described by semiclassical analysis, e.g., in [12, 13]. The generalized
Weyl’s law links the trace for canonical quantum observables to classical phase space integrals, related
to Wigner’s work. The quantization properties compare the quantum and classical dynamics and provide
convergence rates. Our study differs from previous works that also used similar tools, e.g., [8, 14]. The
standard method to bound remainder terms in semiclassical expansions, based on the Planck constant ~,
use the Calderón-Vaillancourt theorem to estimate operator norms. Such approach yields error bounds with
constants depending on the 𝐿1(R2𝑁 )-norms of Fourier transforms of symbols and the potential. The 𝐿1(R2𝑁 )-
norm of a Fourier transformed function can be bounded by the 𝐿1(R2𝑁 ) norm of derivatives of order 𝑁 of
the function. Therefore the obtained constants in 𝒪(~𝛼) error estimates are large in high dimension 𝑁 . In
our work here we apply dominated convergence to obtain error estimates based on low regularity of symbols
and the potential, while Fourier transforms in 𝐿1(R2𝑁 ) are only required to be finite and do not enter in
the final error estimates.

(3) The third alternative in [15] provides a new method that also avoids the large constants in the Calderón-
Vaillancourt theorem in high dimensions by using convergence with respect to a generalized Wasserstein
distance and different weak topologies.

A computational bottleneck in ab initio molecular dynamics simulations of canonical correlation observables
is in solving electron eigenvalue problems at each time step. An alternative to approximate quantum observables
is to use path integral Monte Carlo formulations in order to evaluate Hamiltonian exponentials. The Hamiltonian
exponentials come in two forms: oscillatory integrals in time 𝑡 ∈ R, based on ei𝑡 ̂︀𝐻 for the dynamics, and integrals
for Gibbs function e−𝛽 ̂︀𝐻 that decay with increasing inverse temperature 𝛽 ∈ (0,∞). The high variance related
to the oscillatory integrand ei𝑡 ̂︀𝐻 means that standard computational path integral formulations for molecular
dynamics are applied only to the statistics based on the partition function Tr (e−𝛽 ̂︀𝐻) while the dynamics is
approximated classically.

Two popular path integral methods are centroid molecular dynamics and ring-polymer molecular dynamics,
see, e.g., [16] or [17]. In these methods the discretized path integral is interpreted as a classical Hamiltonian
with a particle/bead for each degree of freedom in the discretized path integral. For the centroid version the
dynamics is based on the average of the particle/bead positions, i.e., the centroid, with forces related to a
free energy potential for the partition function thereby forming a mean-field approximation. It is related to
the mean-field approximation (1.4) and (1.6) but differs in that in our work the forces are based on the mean
Hamiltonian, for the partial trace over electron degrees of freedom, instead of on the partition function for the
discretized path integral with respect to both nuclei and electron degrees of freedom, centered at the centroid.
In ring-polymer molecular dynamics classical kinetic energy is added for each bead forming a Hamiltonian with
harmonic oscillators in addition to the original potential energy. Consequently the phase-space is related to
coupled ring polymers, one for each original particle.

There is so far no convergence proof for centroid nor ring-polymer molecular dynamics. Therefore it would be
interesting to further study their relation to the mean-field model we analyse here. The mean-field formulation
(1.4) and (1.6) can also offer an alternative to standard eigenvalue solutions by using a path integral formulation
of the partial trace over the electron degrees of freedom, in the case of sufficiently large temperature avoiding
the fermion sign problem, see, e.g., [18]. Another difference to previous work is that the convergence proof here
derives a precise asymptotic representation of the Weyl symbol for the Gibbs density operator using a path
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integral formulation, providing an example that using path integrals for the Gibbs density can also result in
simplification of the theory.

2. The main result and background from Weyl calculus

In this section we state the main theorem and review necessary tools from semiclassical analysis and functional
integration.

To relate the quantum and classical observables we employ Weyl calculus for matrix-valued symbols. First,
we introduce functional spaces that we use in the sequel:

(i) the Schwartz space of matrix-valued functions on the phase space

𝒮 :=

{︃
𝐴 ∈ 𝐶∞

(︀
R𝑁 × R𝑁 , C𝑑×𝑑

)︀
| sup

𝑧∈R𝑁×R𝑁

|𝑧𝛾𝜕𝛼
𝑧 𝐴𝑖𝑗(𝑧)| < ∞, for all indices

}︃
where we denote a point in the phase space 𝑧 = (𝑥, 𝑝) and for a multi-index of non-negative integers
𝛼 = (𝛼1, . . . , 𝛼2𝑁 ), we have the partial derivatives 𝜕𝛼

𝑧 = 𝜕𝛼1
𝑧1

. . . 𝜕𝛼2𝑁
𝑧2𝑁

of the order |𝛼| =
∑︀

𝑖 𝛼𝑖 and similarly
we have 𝑧𝛾 = 𝑧𝛾1

1 . . . 𝑧𝛾2𝑁

2𝑁 for the multi-index 𝛾. For a matrix-valued symbol 𝐴 we also use the notation
𝐴′(𝑧) for the tensor (𝐴′(𝑧))𝑚

𝑖𝑗 := 𝜕𝑧𝑚
𝐴𝑖𝑗(𝑧) and 𝐴′′(𝑧) for the 4th-order tensor (𝐴′′(𝑧))𝑚𝑛

𝑖𝑗 := 𝜕2
𝑧𝑚𝑧𝑛

𝐴𝑖𝑗(𝑧).
The dual space of tempered distributions is denoted 𝒮 ′.

(ii) the space of 𝐿2 vector-valued wave functions

ℋ := 𝐿2
(︀
R𝑁 , C𝑑

)︀
≡
[︀
𝐿2
(︀
R𝑁
)︀]︀𝑑

.

We define the Weyl quantization operator of a matrix-valued symbol 𝐴 ∈ 𝒮 as the mapping 𝐴 ↦→ ̂︀𝐴 that
assigns to the symbol 𝐴 the linear operator ̂︀𝐴 : ℋ → ℋ defined for all Schwartz functions 𝜑(𝑥) by

̂︀𝐴𝜑(𝑥) =
∫︁

R𝑁

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R𝑁

ei𝑀1/2(𝑥−𝑦)·𝑝𝐴
(︀

1
2 (𝑥 + 𝑦), 𝑝

)︀
d𝑝 𝜑(𝑦) d𝑦

=:
∫︁

R𝑁

𝐾𝐴(𝑥, 𝑦)𝜑(𝑦) d𝑦,

(2.1)

and extended to all wave functions 𝜑 ∈ ℋ by density. The expression (2.1) shows that the kernel 𝐾𝐴 on ℋ is
the Fourier transform in the second argument of the symbol 𝐴(𝑥, 𝑝) and consequently the Weyl quantization is
well defined for symbols in 𝒮 ′, the space of tempered distributions.

For example, the symbol
𝐻(𝑥, 𝑝) := 1

2 |𝑝|
2I + 𝑉 (𝑥)

yields the Hamiltonian operator ̂︀𝐻 = − 1
2𝑀

∆⊗ I + 𝑉 (𝑥).

We formulate the main result as the following theorem estimating the mean-field approximation.

Theorem 2.1. Let Ψ : R𝑁 → C𝑑×𝑑 be a differentiable mapping into orthogonal matrices and define 𝑉Ψ :=
Ψ*𝑉 Ψ, for the Hermitian potential 𝑉 : R𝑁 → C𝑑×𝑑. Assume that the components of the Hessian 𝑉 ′′

Ψ are
in the Schwartz class and the scalar symbols 𝑎0 : R2𝑁 → C and 𝑏0 : R2𝑁 → C are infinitely differentiable
and compactly supported. Furthermore, suppose that there is a constant 𝑘 such that 𝑉 + 𝑘I is positive definite
everywhere, Tr (e−𝛽 ̂︀𝐻) is finite, and there is a constant 𝐶 such that

⃦⃦
Tr e−𝛽𝑉

⃦⃦
𝐿1(R𝑁 )

+
⃦⃦

Tr
(︀
𝑉 2e−𝛽𝑉

)︀⃦⃦
𝐿1(R𝑁 )

+

⃦⃦⃦⃦
⃦⃦Tr

⎛⎝⎛⎝ 𝑁∑︁
𝑚=1

∑︁
|𝛼|≤3

𝜕𝛼
𝑥𝑚

𝑉Ψ𝜕𝛼
𝑥𝑚

𝑉Ψ

⎞⎠e−𝛽𝑉Ψ

⎞⎠⃦⃦⃦⃦⃦⃦
𝐿1(R𝑁 )

≤ 𝐶,
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|𝛼|≤3

(︁
‖𝜕𝛼

𝑧 𝑎0‖𝐿∞(R2𝑁 ) + ‖𝜕𝛼
𝑧 𝑏0‖𝐿∞(R2𝑁 )

)︁
≤ 𝐶,

max
𝑖

∑︁
|𝛼|≤3

‖𝜕𝛼
𝑥 𝜕𝑥𝑖ℎ‖𝐿∞(R2𝑁 ) ≤ 𝐶,

∫︁
R2𝑁

Tr

(︃⃒⃒⃒⃒
⃒∑︁
𝑛,𝑚

𝑝𝑛𝜕2
𝑥𝑛𝑥𝑚

𝑉Ψ(𝑥)𝑝𝑚

⃒⃒⃒⃒
⃒ e−𝛽

(︂
|𝑝|2
2 I+𝑉Ψ(𝑥)

)︂)︃
d𝑥 d𝑝 ≤ 𝐶,

∫︁
R2𝑁

Tr

⎛⎝(︃∑︁
𝑛

𝑝𝑛𝜕2
𝑥𝑛

𝑉Ψ(𝑥)

)︃2

e
−𝛽

(︂
|𝑝|2
2 I+𝑉Ψ(𝑥)

)︂⎞⎠ d𝑥 d𝑝 ≤ 𝐶,

then there are constants 𝑐, 𝑀̄ , 𝑡, depending on 𝐶 and 𝛽, such that the quantum canonical observable (1.3), with
𝐴0 = 𝑎0I and 𝐵0 = 𝑏0I, can be approximated by the mean-field molecular dynamics (1.4), (1.5) with the error

|Tqm(𝑡)− Tmd(𝑡)| ≤ 𝑐
(︀
𝑀−1 + 𝑡𝜖21 + 𝑡2𝜖22

)︀
, (2.2)

for 𝑀 ≥ 𝑀̄ and 0 ≤ 𝑡 ≤ 𝑡, where

𝜖21 =
⃦⃦
Tr
(︀
(𝐻 − ℎ)2e−𝛽𝐻

)︀⃦⃦
𝐿1(R2𝑁 )

/
⃦⃦

Tr
(︀
e−𝛽𝐻

)︀⃦⃦
𝐿1(R2𝑁 )

,

𝜖22 =
⃦⃦

Tr
(︀
∇(𝐻Ψ − ℎ) · ∇(𝐻Ψ − ℎ)e−𝛽𝐻Ψ

)︀⃦⃦
𝐿1(R2𝑁 )

/
⃦⃦

Tr
(︀
e−𝛽𝐻

)︀⃦⃦
𝐿1(R2𝑁 )

, 𝐻Ψ :=
|𝑝|2

2
I + 𝑉Ψ.

2.1. Overview and background to the proof

This section provides background and motivation to the proof of the theorem in three subsections. The first
subsection reviews application of Weyl calculus for the dynamics, the second one is on a generalized form of
Weyl’s law in order to relate the quantum trace to phase space integrals and the third subsection introduces
path integrals and their application in the context of our result.

2.1.1. Weyl calculus and dynamics

This section first introduces the central relation between commutators and corresponding Poisson brackets
for the classical limit of dynamics. Given two smooth functions 𝑣(𝑥, 𝑝), 𝑤(𝑥, 𝑝) on the phase space we define the
Poisson bracket

{𝑣, 𝑤} := ∇𝑝𝑣(𝑥, 𝑝) · ∇𝑥𝑤(𝑥, 𝑝)−∇𝑥𝑣(𝑥, 𝑝) · ∇𝑝𝑤(𝑥, 𝑝)
= (∇𝑝′ ,−∇𝑥′) · (∇𝑥,∇𝑝)𝑣(𝑥′, 𝑝′)𝑤(𝑥, 𝑝)

⃒⃒
(𝑥,𝑝)=(𝑥′,𝑝′)

.
(2.3)

We denote the gradient operator in the variable 𝑧 = (𝑥, 𝑝) as ∇𝑧 = (∇𝑥,∇𝑝) and ∇′𝑧 = (∇𝑝,−∇𝑥), hence the
Poisson bracket is expressed as

{𝑣, 𝑤} = (∇′𝑧′ · ∇𝑧)𝑣(𝑧′)𝑤(𝑧)
⃒⃒
𝑧=𝑧′

. (2.4)

For two operators ̂︀𝐶, ̂︀𝐷 on the space ℋ we define their commutator[︁ ̂︀𝐶, ̂︀𝐷]︁ = ̂︀𝐶 ̂︀𝐷 − ̂︀𝐷 ̂︀𝐶.

To relate the quantum and classical dynamics for particular observables with symbols of the type 𝑎0I treated
in Theorem 2.1, we assume that the classical Hamiltonian flow 𝑧𝑡(𝑧0) := (𝑥𝑡(𝑧0), 𝑝𝑡(𝑧0)) solves the Hamiltonian
system

𝑥̇𝑡 = 𝑝𝑡 = ∇𝑝ℎ(𝑥𝑡, 𝑝𝑡),
𝑝̇𝑡 = −∇𝑥ℎ(𝑥𝑡, 𝑝𝑡),
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with the initial data (𝑥0, 𝑝0) = 𝑧0 ∈ R2𝑁 . Given a scalar Schwartz function 𝑎0 we define a smooth function on
the flow 𝑧𝑡(𝑧0)

𝑎𝑡(𝑧0) := 𝑎0(𝑧𝑡(𝑧0)), (2.5)

and we have that 𝑎𝑡(𝑧0) satisfies
𝜕𝑡𝑎𝑡(𝑧0) = {ℎ(𝑧0), 𝑎𝑡(𝑧0)} (2.6)

since the direct calculation gives

𝜕𝑡𝑎𝑡(𝑧0) = 𝜕𝑠𝑎0(𝑧𝑡(𝑧𝑠))
⃒⃒
𝑠=0

= 𝑧̇0 · ∇𝑧0𝑎0(𝑧𝑡(𝑧0)) = {ℎ(𝑧0), 𝑎𝑡(𝑧0)}.

The corresponding quantum evolution of the observable ̂︀𝐴, for 𝑡 ∈ R, is defined by the Heisenberg-von Neumann
equation

𝜕𝑡
̂︀𝐴𝑡 = i𝑀1/2

[︁ ̂︀𝐻, ̂︀𝐴𝑡

]︁
, (2.7)

which implies the representation ̂︀𝐴𝑡 = ei𝑡𝑀1/2 ̂︀𝐻 ̂︀𝐴0e−i𝑡𝑀1/2 ̂︀𝐻 .

The basic property in Weyl calculus that links the quantum evolution (2.7) to the classical (2.6) is the relation

i𝑀1/2
[︁ ̂︀𝐻,̂︀𝑎𝑡

]︁
= {𝐻, 𝑎𝑡}̂︀+ ̂︀𝑟𝑎

𝑡 (2.8)

where the remainder symbol 𝑟𝑎
𝑡 is small. In Lemma 3.2 we show that

lim
𝑀→∞

𝑀𝑟𝑎
𝑠 =

1
12

(︁
∇𝑧0 · ∇′𝑧′0

)︁3

𝐻(𝑧0)𝑎0(𝑧𝑠(𝑧′0))
⃒⃒
𝑧0=𝑧′0

. (2.9)

The main obstacle to establish the classical limit for dynamics based on the matrix-valued operator Hamilto-
nian ̂︀𝐻 is that matrix symbols do not commute, i.e., [𝐻,𝐴𝑡] ̸= 0, which implies the additional larger remainder
i𝑀1/2[𝐻,𝐴𝑡] in (2.8). Therefore the usual semiclassical analysis perform approximate diagonalization of [ ̂︀𝐻, ̂︀𝐴𝑡],
see [2, 8]. Diagonalization of 𝑉 introduces eigenvectors that are not smooth everywhere unless the eigenvalues
are separated, due to the inherent loss of regularity for eigenvectors corresponding to coinciding eigenvalues, see
[1]. To have a conical intersection point with coinciding eigenvalues is generic in dimension two, and in higher
dimensions the intersection is typically a co-dimension two set, see [1]. The non smooth diagonalization has
been so far a difficult obstacle to handle with the tools of Weyl calculus. The aim in our work is therefore to
avoid diagonalization everywhere by analyzing a mean-field approximation differently.

In order to apply (2.8) we use Duhamel’s principle, see [19]: the inhomogeneous linear equation in the variable
𝐴𝑡 − 𝑎𝑡 ≡ 𝐴𝑡 − 𝑎𝑡I, where 𝐴𝑡 satisfies the evolution (2.7) and 𝑎𝑡 is defined by (2.5),

𝜕𝑡

(︁ ̂︀𝐴𝑡 − ̂︀𝑎𝑡

)︁
= i𝑀1/2

[︁ ̂︀𝐻, ̂︀𝐴𝑡

]︁
− {ℎ, 𝑎𝑡}̂︀

= i𝑀1/2
[︁ ̂︀𝐻, ̂︀𝐴𝑡 − ̂︀𝑎𝑡

]︁
+ i𝑀1/2

[︁ ̂︀𝐻,̂︀𝑎𝑡

]︁
− {ℎ, 𝑎𝑡}̂︀

can be solved by integrating solutions to the homogeneous problem with respect to the inhomogeneity

̂︀𝐴𝑡 − ̂︀𝑎𝑡 =
∫︁ 𝑡

0

ei𝑀1/2(𝑡−𝑠) ̂︀𝐻
(︁

i𝑀1/2
[︁ ̂︀𝐻,̂︀𝑎𝑠

]︁
− {ℎ, 𝑎𝑠}̂︀

)︁
e−i𝑀1/2(𝑡−𝑠) ̂︀𝐻 d𝑠. (2.10)

The quantum statistics has a similar remainder term to (2.9), namely the difference 𝜌 − e−𝛽𝐻 of the Weyl
symbol 𝜌 for the quantum Gibbs density operator ̂︀𝜌 = e−𝛽 ̂︀𝐻 and the classical Gibbs density e−𝛽𝐻 . To characterize
asymptotic behaviour as 𝑀 →∞ of this difference we employ representation of the symbol 𝜌 based on Feynman–
Kac path integral formulation, as presented in Section 2.1.3.
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2.1.2. Generalized Weyl law

To link the quantum trace to a classical phase space integral we will use a generalized form of Weyl’s law,
see [8, 12]. The semiclassical analysis is based on the fact that the ℋ-trace of a Weyl operator, with a 𝑑 × 𝑑
matrix-valued symbol, is equal to the phase-space average of its symbol trace. Indeed we have by the definition
of the integral kernel in (2.1) for 𝐴 ∈ 𝒮

Tr ̂︀𝐴 =
∫︁

R𝑁

Tr 𝐾𝐴(𝑥, 𝑥) d𝑥 =

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R𝑁

∫︁
R𝑁

Tr 𝐴(𝑥, 𝑝) d𝑝 d𝑥. (2.11)

In fact also the composition of two Weyl operators is determined by the phase-space average as follows, see [8].

Lemma 2.2. The composition of two Weyl operators ̂︀𝐴 and ̂︀𝐵, with 𝐴 ∈ 𝒮 and 𝐵 ∈ 𝒮 satisfies

Tr
(︁ ̂︀𝐴 ̂︀𝐵)︁ =

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr (𝐴(𝑥, 𝑝)𝐵(𝑥, 𝑝)) d𝑥 d𝑝,

where 𝐴(𝑥, 𝑝)𝐵(𝑥, 𝑝) is the matrix product of the two 𝑑× 𝑑 matrices 𝐴(𝑥, 𝑝) and 𝐵(𝑥, 𝑝).

Proof. The well-known proof is a straight forward evaluation of the integrals involved in the composition of two
kernels and it is given here for completeness. The kernel of the composition is

𝐾𝐴𝐵(𝑥, 𝑦) =

(︃√
𝑀

2𝜋

)︃2𝑁 ∫︁
R3𝑁

𝐴
(︀

1
2 (𝑥 + 𝑥′), 𝑝

)︀
𝐵
(︀

1
2 (𝑥′ + 𝑦), 𝑝′

)︀
× e𝑖𝑀1/2((𝑥−𝑥′)·𝑝+(𝑥′−𝑦)·𝑝′) d𝑝′ d𝑝 d𝑥′

so that the trace of the composition becomes

Tr
(︁ ̂︀𝐴 ̂︀𝐵)︁ =

∫︁
R𝑁

Tr 𝐾𝐴𝐵(𝑥, 𝑥) d𝑥

=

(︃√
𝑀

2𝜋

)︃2𝑁 ∫︁
R4𝑁

Tr
(︀
𝐴
(︀

1
2 (𝑥 + 𝑥′), 𝑝

)︀
𝐵
(︀

1
2 (𝑥′ + 𝑥), 𝑝′

)︀)︀
× e𝑖𝑀1/2((𝑥−𝑥′)·𝑝+(𝑥′−𝑥)·𝑝′) d𝑝′ d𝑝 d𝑥′ d𝑥

=

(︃√
𝑀

2𝜋

)︃2𝑁 ∫︁
R4𝑁

Tr (𝐴(𝑦, 𝑝)𝐵(𝑦, 𝑝′))e𝑖𝑀1/2𝑦′·(𝑝−𝑝′) d𝑝′ d𝑝 d𝑦′ d𝑦

=

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr (𝐴(𝑦, 𝑝)𝐵(𝑦, 𝑝)) d𝑝 d𝑦,

using the change of variables (𝑦, 𝑦′) = ((𝑥 + 𝑥′)/2, 𝑥− 𝑥′), which verifies the claim. �

The composition of three operators does not have a corresponding phase-space representation. We will instead
use the composition operator # (Moyal product), defined by ̂︀𝐴 ̂︀𝐵 = 𝐴#𝐵, to reduce the number of Weyl
quantizations to two, e.g., as ̂︀𝐴 ̂︀𝐵 ̂︀𝐶 ̂︀𝐷 = 𝐴#𝐵 𝐶#𝐷. More precisely, the Moyal product of two symbols has the
representation

𝐴#𝐵 = e
i

2𝑀1/2 (∇𝑥′ ·∇𝑝−∇𝑥·∇𝑝′)𝐴(𝑥, 𝑝)𝐵(𝑥′, 𝑝′)
⃒⃒
(𝑥,𝑝)=(𝑥′,𝑝′)

. (2.12)

For general background we refer the reader to [12] or [13].
The isometry between Weyl operators with the Hilbert–Schmidt inner product, Tr ( ̂︀𝐴* ̂︀𝐵), and the corre-

sponding 𝐿2(R𝑁 × R𝑁 , C𝑑×𝑑) symbols obtained by Lemma 2.2 shows how to extend from symbols in 𝒮 to
𝐿2(R𝑁 × R𝑁 , C𝑑×𝑑) by density of 𝒮 in 𝐿2(R𝑁 × R𝑁 , C𝑑×𝑑), see [8]. We will use the Hilbert–Schmidt norms
‖ ̂︀𝐴‖2ℋ𝒮 = Tr ( ̂︀𝐴* ̂︀𝐴) = Tr ( ̂︀𝐴2) and ‖Tr 𝐴2‖𝐿2(R2𝑁 ) to estimate Weyl operators and Weyl symbols, respectively.

We show in Lemma 3.2 that having the Weyl symbols and 𝑉 ′′ in the Schwartz class imply that dominated
convergence can be applied in the phase space integrals obtained from the generalized form of Weyl’s law.
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2.1.3. Feynman–Kac path integrals

In order to analyse the symbol 𝜌 for the Gibbs density operator ̂︀𝜌 = e−𝛽 ̂︀𝐻 we will use path integrals (in
so called imaginary time), as in [3, 20, 21], based on Feynman–Kac formula applied to the kernel of the Gibbs
density operator and its corresponding Weyl quantization. We start with the kernel representation(︁

e−𝛽 ̂︀𝐻𝜑
)︁

(𝑥′) =
∫︁

R𝑁

𝐾𝜌(𝑥′, 𝑦′)𝜑(𝑦′) d𝑦′,

obtained from that (e−𝛽 ̂︀𝐻𝜑)(𝑥′) =: 𝑢(𝑥′, 𝛽) solves the parabolic partial differential equation

𝜕𝛽𝑢(·, 𝛽) + ̂︀𝐻𝑢(·, 𝛽) = 0, 𝛽 > 0, 𝑢(·, 0) = 𝜑.

To motivate the construction of the path integral representation we first identify the Weyl symbol of the density
operator in the case of a scalar potential 𝑉 , i.e., the case 𝑑 = 1. In order to emphasize that we consider the scalar
case, we denote this Weyl symbol 𝜌𝑠(𝑥, 𝑝), and thereby the associated kernel is denoted 𝐾𝜌𝑠 . Direct application
of the Feynman–Kac formula, see Theorem 7.6 in [22], implies that the kernel can be written as the expected
value

𝐾𝜌𝑠
(𝑥′, 𝑦′) = E

[︁
e−
∫︀ 𝛽
0 𝑉 (𝜔′𝑟) d𝑟𝛿(𝜔′𝛽 − 𝑦′) |𝜔′0 = 𝑥′

]︁
, (2.13)

where 𝜔′𝑡 solves the stochastic differential equation

d𝜔′𝑡 = 𝑀−1/2 d𝑊𝑡, 𝜔′0 = 𝑥′,

with the standard Wiener process 𝑊𝑡 in R𝑁 and the delta measure 𝛿(𝜔′𝛽 − 𝑦′) concentrated at the point 𝑦′.
We recall the definition (2.1) of Weyl quantization for the (scalar) symbol 𝜌𝑠(𝑥, 𝑝)

̂︀𝜌𝑠𝜑(𝑥) =
∫︁

R𝑁

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R𝑁

ei𝑀1/2(𝑥−𝑦)·𝑝𝜌𝑠( 1
2 (𝑥 + 𝑦), 𝑝) d𝑝⏟  ⏞  

=𝐾𝜌𝑠 (𝑥,𝑦)

𝜑(𝑦) d𝑦,

from which we obtain the expression for the symbol of an operator associated with the kernel 𝐾𝜌𝑠
(𝑥, 𝑦)

𝜌𝑠(𝑥, 𝑝) =
∫︁

R𝑁

e−i𝑀1/2𝑦·𝑝𝐾𝜌𝑠

(︁
𝑥 +

𝑦

2
, 𝑥− 𝑦

2

)︁
d𝑦. (2.14)

Using the substitution 𝑥′ = 𝑥 + 𝑦
2 , and 𝑦′ = 𝑥− 𝑦

2 , i.e.,

𝑦 = 𝑥′ − 𝑦′ and 𝑥 =
𝑥′ + 𝑦′

2
,

and letting
𝜔′𝑡 = 𝑥 +

𝑦

2
− 𝜔𝑡

where
d𝜔𝑡 = 𝑀−1/2 d𝑊𝑡, 𝜔0 = 0, (2.15)

imply by combining (2.14), (2.13) and the transformed path (2.15)

𝜌𝑠(𝑥, 𝑝) =
∫︁

R𝑁

e−𝑀1/2i𝑦·𝑝E
[︁
e−
∫︀ 𝛽
0 𝑉 (𝑥+ 𝑦

2−𝜔𝑟) d𝑟𝛿(𝑦 − 𝜔𝛽) |𝜔0 = 0
]︁

d𝑦

= E
[︁
e−i𝑀1/2𝜔𝛽 ·𝑝e−

∫︀ 𝛽
0 𝑉 (𝑥+ 1

2 𝜔𝛽−𝜔𝑟) d𝑟 |𝜔0 = 0
]︁
.
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We have obtained the path integral representation of the symbol corresponding to the Gibbs density operator
e−𝛽 ̂︀𝐻 in the case of the scalar potential 𝑉

𝜌𝑠(𝑥, 𝑝) = E
[︁
e−i𝑊𝛽 ·𝑝e−

∫︀ 𝛽
0 𝑉 (𝑥+𝑀−1/2( 1

2 𝑊𝛽−𝑊𝑟)) d𝑟
]︁
, (2.16)

as derived in [20].

We can proceed along similar lines in the case of the matrix-valued potential 𝑉 studied here. The Feynman–
Kac formula has been derived for operator-valued potentials 𝑉 , see [21], and in the case where the potential
𝑉 (𝑥) is a general matrix, the exponential

e−
∫︀ 𝛽
0 𝑉 (𝑥+𝑀−1/2( 1

2 𝑊𝛽−𝑊𝑟)) d𝑟,

in (2.16) for the time evolution, is replaced by the corresponding matrix-valued process Υ+
𝛽 ∈ R𝑑×𝑑 which solves

Υ̇+
𝑡 = −Υ+

𝑡 𝑉
(︁
𝑥 + 𝑀−1/2

(︀
1
2𝑊𝛽 −𝑊𝑡

)︀)︁
⏟  ⏞  

=:𝑉 +
𝑡

, 𝑡 ∈ (0, 𝛽) and Υ+
0 = I. (2.17)

We will use the notation 𝑊 𝛽
𝑡 := 1

2𝑊𝛽 −𝑊𝑡. The steps in the derivation of (2.16) then imply that the symbol
in the case of a matrix-valued potential can again be expressed by

𝜌(𝑥, 𝑝) = E
[︁
e−i𝑊𝛽 ·𝑝 Υ+

𝛽 (𝑊 ) |𝑊0 = 0
]︁
.

To estimate 𝜌− e−𝛽𝐻 we use the symmetry property that the Weyl symbol, 𝜌, for the Gibbs density operator̂︀𝜌 = e−𝛽 ̂︀𝐻 is a Hermitian matrix. Indeed, we have e−𝛽 ̂︀𝐻 represented as an 𝐿2-integral operator with the kernel
𝐾𝜌 and since ̂︀𝐻 = − 1

2𝑀
∆⊗ I + 𝑉 (𝑥)

is real and Hermitian also e−𝛽 ̂︀𝐻 =
∑︀∞

𝑛=0(−𝛽 ̂︀𝐻)𝑛/𝑛! is real and Hermitian. Therefore the Weyl symbol corre-
sponding to the Gibbs density operator ̂︀𝜌 satisfies

𝜌(𝑥, 𝑝) =
∫︁

R𝑁

e−i𝑀1/2𝑦·𝑝𝐾𝜌

(︁
𝑥 +

𝑦

2
, 𝑥− 𝑦

2

)︁
d𝑦 =

∫︁
R𝑁

e−i𝑀1/2𝑦·𝑝𝐾𝜌

(︁
𝑥− 𝑦

2
, 𝑥 +

𝑦

2

)︁
d𝑦. (2.18)

Either of these integral representations show that 𝜌 is Hermitian. The same steps as above leading to (2.16) can
by (2.18) be applied to the change of variables 𝑥′ = 𝑥− 𝑦/2 and 𝑦′ = 𝑥 + 𝑦/2, which implies that we also have

𝜌(𝑥, 𝑝) = E
[︁
e−i𝑊𝛽 ·𝑝 Υ−𝛽 (𝑊 ) |𝑊0 = 0

]︁
,

where
Υ̇−𝑡 = −Υ−𝑡 𝑉

(︁
𝑥−𝑀−1/2

(︀
1
2𝑊𝛽 −𝑊𝑡

)︀)︁
⏟  ⏞  

=:𝑉 −𝑡

, 𝑡 ∈ (0, 𝛽) and Υ−0 = I. (2.19)

Therefore we have the symmetrized representation

𝜌(𝑥, 𝑝) =
1
2

E
[︁
e−i𝑊𝛽 ·𝑝

(︁
Υ+

𝛽 (𝑊 ) + Υ−𝛽 (𝑊 )
)︁
|𝑊0 = 0

]︁
. (2.20)

Using the path-integral representation of the symbol 𝜌(𝑥, 𝑝) we prove in Section 4.2.



2210 X. HUANG ET AL.

Lemma 2.3. Assume that the bounds in Theorem 2.1 hold. Then

lim
𝑀→∞

𝑀
(︀
𝜌(𝑥, 𝑝)− e−𝛽𝐻(𝑥, 𝑝)

)︀
= e−𝛽|𝑝|2/2

(︃∫︁ 𝛽

0

(︂
𝛽

2
− 𝑡

)︂2

e−𝑡𝑉 (𝑥)𝑝𝑇 𝑉 ′′(𝑥)𝑝 e−(𝛽−𝑡)𝑉 (𝑥) d𝑡

+
∫︁ 𝛽

0

∫︁ 𝑡

0

(︂
𝛽

2
− 𝑠

)︂(︂
𝛽

2
− 𝑡

)︂
e−𝑠𝑉 (𝑥)𝑉 ′(𝑥)𝑝𝑒−(𝑡−𝑠)𝑉 (𝑥)𝑉 ′(𝑥)𝑝e−(𝛽−𝑡)𝑉 (𝑥) d𝑠 d𝑡

)︃
, (2.21)

and

‖Tr 𝜌2‖𝐿∞(R2𝑁 ) = 𝒪(1),

‖Tr 𝜌2‖𝐿2(R2𝑁 ) < ∞.
(2.22)

3. Proof of Theorem 2.1

The section proves Theorem 2.1 based on three steps:

Step 1. Use Duhamel’s principle recursively to analyse the dynamics based on 𝐻,
Step 2. Use estimates of remainders for Weyl compositions and the Weyl Gibbs density to analyse the statistics

at 𝑡 = 0,
Step 3. Repeat Step 1 and Step 2 with 𝐻 replaced by 𝐻̄ := Ψ*#𝐻#Ψ to approximately diagonalize 𝐻.

Proof of the theorem. Step 1. Lemma 3.2 shows that the commutator has the representation

i𝑀1/2
[︁ ̂︀𝐻,̂︀𝑎𝑠

]︁
= ({𝐻, 𝑎𝑠}+ 𝑟𝑎

𝑠 )̂︀, (3.1)

where the remainder 𝑟𝑎 vanishes as 𝑀 →∞. By Duhamel’s principle we have by (2.6) and (2.7) as in (2.10)

Tr
(︁ ̂︀𝐴𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻 − ̂︀𝑎𝑡
̂︀𝐵0e−𝛽 ̂︀𝐻

)︁
=
∫︁ 𝑡

0

Tr
(︁

ei𝑀1/2(𝑡−𝑠) ̂︀𝐻
(︁

i𝑀1/2
[︁ ̂︀𝐻,̂︀𝑎𝑠

]︁
− {ℎ, 𝑎𝑠}̂︀

)︁
e−i𝑀1/2(𝑡−𝑠) ̂︀𝐻 ̂︀𝐵0e−𝛽 ̂︀𝐻

)︁
d𝑠

=
∫︁ 𝑡

0

Tr

⎛⎜⎜⎝ei𝑀1/2(𝑡−𝑠) ̂︀𝐻
(︁
{𝐻, 𝑎𝑠}̂︀+ 𝑟𝑎 − {ℎ, 𝑎𝑠}̂︀

)︁
⏟  ⏞  

=:̂︂𝐷𝑎𝑠

e−i𝑀1/2(𝑡−𝑠) ̂︀𝐻 ̂︀𝐵0e−𝛽 ̂︀𝐻

⎞⎟⎟⎠d𝑠

(3.2)

and the cyclic invariance of the trace together with [ei𝑀1/2(𝑡−𝑠) ̂︀𝐻 , e−𝛽 ̂︀𝐻 ] = 0 imply

Tr
(︁ ̂︀𝐴𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻 − ̂︀𝑎𝑡
̂︀𝐵0e−𝛽 ̂︀𝐻

)︁
=
∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠e−i𝑀1/2(𝑡−𝑠) ̂︀𝐻 ̂︀𝐵0ei𝑀1/2(𝑡−𝑠) ̂︀𝐻e−𝛽 ̂︀𝐻

)︁
d𝑠

=
∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

̂︀𝐵𝑠−𝑡e−𝛽 ̂︀𝐻
)︁

d𝑠.

(3.3)

The right hand side can again be estimated by applying Duhamel’s principle (3.3), now to ̂︀𝐵𝑠−𝑡 and 𝑏𝑠−𝑡, as
follows ∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

̂︀𝐵𝑠−𝑡e−𝛽 ̂︀𝐻
)︁

d𝑠−
∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻
)︁

d𝑠⏟  ⏞  
=:𝑇0
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=
∫︁ 𝑡

0

∫︁ 𝑠−𝑡

0

Tr
(︁

e−𝛽 ̂︀𝐻 ̂︂𝐷𝑎𝑠ei𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻 ̂︂𝐷𝑏𝜏 e−i𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻
)︁

d𝜏 d𝑠 =: 𝑇3. (3.4)

We have by Cauchy’s inequality and the cyclic invariance of the trace

|𝑇3| ≤
∫︁ 𝑡

0

∫︁ 𝑡−𝑠

0

(︁
Tr
(︁(︁̂︂𝐷𝑎𝑠

)︁*̂︂𝐷𝑎𝑠e−𝛽 ̂︀𝐻
)︁
× Tr

(︁(︁
ei𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻 ̂︂𝐷𝑏𝜏 e−𝛽 ̂︀𝐻/2e−i𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻

)︁*
×
(︁

ei𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻 ̂︂𝐷𝑏𝜏 e−𝛽 ̂︀𝐻/2e−i𝑀1/2(𝑠−𝑡−𝜏) ̂︀𝐻
)︁)︁)︁1/2

d𝜏 d𝑠

=
∫︁ 𝑡

0

∫︁ 𝑡−𝑠

0

(︁
Tr
(︁(︁̂︂𝐷𝑎𝑠

)︁*̂︂𝐷𝑎𝑠e−𝛽 ̂︀𝐻
)︁

Tr
(︁(︁̂︂𝐷𝑏𝜏

)︁*̂︂𝐷𝑏𝜏 e−𝛽 ̂︀𝐻
)︁)︁1/2

d𝜏 d𝑠. (3.5)

The following two lemmas, proved in Section 4, estimate the remainder terms 𝑇0 and 𝑇3.

Lemma 3.1 (Mean-field approximation). Assume that the bounds in Theorem 2.1 hold, then

|𝑇0|
Tr (e−𝛽 ̂︀𝐻)

= 𝒪
(︀
𝑡𝜖21 + 𝑡𝑀−1

)︀
. (3.6)

Lemma 3.2 (Composition analysis). Assume that the bounds in Theorem 2.1 hold and that 𝑐 and 𝑑 are in the
Schwartz space 𝒮, then

𝑐#𝑑 = 𝑐𝑑 + r𝑐𝑑,

lim
𝑀→∞

𝑀1/2r𝑐𝑑 =
i
2

(∇𝑧 · ∇′𝑧′)𝑐(𝑧)𝑑(𝑧′)
⃒⃒
𝑧=𝑧′

,

and if 𝑐 and 𝑑 are scalar valued

1
2

(𝑐#𝑑 + 𝑑#𝑐) = 𝑐𝑑 + 𝑟𝑐𝑑,

lim
𝑀→∞

𝑀𝑟𝑐𝑑 =
1
8

(∇𝑧 · ∇′𝑧′)2𝑐(𝑧)𝑑(𝑧′)
⃒⃒
𝑧=𝑧′

,

and if 𝑐 is scalar valued

i𝑀1/2(𝐻#𝑐− 𝑐#𝐻) = {𝐻, 𝑐}+ 𝑟𝑐,

𝑟𝑐 =
1

8𝑀

∫︁ 1

0

cos
(︁ 𝑠

2𝑀1/2
∇𝑧 · ∇′𝑧′

)︁
(∇𝑧 · ∇′𝑧′)

3
𝐻(𝑧)𝑐(𝑧′)

⃒⃒
𝑧=𝑧′

(1− 𝑠)2 d𝑠,

lim
𝑀→∞

𝑀𝑟𝑐 =
1
24

(∇𝑧 · ∇′𝑧′)
3
𝐻(𝑧)𝑐(𝑧′)

⃒⃒
𝑧=𝑧′

,

where the limits hold in 𝐿1(R2𝑁 ) and 𝐿∞(R2𝑁 ). Furthermore the function 𝑎𝑡 : R2𝑁 → C, defined in (2.5), is
in the Schwartz class and there holds

|𝑇3|

Tr
(︁

e−𝛽 ̂︀𝐻
)︁ = 𝒪

(︀
𝑡2
(︀
𝜖22 + 𝑀−1

)︀)︀
.

The combination of (3.2)–(3.5), Lemmas 3.1 and 3.2 imply⃒⃒⃒
Tr
(︁ ̂︀𝐴𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻 − ̂︀𝑎𝑡
̂︀𝐵0e−𝛽 ̂︀𝐻

)︁⃒⃒⃒
Tr
(︁

e−𝛽 ̂︀𝐻
)︁ = 𝒪

(︀
𝑡𝑀−1 + 𝑡𝜖21 + 𝑡2𝜖22

)︀
. (3.7)
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Similarly the symmetrized difference has the same bound

Tr
(︁(︁ ̂︀𝐴𝑡

̂︀𝐵0 + ̂︀𝐵0
̂︀𝐴𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
− Tr

(︁
(̂︀𝑎𝑡
̂︀𝐵0 + ̂︀𝐵0̂︀𝑎𝑡)e−𝛽 ̂︀𝐻

)︁
= Tr

(︁(︁ ̂︀𝐴𝑡
̂︀𝑏0 +̂︀𝑏0

̂︀𝐴𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
− Tr

(︁(︁̂︀𝑎𝑡
̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
= 𝒪

(︀
𝑡𝑀−1 + 𝑡𝜖21 + 𝑡2𝜖22

)︀
Tr
(︁

e−𝛽 ̂︀𝐻
)︁
, (3.8)

obtained by interchanging the role of ̂︀𝐴 and ̂︀𝐵 in (3.7).
Step 2. Here we estimate the second term in the left hand side of (3.8), which can be split into

Tr
(︁(︁̂︀𝑎𝑡

̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
= Tr

(︁(︁̂︀𝑎𝑡
̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

)︁
ê−𝛽𝐻

)︁
+ Tr

(︁(︁̂︀𝑎𝑡
̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

)︁(︁
e−𝛽 ̂︀𝐻 − ê−𝛽𝐻

)︁)︁
. (3.9)

The first term in the right hand side in (3.9) has by Lemma 2.2 the classical molecular dynamics approximation

Tr

(︃̂︀𝑎𝑡
̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

2
ê−𝛽𝐻

)︃
=

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︂

(𝑎𝑡#𝑏0 + 𝑏0#𝑎𝑡)(𝑥, 𝑝)
2

e−𝛽𝐻(𝑥,𝑝)

)︂
d𝑥 d𝑝

=

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︁
𝑎0(𝑧𝑡(𝑧0))𝑏0(𝑧0)e−𝛽𝐻(𝑧0)

)︁
+ Tr

(︁
𝑟𝑎𝑏(𝑧0)e−𝛽𝐻(𝑧0)

)︁
d𝑧0,

(3.10)

where by Lemma 3.2

lim
𝑀→∞

𝑀

∫︁
R2𝑁

Tr
(︁
𝑟𝑎𝑏(𝑧0)e−𝛽𝐻(𝑧0)

)︁
d𝑧0 =

1
16

∫︁
R2𝑁

Tr
(︁

e−𝛽𝐻(𝑧0)
)︁(︁
∇𝑧0 · ∇′𝑧′0

)︁2

(𝑎0(𝑧𝑡(𝑧0))𝑏0(𝑧′0))
⃒⃒
𝑧0=𝑧′0

d𝑧0.

(3.11)
It remains to estimate the second term in the right hand side of (3.9). We have

Tr

(︃̂︀𝑎𝑡
̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

2

(︁
ê−𝛽𝐻 − ̂︀𝜌)︁)︃ =

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︂

𝑎𝑡#𝑏0 + 𝑏0#𝑎𝑡

2
(︀
e−𝛽𝐻 − 𝜌

)︀)︂
d𝑧

and Lemmas 2.3 and 3.2 imply

lim
𝑀→∞

(︂
𝑀

∫︁
R2𝑁

Tr
(︂

𝑎𝑡#𝑏0 + 𝑏0#𝑎𝑡

2
(︀
e−𝛽𝐻 − 𝜌

)︀)︂
d𝑧

)︂
=
∫︁

R2𝑁

Tr

(︃
2−1(𝑎𝑡𝑏0 + 𝑏0𝑎𝑡)(𝑥, 𝑝)e−𝛽|𝑝|2/2

∫︁ 𝛽

0

(︂
𝛽

2
− 𝑟

)︂2

e−𝑟𝑉 (𝑥)𝑝𝑇 𝑉 ′′(𝑥)𝑝e−(𝛽−𝑟)𝑉 (𝑥) d𝑟

)︃
d𝑥 d𝑝

+
∫︁

R2𝑁

Tr
(︂

2−1(𝑎𝑡𝑏0 + 𝑏0𝑎𝑡)(𝑥, 𝑝)e−𝛽|𝑝|2/2

×
∫︁ 𝛽

0

∫︁ 𝑟

0

(︂
𝛽

2
− 𝑠

)︂(︂
𝛽

2
− 𝑟

)︂
e−𝑠𝑉 (𝑥)𝑉 ′(𝑥)𝑝𝑒−(𝑟−𝑠)𝑉 (𝑥)𝑉 ′(𝑥)𝑝e−(𝛽−𝑟)𝑉 (𝑥) d𝑠 d𝑟

)︃
d𝑥 d𝑝

=
𝛽3

24

∫︁
R2𝑁

(𝑎𝑡𝑏0 + 𝑏0𝑎𝑡)(𝑥, 𝑝)e−𝛽|𝑝|2/2Tr
(︁
𝑝𝑇 𝑉 ′′(𝑥)𝑝e−𝛽𝑉 (𝑥)

)︁
d𝑥 d𝑝 +𝒪(1)

= 𝒪(1),

(3.12)

where the second last equality follows by interchanging the order of the trace and the integration with respect
to 𝛽 and using the cyclic invariance of the trace. The first equality is obtained by splitting the integral as∫︁

R2𝑁

. . . =
∫︁

L𝑐
𝑚

. . . +
∫︁

L𝑚

. . .
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over a compact set L𝑐
𝑚 := {𝑧 ∈ R2𝑁 : ℎ(𝑧) ≤ 𝑚} and its complement L𝑚 := {𝑧 ∈ R2𝑁 : ℎ(𝑧) > 𝑚} and

using that 𝜌 is uniformly bounded in 𝐿∞(R2𝑁 ): the second integral is zero for 𝑚 sufficiently large, as verified
in (3.14) below, and in the compact set we apply dominated convergence.

Verification of
∫︀

L𝑚
|𝑎𝑡(𝑧0)|d𝑧0 = 0. The integration with respect to the initial data measure d𝑧0 can be

replaced by integration with respect to d𝑧𝑡 since the phase space volume is preserved, i.e., the Jacobian deter-
minant ⃒⃒⃒⃒

det
(︂

𝜕𝑧0

𝜕𝑧𝑡

)︂⃒⃒⃒⃒
= 1

is constant for all time by Liouville’s theorem. We first verify that

ℎ(𝑧) →∞ as |𝑧| → ∞. (3.13)

By assumption
∫︀

R𝑁 Tr e−𝛽𝑉 (𝑥) d𝑥 < ∞. Therefore the smallest eigenvalue 𝜆0(𝑥) of 𝑉 (𝑥) also satisfies∫︀
R𝑁 e−𝛽𝜆0(𝑥) d𝑥 < ∞ and as ℎ(𝑥, 𝑝) ≥ |𝑝|2/2 + 𝜆0(𝑥) we have

∫︀
R2𝑁 e−𝛽ℎ(𝑥,𝑝) d𝑥 d𝑝 < ∞, which combined

with the assumption ‖∇𝑥ℎ(𝑥, 𝑝)‖𝐿∞(R2𝑁 ) ≤ 𝐶 establishes (3.13). By using the two properties ℎ(𝑧𝑡(𝑧0)) = ℎ(𝑧0)
and ℎ(𝑧) →∞ as |𝑧| → ∞ together with the compact support of 𝑎0 we obtain∫︁

L𝑚

|𝑎0(𝑧𝑡(𝑥0, 𝑝0))|d𝑧0 =
∫︁

L𝑚

|𝑎0(𝑧𝑡(𝑥0, 𝑝0))|
⃒⃒⃒⃒
det
(︂

𝜕𝑧0

𝜕𝑧𝑡

)︂⃒⃒⃒⃒
d𝑧𝑡

=
∫︁

L𝑚

|𝑎0(𝑧)|d𝑧 = 0 as 𝑚 →∞.

(3.14)

In conclusion we have

1
2

Tr
(︁(︁̂︀𝑎𝑡

̂︀𝑏0 +̂︀𝑏0̂︀𝑎𝑡

)︁
e−𝛽 ̂︀𝐻

)︁
=

(︃√
𝑀

2𝜋

)︃𝑁(︂∫︁
R2𝑁

Tr
(︀
𝑎0(𝑧𝑡(𝑧0))𝑏0(𝑧0)e−𝛽𝐻(𝑧0)

)︀
+𝒪

(︀
𝑀−1

)︀)︂
,

which combined with (3.8) proves the theorem for Ψ = I.

Step 3. To improve the error estimate 𝜖22 we study the transformed Hamiltonian operator

̂︀𝐻 := Ψ* ̂︀𝐻Ψ

where Ψ : R𝑁 → C𝑑×𝑑 and Ψ(𝑥) is any twice differentiable orthogonal matrix with the Hermitian transpose
Ψ*(𝑥). This Step 3 has the three substeps:

Step 3.1. Study the dynamics under 𝐻̄.
Step 3.2. Analyse 𝐻̄ = Ψ*#𝐻#Ψ.
Step 3.3. Modify Steps 1 and 2.

Step 3.1. Let 𝛼 be any complex number and define for 𝑡 ∈ R the exponential

̂̄︀𝑦𝑡 := Ψ*e𝑡𝛼𝐻̂Ψ.

Differentiation shows that
𝜕𝑡 ̂̄︀𝑦𝑡 = 𝛼Ψ*𝐻̂ΨΨ*e𝑡𝛼𝐻̂Ψ = 𝛼Ψ*𝐻̂Ψ ̂̄︀𝑦𝑡

and consequently ̂̄︀𝑦𝑡 = e𝑡𝛼Ψ*𝐻̂Ψ = e𝑡𝛼̂︀𝐻 .

Therefore the transformed variable
̂̄𝐴(𝑡, 𝑧) := Ψ* ̂︀𝐴𝑡Ψ, 𝑡 ∈ R, (3.15)
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evolves with the dynamics ̂︀𝐻
̂̄︁𝐴𝑡 = Ψ* ̂︀𝐴𝑡Ψ

= Ψ*ei𝑡𝑀1/2 ̂︀𝐻̂︁𝐴0e−i𝑡𝑀1/2 ̂︀𝐻Ψ̂

= ei𝑡𝑀1/2 ̂︀𝐻 ̂̄︁𝐴0e−i𝑡𝑀1/2 ̂︀𝐻 .

and the cyclic property of the trace implies that the quantum observable satisfies

Tr
(︁̂︁𝐴𝑡

̂︁𝐵0e−𝛽 ̂︀𝐻
)︁

= Tr

(︃
ΨΨ*⏟ ⏞ 

=I

̂︁𝐴𝑡
̂︁𝐵0e−𝛽 ̂︀𝐻

)︃
= Tr

(︁
Ψ*̂︁𝐴𝑡ΨΨ*̂︁𝐵0ΨΨ*e−𝛽 ̂︀𝐻Ψ

)︁
= Tr

(︁̂̄︁𝐴𝑡
̂̄︁𝐵0e−𝛽 ̂︀𝐻

)︁
, (3.16)

where the initial symbols are given by

𝐴0 = Ψ*#𝑎0#Ψ,

𝐵̄0 = Ψ*#𝑏0#Ψ.

Step 3.2. We have

𝐻̄(𝑥, 𝑝) = Ψ*#𝐻#Ψ(𝑥, 𝑝) = Ψ*(𝑥)𝐻(𝑥, 𝑝)Ψ(𝑥) +
1

4𝑀
∇Ψ*(𝑥) · ∇Ψ(𝑥), (3.17)

as derived in [2] from the composition in (2.12):

Ψ*#𝐻#Ψ(𝑥, 𝑝) = Ψ*(𝑥)#
(︂

𝐻(𝑥, 𝑝)Ψ(𝑥) +
i𝑀−1/2

2
𝑝 · ∇Ψ(𝑥)− 𝑀−1

4
∆Ψ(𝑥)

)︂
= Ψ*(𝑥)𝐻(𝑥, 𝑝)Ψ(𝑥) +

i𝑀−1/2

2
𝑝 · ∇Ψ*(𝑥)Ψ(𝑥)− 𝑀−1

4
∆Ψ*(𝑥)Ψ(𝑥)

+
i

2𝑀1/2
Ψ*(𝑥)𝑝 · ∇Ψ(𝑥)− 1

4𝑀
∇Ψ*(𝑥) · ∇Ψ(𝑥)− 1

4𝑀
Ψ*(𝑥)∆Ψ(𝑥)

where by the orthogonality Ψ*Ψ = I

Ψ*#𝐻#Ψ(𝑥, 𝑝) = Ψ*(𝑥)𝐻(𝑥, 𝑝)Ψ(𝑥) +
i

2𝑀1/2
𝑝 · ∇(Ψ*(𝑥)Ψ(𝑥))

− 1
4𝑀

(∆(Ψ*(𝑥)Ψ(𝑥))−∇Ψ*(𝑥) · ∇Ψ(𝑥))

= Ψ*(𝑥)𝐻(𝑥, 𝑝)Ψ(𝑥) +
1

4𝑀
∇Ψ*(𝑥) · ∇Ψ(𝑥).

Let Ψ(𝑥) be the orthogonal matrix composed of the eigenvectors to 𝑉 (𝑥), then the matrix

Ψ*(𝑥)𝐻(𝑥, 𝑝)Ψ(𝑥) =
|𝑝|2

2
I + Λ(𝑥)

is diagonal, with the eigenvectors 𝜆𝑖(𝑥) of 𝑉 (𝑥) forming the diagonal 𝑑× 𝑑 matrix Λ(𝑥). The non diagonal
part 1

4𝑀∇Ψ*(𝑥) · ∇Ψ(𝑥) of 𝐻̄(𝑥, 𝑝) is small if Ψ(𝑥) is differentiable everywhere. If the eigenvectors to 𝑉 are
not differentiable in a point 𝑥*, we may use a regularized version of Ψ in a neighbourhood of 𝑥* to form an
approximate diagonalization of 𝐻.

Step 3.3. The derivation in Step 1 can now be repeated with 𝐻 replaced by 𝐻̄ and 𝐴, 𝐵 by 𝐴, 𝐵̄. Duhamel’s
principle (2.10) implies

̂̄︁𝐴𝑡 − ̂︀𝑎𝑡 −
(︁̂̄︁𝐴0 − ̂︀𝑎0

)︁
=
∫︁ 𝑡

0

ei𝑀1/2(𝑡−𝑠)̂︀𝐻
(︁

i𝑀1/2
[︁ ̂︀𝐻,̂︀𝑎𝑠

]︁
− {ℎ, 𝑎𝑠}̂︀

)︁
e−i𝑀1/2(𝑡−𝑠)̂︀𝐻 d𝑠,
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and we obtain by (3.16) as in (3.7)

Tr
(︁ ̂︀𝐴𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻 − ̂︀𝑎𝑡
̂︀𝐵0e−𝛽 ̂︀𝐻

)︁
= Tr

(︁̂︀𝐴𝑡
̂︀𝐵0e−𝛽 ̂︀𝐻 − ̂︀𝑎𝑡

̂︀𝐵0e−𝛽 ̂︀𝐻
)︁

= 𝑇0 + 𝑇3 + Tr
(︁(︁̂̄︁𝐴0 − ̂︀𝑎0

)︁̂︀𝐵0e−𝛽 ̂︀𝐻
)︁

+
∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

(︁̂̄︁𝐵0 − ̂︀𝑏0

)︁
e−𝛽 ̂︀𝐻

)︁
d𝑠,

where 𝐻 is replaced by 𝐻̄ in ̂︁𝐷𝑎, ̂︁𝐷𝑏, 𝑇0 and 𝑇3, so that

𝑇0 =
∫︁ 𝑡

0

Tr

⎛⎜⎝ ̂︂𝐷𝑎𝑠⏟ ⏞ 
=:{𝐻̄−ℎ,𝑎𝑠}̂︀+𝑟𝑎

̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻

⎞⎟⎠ d𝑠,

𝑇3 =
∫︁ 𝑡

0

∫︁ 𝑠−𝑡

0

Tr
(︁

e−𝛽 ̂︀𝐻 ̂︂𝐷𝑎𝑠ei𝑀1/2(𝑠−𝑡−𝜏)̂︀𝐻 ̂︂𝐷𝑏𝜏 e−i𝑀1/2(𝑠−𝑡−𝜏)̂︀𝐻
)︁

d𝜏 d𝑠.

The two terms 𝑇0 and 𝑇3 have the bounds in Lemmas 3.1 and 3.2 with 𝐻 replaced by 𝐻̄. It remains to show
that the initial errors satisfy

Tr
(︁(︁̂̄︁𝐴0 − ̂︀𝑎0

)︁̂︀𝐵0e−𝛽 ̂︀𝐻
)︁

Tr (e−𝛽 ̂︀𝐻)
+

∫︀ 𝑡

0
Tr
(︁̂︂𝐷𝑎𝑠

(︁̂̄︁𝐵0 − ̂︀𝑏0

)︁
e−𝛽 ̂︀𝐻

)︁
d𝑠

Tr (e−𝛽 ̂︀𝐻)
= 𝒪

(︀
𝑀−1

)︀
. (3.18)

To prove (3.18) let ̂︀𝜌 = e−𝛽 ̂︀𝐻 , then by the composition (2.12) and Lemma 2.2 we obtain

Tr
(︁(︁̂̄︁𝐴0 − ̂︀𝑎0

)︁̂︀𝐵0e−𝛽 ̂︀𝐻
)︁

= Tr
(︁(︀(︀

𝐴0 − 𝑎0

)︀
#𝐵̄0

)︀̂︀̂︀𝜌)︁
=

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︀(︀(︀

𝐴0 − 𝑎0

)︀
#𝐵̄0

)︀
𝜌
)︀

d𝑥 d𝑝.

To estimate the initial error 𝐴0 − 𝑎0 we use Lemma 3.2

𝑎0#Ψ(𝑥, 𝑝) = 𝑎0(𝑥, 𝑝)Ψ(𝑥) +
i

2
√

𝑀
∇𝑝𝑎0(𝑥, 𝑝) · ∇𝑥Ψ(𝑥)

− 1
4𝑀

∫︁ 1

0

e−
i𝑠
2 𝑀−1/2∇𝑥·∇𝑝(∇𝑥 · ∇𝑝)2𝑎0(𝑥′, 𝑝)Ψ(𝑥)(1− 𝑠) d𝑠

⃒⃒
𝑥′=𝑥

,

which by the composition (2.12) implies

𝐴0(𝑥, 𝑝) = Ψ*#𝑎0#Ψ(𝑥, 𝑝)

= Ψ*(𝑥)(𝑎0#Ψ)(𝑥, 𝑝) +
i

2
√

𝑀
∇𝑥Ψ*(𝑥) · ∇𝑝(𝑎0#Ψ)(𝑥, 𝑝)

− 1
4𝑀

∫︁ 1

0

e−
i𝑠
2 𝑀−1/2∇𝑥·∇𝑝(∇𝑥 · ∇𝑝)2Ψ*(𝑥)(𝑎0#Ψ)(𝑥′, 𝑝)(1− 𝑠) d𝑠

⃒⃒
𝑥′=𝑥

= 𝑎0(𝑥, 𝑝) Ψ*(𝑥)Ψ(𝑥)⏟  ⏞  
=I

+
i

2
√

𝑀
∇𝑝𝑎0(𝑥, 𝑝) · ∇𝑥(Ψ*(𝑥)Ψ(𝑥))⏟  ⏞  

=0

− 1
4𝑀

Ψ*(𝑥)
∫︁ 1

0

e−
i𝑠
2 𝑀−1/2∇𝑥·∇𝑝(∇𝑥 · ∇𝑝)2(𝑎0(𝑥′, 𝑝)Ψ(𝑥))(1− 𝑠) d𝑠

⃒⃒
𝑥′=𝑥

− 1
4𝑀

(∇𝑥′ · ∇𝑝)(∇𝑥 · ∇𝑝)(Ψ*(𝑥′)𝑎0(𝑥′′, 𝑝)Ψ(𝑥))
⃒⃒
𝑥′′=𝑥′=𝑥
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+
i

8𝑀3/2

∫︁ 1

0

e−
i𝑠
2 𝑀−1/2∇𝑥·∇𝑝(∇𝑥 · ∇𝑝)2Ψ*(𝑥)(𝑎0(𝑥′, 𝑝)Ψ(𝑥))(1− 𝑠) d𝑠

⃒⃒
𝑥′=𝑥

− 1
4𝑀

∫︁ 1

0

e−
i𝑠
2 𝑀−1/2∇𝑥·∇𝑝(∇𝑥 · ∇𝑝)2Ψ*(𝑥)(𝑎0#Ψ)(𝑥′, 𝑝)(1− 𝑠) d𝑠

⃒⃒
𝑥′=𝑥

.

Here the orthogonality Ψ*Ψ = I implies ∇(Ψ*Ψ) = 0. We obtain as in (3.11) the limit

lim
𝑀→∞

𝑀

∫︁
R2𝑁

Tr
(︀(︀

𝐴0 − 𝑎0

)︀
𝐵̄0𝜌

)︀
d𝑥 d𝑝

= −
∫︁

R2𝑁

Tr
(︂[︂

1
8

Ψ*(𝑥)(∇𝑥 · ∇𝑝)2𝑎0(𝑥′, 𝑝)Ψ(𝑥)
⃒⃒
𝑥′=𝑥

+
1
4

(∇𝑥′ · ∇𝑝)(∇𝑥 · ∇𝑝)Ψ*(𝑥′)𝑎0(𝑥′′, 𝑝)Ψ(𝑥)
⃒⃒
𝑥′′=𝑥′=𝑥

+
1
8

(∇𝑥 · ∇𝑝)2Ψ*(𝑥)𝑎0(𝑥′, 𝑝)Ψ(𝑥′)
⃒⃒
𝑥′=𝑥

]︂
𝑏0(𝑥, 𝑝)e−𝛽Ψ*(𝑥)𝐻(𝑥,𝑝)Ψ(𝑥)

)︂
d𝑥 d𝑝

and similarly

∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

(︁̂̄︁𝐵0 − ̂︀𝑏0

)︁
e−𝛽 ̂︀𝐻

)︁
d𝑠 =

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︀(︀

𝐷𝑎𝑠#
(︀
𝐵̄0 − 𝑏0

)︀)︀
𝜌
)︀

d𝑥 d𝑝

where

lim
𝑀→∞

(︂
𝑀

∫︁
R2𝑁

Tr
(︀(︀

𝐷𝑎𝑠#(𝐵̄0 − 𝑏0)
)︀
𝜌
)︀

d𝑥 d𝑝

)︂
= −

∫︁
R2𝑁

Tr
(︂{︀

𝐻̄(𝑥, 𝑝)− ℎ(𝑥, 𝑝), 𝑎𝑠(𝑥, 𝑝)
}︀[︂1

8
Ψ*(𝑥)(∇𝑥 · ∇𝑝)2𝑏0(𝑥′, 𝑝)Ψ(𝑥)

⃒⃒
𝑥′=𝑥

+
1
4

(∇𝑥′ · ∇𝑝)(∇𝑥 · ∇𝑝)Ψ*(𝑥′)𝑏0(𝑥′′, 𝑝)Ψ(𝑥)
⃒⃒
𝑥′′=𝑥′=𝑥

+
1
8

(∇𝑥 · ∇𝑝)2Ψ*(𝑥)𝑏0(𝑥′, 𝑝)Ψ(𝑥′)
⃒⃒
𝑥′=𝑥

]︂
e−𝛽Ψ*(𝑥)𝐻(𝑥,𝑝)Ψ(𝑥)

)︂
d𝑥 d𝑝.

which proves (3.18). �

4. Proof of Lemmas

This section estimates the remainder terms 𝑇0 and 𝑇3 and the statistical error 𝜌 − e−𝛽𝐻 . The error term
𝑇3 in Lemma 3.2 is due to remainders from classical approximation while 𝑇0 in Lemma 3.1 is the main term
regarding the mean-field approximation. The statistical error is estimated in Lemma 2.3.

4.1. Proof of Lemma 3.1

Proof. We consider first the case Ψ = I, i.e., 𝐻̄ = 𝐻. We have∫︁ 𝑡

0

Tr
(︁̂︂𝐷𝑎𝑠

̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻
)︁

d𝑠 =
∫︁ 𝑡

0

Tr
(︁(︁
{𝐻, 𝑎𝑠}̂︀+ 𝑟𝑎

𝑠 − {ℎ, 𝑎𝑠}̂︀
)︁̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻

)︁
d𝑠

=
∫︁ 𝑡

0

Tr
(︁
{𝐻 − ℎ, 𝑎𝑠}̂︀̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻

)︁
d𝑠 +

∫︁ 𝑡

0

Tr
(︁
𝑟𝑎
𝑠
̂︀𝑏𝑠−𝑡e−𝛽 ̂︀𝐻

)︁
d𝑠
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=
(︂

𝑀1/2

2𝜋

)︂𝑁 ∫︁ 𝑡

0

∫︁
R2𝑁

Tr (({𝐻 − ℎ, 𝑎𝑠}#𝑏𝑠−𝑡)𝜌) d𝑧 d𝑠 (4.1)

+
(︂

𝑀1/2

2𝜋

)︂𝑁 ∫︁ 𝑡

0

∫︁
R2𝑁

Tr ((𝑟𝑎
𝑠 #𝑏𝑠−𝑡)𝜌) d𝑧 d𝑠

where the trace in the integrals over phase space R2𝑁 is with respect to 𝑑× 𝑑 matrices. The inner integral in
the second term of the right hand side in (4.1) has by Lemmas 2.3 and 3.2 the limit

lim
𝑀→∞

(︂
𝑀

∫︁
R2𝑁

Tr ((𝑟𝑎
𝑠 #𝑏𝑠−𝑡)𝜌)

)︂
d𝑧

=
1
24

∫︁
R2𝑁

Tr
(︁(︀
∇𝑧′0

· ∇′𝑧0

)︀3(𝐻(𝑧0)𝑎0(𝑧𝑠(𝑧′0)))
⃒⃒
𝑧0=𝑧′0

𝑏0(𝑧𝑠−𝑡(𝑧0))e−𝛽𝐻(𝑧0)
)︁

d𝑧0,

(4.2)

using splitting of the phase space integral as in (3.12). Similarly we have by Lemmas 2.3 and 3.2 the limit

lim
𝑀→∞

∫︁
R2𝑁

Tr (({𝐻 − ℎ, 𝑎𝑠}#𝑏𝑠−𝑡)𝜌) d𝑧 =
∫︁

R2𝑁

Tr
(︀
{𝐻 − ℎ, 𝑎𝑠}𝑏𝑠−𝑡e−𝛽𝐻

)︀
d𝑧,

and integration by parts together with the mean-field definition (1.6) simplify the first term in the right hand
side of (4.1) to∫︁

R2𝑁

Tr
(︀
{𝐻 − ℎ, 𝑎𝑠}𝑏𝑠−𝑡e−𝛽𝐻

)︀
d𝑧

=
∫︁

R2𝑁

Tr
(︀
∇′(𝐻 − ℎ) · ∇𝑎𝑠 𝑏𝑠−𝑡e−𝛽𝐻

)︀
d𝑧

= −
∫︁

R2𝑁

Tr
(︀
(𝐻 − ℎ)e−𝛽𝐻

)︀⏟  ⏞  
=0

∇′ · (𝑏𝑠−𝑡∇𝑎𝑠) d𝑧

+
∫︁

R2𝑁

Tr

(︃
(𝐻 − ℎ)

∫︁ 𝛽

0

e−𝜏𝐻∇𝑎𝑠 · ∇′(𝐻 − ℎ)e−(𝛽−𝜏)𝐻𝑏𝑠−𝑡 d𝜏

)︃
d𝑧

+
∫︁

R2𝑁

Tr
(︀
(𝐻 − ℎ)e−𝛽𝐻

)︀⏟  ⏞  
=0

∇𝑎𝑠 · ∇′ℎ 𝛽𝑏𝑠−𝑡 d𝑧

=
1
2

∫︁
R2𝑁

Tr

(︃∫︁ 𝛽

0

e−𝜏𝐻((𝐻 − ℎ)∇𝑎𝑠 · ∇′(𝐻 − ℎ)

+ (∇𝑎𝑠 · ∇′(𝐻 − ℎ)(𝐻 − ℎ)))e−(𝛽−𝜏)𝐻𝑏𝑠−𝑡 d𝜏
)︁

d𝑧

=
𝛽

2

∫︁
R2𝑁

Tr
(︀
∇′(𝐻 − ℎ)2 · ∇𝑎𝑠𝑒

−𝛽𝐻𝑏𝑠−𝑡

)︀
d𝑧

= −𝛽

2

∫︁
R2𝑁

Tr
(︀
(𝐻 − ℎ)2∇𝑎𝑠 · ∇′

(︀
e−𝛽𝐻𝑏𝑠−𝑡

)︀)︀
d𝑧

− 𝛽

2

∫︁
R2𝑁

Tr

⎛⎝(𝐻 − ℎ)2∇′ · ∇(𝑎𝑠)⏟  ⏞  
=0

(︀
e−𝛽𝐻𝑏𝑠−𝑡

)︀⎞⎠d𝑧

= −𝛽

2

∫︁
R2𝑁

Tr

(︃
(𝐻 − ℎ)2∇𝑎𝑠 ·

(︃
∇′𝑏𝑠−𝑡e−𝛽𝐻 − 𝑏𝑠−𝑡

∫︁ 𝛽

0

e−𝜏𝐻∇′𝐻e−(𝛽−𝜏)𝐻 d𝜏

)︃)︃
d𝑧

= −𝛽

2

∫︁
R2𝑁

Tr
(︀
e−𝛽𝐻(𝐻 − ℎ)2∇𝑎𝑠 · (∇′𝑏𝑠−𝑡 − 𝛽𝑏𝑠−𝑡∇′𝐻)

)︀
d𝑧. (4.3)
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The third equality uses that (𝐻 − ℎ) commutes with e−𝛽𝐻 and the forth and the last equality is obtained by
interchanging the order of the trace and the integral with respect to 𝜏 in combination with the cyclic invariance
of the trace. Cauchy’s inequality, the positive definiteness of e−𝛽𝐻(𝐻 − ℎ)2 and 𝐻 − ℎ depending only on 𝑥
imply that the right hand side has the bound⃒⃒⃒⃒

𝛽

2

∫︁
R2𝑁

Tr
(︀
e−𝛽𝐻(𝐻 − ℎ)2∇𝑎𝑠 · (∇′𝑏𝑠−𝑡 − 𝛽𝑏𝑠−𝑡∇′𝐻)

)︀
d𝑧

⃒⃒⃒⃒
≤ 𝛽

2

∫︁
R2𝑁

(︁
Tr
(︁(︀

e−𝛽𝐻(𝐻 − ℎ)2
)︀2)︁

Tr
(︁

(∇𝑎𝑠 · (∇′𝑏𝑠−𝑡 − 𝛽𝑏𝑠−𝑡∇′𝐻))2
)︁)︁1/2

d𝑧

≤ 𝛽

2

∫︁
R2𝑁

Tr
(︀
e−𝛽𝑉 (𝐻 − ℎ)2

)︀
e−𝛽|𝑝|2/2

(︁
Tr
(︁

(∇𝑎𝑠 · (∇′𝑏𝑠−𝑡 − 𝛽𝑏𝑠−𝑡∇′𝐻))2
)︁)︁1/2

d𝑧

≤ 𝐾

∫︁
R𝑁

Tr
(︀
e−𝛽𝑉 (𝐻 − ℎ)2

)︀
d𝑥

(4.4)

for a positive constant 𝐾. The combination of (4.2)-(4.4) implies (3.6) and we note that the exponential form
e−𝛽𝐻 of the Gibbs density was crucial to obtain (4.3).

In the case that Ψ ̸= I we have by (3.17) 𝐻̄ = Ψ*𝐻Ψ + 1
4𝑀∇Ψ* · ∇Ψ and the factor Tr ((𝐻 − ℎ)e−𝛽𝐻) = 0

in (4.3) is replaced by Tr ((𝐻̄ − ℎ)e−𝛽𝐻̄) where

lim
𝑀→∞

(︁
𝑀Tr

(︁(︀
𝐻̄ − ℎ

)︀
e−𝛽𝐻̄

)︁)︁
= Tr

(︁
∇Ψ* · ∇Ψe−𝛽Ψ*𝐻Ψ

)︁
.

which as in (4.3) and (4.4) imply

|𝑇0| ≤ 𝒪
(︀
𝑡𝑀−1 + 𝑡𝜖21

)︀
.

�

4.2. Proof of Lemma 2.3

Proof. To estimate the difference of the symbols for the Gibbs density, 𝜌−e−𝛽𝐻 , we define the solution operator

𝑌𝑡(𝑥) = −𝑌𝑡(𝑥)𝑉 (𝑥), 𝑌0 = I

satisfying 𝑌𝑡 = e−𝑡𝑉 , which implies e−𝛽𝐻(𝑥,𝑝) = e−𝛽(|𝑝|2/2+𝑉 (𝑥)) = e−𝛽|𝑝|2/2 𝑌𝛽(𝑥). We have by Duhamel’s
principle

Υ±𝛽 − 𝑌𝛽 =
∫︁ 𝛽

0

Υ±𝑡 (𝑉 − 𝑉 ±
𝑡 )e−(𝛽−𝑡)𝑉 d𝑡, (4.5)

which by dominated convergence implies

lim
𝑀→∞

𝑀1/2
(︀
Υ±𝑡 − 𝑌𝑡

)︀
= lim

𝑀→∞
𝑀1/2

∫︁ 𝑡

0

Υ±𝑠
(︀
𝑉 − 𝑉 ±

𝑠

)︀
e−(𝑡−𝑠)𝑉 d𝑠

= ∓
∫︁ 𝑡

0

𝑒−𝑠𝑉 (𝑥)𝑉 ′(𝑥)𝑊 𝛽
𝑠 e−(𝑡−𝑠)𝑉 (𝑥) d𝑠.

(4.6)

The symmetrized relation (2.20) yields

𝜌− e−𝛽𝐻 =
1
2

E
[︁
e−i𝑊𝛽 ·𝑝

(︁(︁
Υ+

𝛽 − 𝑌𝛽

)︁
+
(︁

Υ−𝛽 − 𝑌𝛽

)︁)︁]︁
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which by (4.5), (4.6) and dominated convergence establish

lim
𝑀→∞

(︁
𝑀
(︁
𝜌(𝑥, 𝑝)− e−𝛽𝐻(𝑥,𝑝)

)︁)︁
=

1
2

E

[︃
e−i𝑊𝛽 ·𝑝

∫︁ 𝛽

0

lim
𝑀→∞

(︀
Υ+

𝑡 𝑀
(︀
𝑉 − 𝑉 +

𝑡

)︀
+ Υ−𝑡 𝑀

(︀
𝑉 − 𝑉 −

𝑡

)︀)︀
e−(𝛽−𝑡)𝑉 d𝑡

]︃

= E

[︃
e−i𝑊𝛽 ·𝑝

(︃
1
2

∫︁ 𝛽

0

lim
𝑀→∞

(︁(︀
Υ+

𝑡 −Υ−𝑡
)︀
𝑀1/2

)︁
𝑉 ′(𝑥)𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑡

+
1
4

∫︁ 𝛽

0

lim
𝑀→∞

(︂
Υ+

𝑡 (𝑊 𝛽
𝑡 )𝑇

∫︁ 1

0

𝑉 ′′
(︁
𝑥 + 𝑠𝑀−1/2𝑊 𝛽

𝑡

)︁
d𝑠𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑡

+
1
4

∫︁ 𝛽

0

lim
𝑀→∞

(︂
Υ−𝑡 (𝑊 𝛽

𝑡 )𝑇

∫︁ 1

0

𝑉 ′′
(︁
𝑥− 𝑠𝑀−1/2𝑊 𝛽

𝑡

)︁
d𝑠𝑊 𝛽

𝑡

)︂
e−(𝛽−𝑡)𝑉 d𝑡

)︃)︃]︃

= E

[︃
e−i𝑊𝛽 ·𝑝

∫︁ 𝛽

0

∫︁ 𝑡

0

e−𝑠𝑉 𝑉 ′(𝑥)𝑊 𝛽
𝑠 e−(𝑡−𝑠)𝑉 𝑉 ′(𝑥)𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑠 d𝑡

]︃

+
1
2

E

[︃
e−i𝑊𝛽 ·𝑝

∫︁ 𝛽

0

e−𝑡𝑉 (𝑊 𝛽
𝑡 )𝑇 𝑉 ′′(𝑥)𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑡

]︃
.

(4.7)

To determine the path integrals in the right hand side of (4.7) we make a partition of [0, 𝛽] into time intervals
[𝑡𝑗 , 𝑡𝑗+1), where 𝑡𝑗 = 𝑗𝛽/𝐽 for 𝑗 = 0, . . . , 𝐽 and corresponding Wiener increments ∆𝑊𝑗 = 𝑊 (𝑡𝑗+1)−𝑊 (𝑡𝑗) and
time steps ∆𝑡 := 𝛽/𝐽 , to obtain

𝑊 𝛽
𝑡𝑘
≡ 1

2
𝑊𝛽 −𝑊𝑡𝑘

=
𝐽−1∑︁
𝑗=0

1
2

∆𝑊𝑗 −
∑︁
𝑗<𝑘

∆𝑊𝑗 =
𝐽−1∑︁
𝑗=0

𝑆𝑗,𝑘∆𝑊𝑗

where

𝑆𝑗,𝑘 :=
{︂

1
2 if 𝑗 ≥ 𝑘,
− 1

2 if 𝑗 < 𝑘.

This partition implies

− E

[︃
e−i𝑊𝛽 ·𝑝

∫︁ 𝛽

0

e−𝑡𝑉 (𝑊 𝛽
𝑡 )𝑇 𝑉 ′′(𝑥)𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑡

]︃

= − lim
𝐽→∞

E

⎡⎢⎢⎣e−i
∑︀𝐽−1

𝑚=0 Δ𝑊𝑚·𝑝
𝐽−1∑︁
𝑘=0

𝐽−1∑︁
𝑗=0

𝐽−1∑︁
ℓ=0

𝑆𝑗,𝑘𝑆ℓ,𝑘∆𝑊𝑇
𝑗

(︁
e−𝑘Δ𝑡𝑉 𝑉 ′′e−(𝐽−𝑘)Δ𝑡𝑉

)︁
⏟  ⏞  

=:𝑉 ′′𝑘

∆𝑊ℓ∆𝑡

⎤⎥⎥⎦
= − lim

𝐽→∞

𝐽−1∑︁
𝑘=0

𝐽−1∑︁
𝑗=0

𝐽−1∑︁
ℓ=0

∆𝑡𝑆𝑗,𝑘𝑆ℓ,𝑘 ×
∫︁

R𝑁𝐽

e−i
∑︀𝐽−1

𝑚=0 Δ𝑊𝑚·𝑝∆𝑊𝑇
𝑗 𝑉 ′′

𝑘 ∆𝑊ℓ

𝐽−1∏︁
𝑛=0

e−|Δ𝑊𝑛|2/(2Δ𝑡)

(2𝜋∆𝑡)𝑁/2
d(∆𝑊𝑛)

= lim
𝐽→∞

e−𝐽|𝑝|2Δ𝑡/2
𝐽−1∑︁
𝑘=0

(︂
𝐽

2
− 𝑘

)︂2

∆𝑡2𝑝𝑇 𝑉 ′′
𝑘 𝑝 ∆𝑡

= e−𝛽|𝑝|2/2

∫︁ 𝛽

0

(︂
𝛽

2
− 𝑡

)︂2

e−𝑡𝑉 (𝑥)𝑝𝑇 𝑉 ′′(𝑥)𝑝 e−(𝛽−𝑡)𝑉 (𝑥) d𝑡 = 𝒪(1).

(4.8)
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Similarly we have

− E

[︃
e−i𝑊𝛽 ·𝑝

∫︁ 𝛽

0

∫︁ 𝑡

0

e−𝑠𝑉 𝑉 ′(𝑥)𝑊 𝛽
𝑠 e−(𝑡−𝑠)𝑉 𝑉 ′(𝑥)𝑊 𝛽

𝑡 e−(𝛽−𝑡)𝑉 d𝑠 d𝑡

]︃

= − lim
𝐽→∞

𝐽−1∑︁
𝑘=0

𝐽−1∑︁
𝑟=0

𝐽−1∑︁
𝑗=0

𝐽−1∑︁
ℓ=0

𝑆𝑗,𝑟𝑆ℓ,𝑘(∆𝑡)2e−i
∑︀𝐽−1

𝑚=0 Δ𝑊𝑚·𝑝

× e−𝑟Δ𝑡𝑉 𝑉 ′∆𝑊𝑗e(𝑘−𝑟)Δ𝑡𝑉 𝑉 ′∆𝑊ℓe−(𝐽−𝑘)Δ𝑡𝑉
𝐽−1∏︁
𝑛=0

e−|Δ𝑊𝑛|2/(2Δ𝑡)

(2𝜋∆𝑡)𝑁/2
d(∆𝑊𝑛)

= lim
𝐽→∞

𝐽−1∑︁
𝑘=0

𝐽−1∑︁
𝑟=0

(∆𝑡)4
(︂

𝐽

2
− 𝑟

)︂(︂
𝐽

2
− 𝑘

)︂
e−𝐽Δ𝑡|𝑝|2/2e−𝑟Δ𝑡𝑉 𝑉 ′𝑝𝑒−(𝑘−𝑟)Δ𝑡𝑉 𝑉 ′𝑝e−(𝐽−𝑘)Δ𝑡𝑉

= e−𝛽|𝑝|2/2

∫︁ 𝛽

0

∫︁ 𝑡

0

(︂
𝛽

2
− 𝑠

)︂(︂
𝛽

2
− 𝑡

)︂
e−𝑠𝑉 (𝑥)𝑉 ′(𝑥)𝑝𝑒−(𝑡−𝑠)𝑉 (𝑥)𝑉 ′(𝑥)𝑝e−(𝛽−𝑡)𝑉 (𝑥) d𝑠 d𝑡

so that (𝜌− e−𝛽𝐻) = 𝒪
(︀
𝑀−1

)︀
.

The construction (2.17) implies

d
d𝑡

Tr
(︁(︀

Υ+
𝑡

)︀2)︁
= Tr

(︁
Υ+

𝑡

(︁
−2𝑉

(︁
𝑥 + 𝑀−1/2𝑊 𝛽

𝑡

)︁)︁
Υ+

𝑡

)︁
and by assumption there is a constant 𝑘 such that 𝑉 + 𝑘I is positive definite everywhere. Therefore we have

d
d𝑡

Tr
(︁(︀

Υ+
𝑡

)︀2)︁ ≤ 𝑘Tr
(︁(︀

Υ+
𝑡

)︀2)︁
which establishes Tr ((Υ+

𝛽 )2) ≤ e𝑘𝛽 and shows that for independent Wiener processes 𝑊 and 𝑊 ′ we obtain by
Cauchy’s inequality

Tr 𝜌2 = Tr
(︁
E
[︁
e−i𝑊𝛽 ·𝑝Υ+

𝛽 (𝑊 )
]︁*

E
[︁
e−i𝑊 ′

𝛽 ·𝑝Υ+
𝛽 (𝑊 ′)

]︁)︁
= E

[︁
ei(𝑊𝛽−𝑊 ′

𝛽)·𝑝Tr
(︁

Υ+
𝛽 (𝑊 )Υ+

𝛽 (𝑊 ′)
)︁]︁

≤ E

[︃(︂
Tr
(︂(︁

Υ+
𝛽 (𝑊 )

)︁2
)︂

Tr
(︁

(Υ+
𝛽 (𝑊 ′))2

)︁)︂1/2
]︃

≤ E
[︂
Tr
(︂(︁

Υ+
𝛽 (𝑊 )

)︁2
)︂]︂

≤ e𝑘𝛽 .

We also observe that the generalized Weyl’s law implies that 𝜌 is in 𝐿2(R2𝑁 , C𝑑×𝑑), namely

(︂
𝑀1/2

2𝜋

)︂𝑁 ∫︁
R2𝑁

Tr
(︀
𝜌2(𝑧)

)︀
d𝑧 = Tr (̂︀𝜌̂︀𝜌) = Tr

(︁
e−𝛽 ̂︀𝐻e−𝛽 ̂︀𝐻

)︁
= Tr

(︁
e−2𝛽 ̂︀𝐻

)︁
< ∞,

which proves (2.22). �
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4.3. Proof Lemma 3.2

Proof. To estimate remainder terms we will use the composition operator for Weyl symbols defined by ̂︂𝑐#𝑑 = ̂︀𝑐̂︀𝑑.
The composition operator has the representation

𝑐#𝑑 = e
i

2𝑀1/2 (∇𝑥′ ·∇𝑝−∇𝑥·∇𝑝′)𝑐(𝑥, 𝑝)𝑑(𝑥′, 𝑝′)
⃒⃒
(𝑥,𝑝)=(𝑥′,𝑝′)

= e
i

2𝑀1/2 (∇𝑥′′ ·∇𝑝′−∇𝑥′ ·∇𝑝′′) 𝑐(𝑥 + 𝑥′, 𝑝 + 𝑝′)𝑑(𝑥 + 𝑥′′, 𝑝 + 𝑝′′)⏟  ⏞  
=:𝑓𝑥𝑝(𝑥′,𝑝′,𝑥′′,𝑝′′)

⃒⃒
(𝑥′,𝑝′)=(𝑥′′,𝑝′′)=0

(4.9)

which can be written as an expansion using the Fourier transform ℱ , defined for 𝑓 : R4𝑁 → R by

ℱ{𝑓}(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′) :=
∫︁

R4𝑁

𝑓(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)e−i(𝑥′·𝜉𝑥′+𝑝′·𝜉𝑝′+𝑥′′·𝜉𝑥′′+𝑝′′·𝜉𝑝′′) d𝑥′ d𝑝′ d𝑥′′ d𝑝′′. (4.10)

Its inverse transform implies

e−
i

2𝑀1/2 (∇𝑥′′ ·∇𝑝′−∇𝑥′ ·∇𝑝′′)𝑓(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
⃒⃒⃒
(𝑥′,𝑝′)=(𝑥′′,𝑝′′)=0

=
(︂

1
2𝜋

)︂4𝑁 ∫︁
R4𝑁

ℱ𝑓(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′)e
i
2 𝑀−1/2(𝜉𝑥′′ ·𝜉𝑝′−𝜉𝑥′ ·𝜉𝑝′′) d𝜉𝑥′ d𝜉𝑝′ d𝜉𝑥′′ d𝜉𝑝′′

and Taylor expansion of the exponential function yields

e−
i

2𝑀1/2 (∇𝑥′′ ·∇𝑝′−∇𝑥′ ·∇𝑝′′ )𝑓𝑥𝑝(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
⃒⃒⃒
(𝑥′,𝑝′)=(𝑥′′,𝑝′′)=0

=
(︂

1
2𝜋

)︂4𝑁 ∫︁
R4𝑁

ℱ𝑓𝑥𝑝(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′)e
i
2 𝑀−1/2(𝜉𝑥′′ ·𝜉𝑝′−𝜉𝑥′ ·𝜉𝑝′′ ) d𝜉𝑥′ d𝜉𝑝′ d𝜉𝑥′′ d𝜉𝑝′′

=
(︂

1
2𝜋

)︂4𝑁 ∫︁
R2𝑁

ℱ𝑓𝑥𝑝(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′)
(︁ 𝑚∑︁

𝑛=0

(︂
i(𝜉𝑥′′ · 𝜉𝑝′ − 𝜉𝑥′ · 𝜉𝑝′′)

2𝑀1/2

)︂𝑛 1
𝑛!

+
(︂

i(𝜉𝑥′′ · 𝜉𝑝′ − 𝜉𝑥′ · 𝜉𝑝′′)
2𝑀1/2

)︂𝑚+1

× 1
𝑚!

∫︁ 1

0

(1− 𝑠)𝑚e
i𝑠
2 𝑀−1/2(𝜉𝑥′′ ·𝜉𝑝′−𝜉𝑥′ ·𝜉𝑝′′) d𝑠

)︁
d𝜉𝑥′ d𝜉𝑝′ d𝜉𝑥′′ d𝜉𝑝′′

=
𝑚∑︁

𝑛=0

1
𝑛!

(︂
− i(∇𝑥′′ · ∇𝑝′ −∇𝑥′ · ∇𝑝′′)

2𝑀1/2

)︂𝑛

𝑓𝑥𝑝(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
⃒⃒⃒
(𝑥,′𝑝′)=(𝑥′′,𝑝′′)=0

+
(︂

1
2𝑀1/2

)︂𝑚+1 ∫︁ 1

0

e−
i𝑠
2 𝑀−1/2(∇𝑥′′ ·∇𝑝′−∇𝑥′ ·∇𝑝′′ )(−i(∇𝑥′′ · ∇𝑝′ −∇𝑥′ · ∇𝑝′′))

𝑚+1

× 𝑓𝑥𝑝(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
(1− 𝑠)𝑚

𝑚!
d𝑠
⃒⃒⃒
(𝑥,′𝑝′)=(𝑥′′,𝑝′′)=0

. (4.11)

The pointwise limit of the remainder term can be estimated by dominated convergence

lim
𝑀→∞

∫︁ 1

0

e−
i𝑠
2 𝑀−1/2(∇𝑥′′ ·∇𝑝′−∇𝑥′ ·∇𝑝′′)(−i(∇𝑥′′ · ∇𝑝′ −∇𝑥′ · ∇𝑝′′))

𝑚+1

× 𝑓𝑥𝑝(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
(1− 𝑠)𝑚

𝑚!
d𝑠
⃒⃒⃒
(𝑥,′𝑝′)=(𝑥′′,𝑝′′)=0

= (−i(∇𝑥′′ · ∇𝑝′ −∇𝑥′ · ∇𝑝′′))
𝑚+1

𝑓𝑥𝑝(𝑥′, 𝑝′, 𝑥′′, 𝑝′′)
1

(𝑚 + 1)!

⃒⃒⃒
(𝑥,′𝑝′)=(𝑥′′,𝑝′′)=0

provided
∫︀

R4𝑁 |(𝜉𝑥′′ · 𝜉𝑝′ − 𝜉𝑥′ · 𝜉𝑝′′)𝑚+1ℱ𝑓𝑥𝑝(𝜉)|d𝜉 < ∞. In addition we need convergence in 𝐿1(R2𝑁 ), as a
function of 𝑧 = (𝑥, 𝑝), to apply dominated convergence in the phase-space integrals. We have

ℱ𝑓𝑥𝑝(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′) = ℱ𝑐(𝜉𝑥′ , 𝜉𝑝′)ei(𝑥·𝜉𝑥′+𝑝·𝜉𝑝′ )ℱ𝑑(𝜉𝑥′′ , 𝜉𝑝′′)ei(𝑥·𝜉𝑥′′+𝑝·𝜉𝑝′′ )
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so that ∫︁
R4𝑁

ℱ𝑓𝑥𝑝(𝜉𝑥′ , 𝜉𝑝′ , 𝜉𝑥′′ , 𝜉𝑝′′)e
i𝑠
2 𝑀−1/2(𝜉𝑥′′ ·𝜉𝑝′−𝜉𝑥′ ·𝜉𝑝′′) d𝜉𝑥′ d𝜉𝑝′ d𝜉𝑥′′ d𝜉𝑝′′

=
∫︁

R4𝑁

(︁
1−∆𝜉𝑥′ −∆𝜉𝑝′

)︁𝑘(︁
1−∆𝜉𝑥′′ −∆𝜉𝑝′′

)︁𝑘

(ℱ𝑐(𝜉𝑥′ , 𝜉𝑝′)ℱ𝑑(𝜉𝑥′′ , 𝜉𝑝′′)

× e
i𝑠
2 𝑀−1/2(𝜉𝑥′′ ·𝜉𝑝′−𝜉𝑥′ ·𝜉𝑝′′)

)︁
× ei(𝑥·𝜉𝑥′′+𝑝·𝜉𝑝′′)

(1 + |𝑥′′|2 + |𝑝′′|2)𝑘

ei(𝑥·𝜉𝑥′+𝑝·𝜉𝑝′)

(1 + |𝑥′|2 + |𝑝′|2)𝑘
d𝜉𝑥′ d𝜉𝑝′ d𝜉𝑥′′ d𝜉𝑝′′ .

Therefore we obtain remainder terms that are uniformly bounded in 𝐿1(R2𝑁 ) provided the Fourier transform
(i𝜉)𝛼ℱ𝑐(𝜉) of 𝜕𝛼

𝑧 𝑐(𝑧) satisfies ∫︁
R2𝑁

⃒⃒⃒
(1−∆𝜉)𝑁+1(𝜉𝛼ℱ𝑐(𝜉))

⃒⃒⃒
d𝜉 < ∞ (4.12)

and similarly for 𝑑 ∫︁
R2𝑁

⃒⃒⃒
(1−∆𝜉)𝑁+1(𝜉𝛼ℱ𝑑(𝜉))

⃒⃒⃒
d𝜉 < ∞.

We will apply the composition expansion to functions in the Schwartz class so that (4.12) holds.
We conclude that Schwartz functions 𝑐 and 𝑑 satisfy

lim
𝑀→∞

(︂
𝑀

(︂
𝑐#𝑑 + 𝑑#𝑐

2
− 𝑐𝑑

)︂)︂
= lim

𝑀→∞

(︂
−1

4

∫︁ 1

0

cos
(︁ 𝑠

2𝑀1/2
∇𝑧 · ∇′𝑧′

)︁
(∇𝑧 · ∇′𝑧′)

2
𝑐(𝑧)𝑑(𝑧′)

⃒⃒
𝑧=𝑧′

(1− 𝑠) d𝑠

)︂
= −1

8
(∇𝑧 · ∇′𝑧′)

2
𝑐(𝑧)𝑑(𝑧′)

⃒⃒
𝑧=𝑧′

, (4.13)

and

lim
𝑀→∞

(𝑐#𝑑) = lim
𝑀→∞

(︂
𝑐𝑑− i

2𝑀1/2

∫︁ 1

0

e
i𝑠

2𝑀1/2∇𝑧·∇′𝑧′ (∇𝑧 · ∇′𝑧′)𝑐(𝑧)𝑑(𝑧′)
⃒⃒
𝑧=𝑧′

d𝑠

)︂
= 𝑐𝑑, (4.14)

as limits in 𝐿1(R2𝑁 ) and in 𝐿∞(R2𝑁 ). We also have

̂︂𝐷𝑎𝑠 = i𝑀1/2
[︁ ̂︀𝐻, ̂︀𝑎𝑠

]︁
− {ℎ, 𝑎𝑠}̂︀= {𝐻 − ℎ, 𝑎𝑠}̂︀ + 𝑟𝑎

𝑠

where

𝑟𝑎
𝑠 =

1
8𝑀

∫︁ 1

0

cos
(︁ 𝑠

2𝑀1/2
∇𝑧 · ∇′𝑧′

)︁
(∇𝑧 · ∇′𝑧′)

3
𝐻(𝑧)𝑎𝑠(𝑧′)

⃒⃒
𝑧=𝑧′

(1− 𝑠)2 d𝑠 (4.15)

so that
lim

𝑀→∞
𝑀𝑟𝑎

𝑠 =
1
24

(︁
∇𝑧0 · ∇′𝑧′0

)︁3

𝐻(𝑧0)𝑎0(𝑧𝑠(𝑧′0))
⃒⃒
𝑧0=𝑧′0

and the Poisson bracket takes the form

{𝐻 − ℎ, 𝑎𝑠} = ∇′𝑧′0 · ∇𝑧0(𝐻 − ℎ)(𝑧′0)𝑎0(𝑧𝑠(𝑧0))
⃒⃒
𝑧0=𝑧′0

=
(︀
∇𝑝′0

· ∇𝑥0 −∇𝑥′0
· ∇𝑝0

)︀
(𝐻 − ℎ)(𝑥′0, 𝑝

′
0)𝑎0(𝑧𝑠(𝑥0, 𝑝0))

⃒⃒
(𝑥0,𝑝0)=(𝑥′0,𝑝′0)

.

Based on this remainder estimate there holds

Tr
(︂(︁̂︂𝐷𝑎𝑠

)︁2̂︀𝜌)︂ =

(︃√
𝑀

2𝜋

)︃𝑁 ∫︁
R2𝑁

Tr
(︁(︁

i𝑀1/2(𝐻#𝑎𝑠 − 𝑎𝑠#𝐻)− {ℎ, 𝑎𝑠}
)︁

#
(︁

i𝑀1/2(𝐻#𝑎𝑠 − 𝑎𝑠#𝐻)− {ℎ, 𝑎𝑠}
)︁

𝜌
)︁

d𝑧
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and in the limit we obtain by (4.14), (4.15) and Lemma 2.3

lim
𝑀→∞

∫︁
R2𝑁

Tr
(︁(︁

i𝑀1/2(𝐻#𝑎𝑠 − 𝑎𝑠#𝐻)− {ℎ, 𝑎𝑠}
)︁

#
(︁

i𝑀1/2(𝐻#𝑎𝑠 − 𝑎𝑠#𝐻)− {ℎ, 𝑎𝑠}
)︁

𝜌
)︁

d𝑧

=
∫︁

R2𝑁

Tr
(︁
∇𝑧0𝑎

(︀
𝑧𝑠(𝑧0) · ∇′𝑧0

(𝐻 − ℎ)
)︀2e−𝛽𝐻(𝑧0)

)︁
d𝑧0,

using splitting of the phase space integral as in (3.12), which together with (4.13)–(4.15) and Lemma 4.1 below
proves the lemma. �

Lemma 4.1. Assume that the bounds in Theorem 2.1 hold, then 𝑎𝑡 and 𝑏𝑡 are in the Schwartz class and there
is a constant 𝐶 ′, depending in 𝐶, such that∑︁

|𝛼|≤3

‖𝜕𝛼
𝑧 𝑎𝑡(𝑧)‖𝐿∞(R2𝑁 ) +

∑︁
|𝛼|≤3

‖𝜕𝛼
𝑧 𝑏𝑡(𝑧)‖𝐿∞(R2𝑁 ) ≤ 𝐶 ′. (4.16)

Proof. To estimate
∑︀
|𝛼|≤3 ‖𝜕𝛼

𝑝0
𝑎0(𝑧𝑡(𝑧0))‖𝐿∞(R2𝑁 ) we use the first order flow ∇𝑧0𝑧𝑡(𝑧0) =: 𝑧′(𝑡), second order

flow 𝑧′′,𝑘𝑚(𝑡) = 𝜕𝑧𝑘(0)𝑧𝑚(0)𝑧(𝑡) and third order flow 𝑧′′′(𝑡), which are solutions to the system

𝑧̇𝑖(𝑡) =
(︀
∇′𝑧𝑡

ℎ(𝑧𝑡)
)︀
𝑖

=: 𝑓𝑖(𝑧𝑡),

𝑧′𝑖,𝑘(𝑡) = I𝑖𝑘 +
∫︁ 𝑡

0

∑︁
𝑘′

𝑓 ′𝑖,𝑘′(𝑧𝑠)𝑧′𝑘′,𝑘(𝑠) d𝑠, 𝑓 ′𝑖,𝑘′(𝑧) := 𝜕𝑧𝑘′ 𝑓𝑖(𝑧),

𝑧′′𝑖,𝑘𝑚(𝑡) =
∫︁ 𝑡

0

(︃∑︁
𝑘′

𝑓 ′𝑖,𝑘′(𝑧𝑠)𝑧′′𝑘′,𝑘𝑚(𝑠) +
∑︁
𝑘′𝑚′

𝑓 ′′𝑖,𝑘′𝑚′(𝑧𝑠)𝑧′𝑘′,𝑘(𝑠)𝑧′𝑚′,𝑚(𝑠)

)︃
d𝑠,

𝑓 ′′𝑖,𝑘′𝑚′(𝑧) := 𝜕𝑧𝑘′𝑧𝑚′ 𝑓𝑖(𝑧),

𝑧′′′𝑖,𝑘𝑚𝑛(𝑡) =
∫︁ 𝑡

0

(︃∑︁
𝑘′

𝑓 ′𝑖,𝑘′(𝑧𝑠)𝑧′′′𝑘′,𝑘𝑚𝑛(𝑠) +
∑︁
𝑘′𝑚′

𝑓 ′′𝑖,𝑘′𝑚′(𝑧𝑠)𝑧′𝑘′,𝑘(𝑠)𝑧′′𝑚′,𝑚𝑛(𝑠)

+
∑︁
𝑘′𝑚′

𝑓 ′′𝑖,𝑘′𝑚′(𝑧𝑠)𝑧′′𝑘′,𝑘𝑛(𝑠)𝑧′𝑚′,𝑚(𝑠) +
∑︁
𝑘′𝑛′

𝑓 ′′𝑖,𝑘′𝑛′(𝑧𝑠)𝑧′′𝑘′,𝑘𝑚(𝑠)𝑧′𝑛′,𝑛(𝑠)

+
∑︁

𝑘′𝑚′𝑛′

𝑓 ′′′𝑖,𝑘′𝑚′𝑛′(𝑧𝑠)𝑧′𝑘′,𝑘(𝑠)𝑧′𝑚′,𝑚(𝑠)𝑧′𝑛′,𝑛(𝑠)

)︃
d𝑠.

By summation and maximization over indices we obtain the integral inequalities

max
𝑖𝑘

⃒⃒
𝑧′𝑖,𝑘(𝑡)

⃒⃒
≤ 1 +

∫︁ 𝑡

0

∑︁
𝑘′

⃒⃒
𝑓 ′𝑖,𝑘′(𝑧𝑠)

⃒⃒
max

𝑖𝑘

⃒⃒
𝑧′𝑖,𝑘(𝑠)

⃒⃒
d𝑠,

max
𝑖𝑘

∑︁
𝑚

|𝑧′′𝑖,𝑘𝑚(𝑡)| ≤
∫︁ 𝑡

0

∑︁
𝑘′

⃒⃒
𝑓 ′𝑖,𝑘′(𝑧𝑠)

⃒⃒
max

𝑖𝑘

∑︁
𝑚

⃒⃒
𝑧′′𝑖,𝑘𝑚(𝑠)

⃒⃒
d𝑠 +

∫︁ 𝑡

0

∑︁
𝑘′𝑚′

⃒⃒
𝑓 ′′𝑖,𝑘′𝑚′(𝑧𝑠)

⃒⃒(︂
max

𝑖𝑘

⃒⃒
𝑧′𝑖,𝑘(𝑠)

⃒⃒)︂2

d𝑠,

max
𝑖𝑘

∑︁
𝑚𝑛

|𝑧′′′𝑖,𝑘𝑚𝑛(𝑡)| ≤
∫︁ 𝑡

0

∑︁
𝑘′

⃒⃒
𝑓 ′𝑖,𝑘′(𝑧𝑠)

⃒⃒
max

𝑖𝑘

∑︁
𝑚𝑛

⃒⃒
𝑧′′′𝑖,𝑘𝑚𝑛(𝑠)

⃒⃒
d𝑠

+
∫︁ 𝑡

0

∑︁
𝑘′𝑚′

⃒⃒
𝑓 ′′𝑖,𝑘′𝑚′(𝑧𝑠)

⃒⃒
max

𝑖𝑘

⃒⃒
𝑧′𝑖,𝑘(𝑠)

⃒⃒
max

𝑖𝑘

∑︁
𝑚

⃒⃒
𝑧′′𝑖,𝑘𝑚(𝑠)

⃒⃒
d𝑠
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+
∫︁ 𝑡

0

∑︁
𝑘′𝑚′𝑛′

⃒⃒
𝑓 ′′′𝑖,𝑘′𝑚′𝑛′(𝑧𝑠)

⃒⃒(︂
max

𝑖𝑘

⃒⃒
𝑧′𝑖,𝑘(𝑠)

⃒⃒)︂3

d𝑠. (4.17)

The functions max𝑖𝑗

∑︀
|𝛼|≤2 𝜕𝛼

𝑧0
𝜕𝑧𝑗 𝑧𝑖(𝑡, 𝑧0) can therefore be estimated as in [23] by Gronwall’s inequality, which

states: if there is a positive constant 𝐾 and continuous positive functions 𝛾, 𝑢 : [0,∞) → [0,∞) such that

𝑢(𝑡) ≤ 𝐾 +
∫︁ 𝑡

0

𝛾(𝑠)𝑢(𝑠) d𝑠, for 𝑡 > 0,

then
𝑢(𝑡) ≤ 𝐾e

∫︀ 𝑡
0 𝛾(𝑠) d𝑠, for 𝑡 > 0.

Gronwall’s inequality applied to (4.17) implies

max
𝑖𝑗

∑︁
|𝛼|≤2

⃦⃦
𝜕𝛼

𝑧0
𝜕𝑧𝑗 𝑧𝑖(𝑡, 𝑧0)

⃦⃦
𝐿∞(R2𝑁 )

= 𝒪(1) (4.18)

provided that

max
𝑖

∑︁
|𝛼|≤3

‖𝜕𝛼
𝑥 𝜕𝑥𝑖

ℎ‖𝐿∞(R𝑁 ) = 𝒪(1). (4.19)

The flows 𝑧′, 𝑧′′, 𝑧′′′ determine the derivatives of the scalar symbol 𝑎0(𝑧𝑡(𝑧0)) = 𝑎𝑡(𝑧0)

𝜕𝑧𝑘
𝑎𝑡 =

∑︁
𝑘′

𝑎′0,𝑘′(𝑧𝑡)𝑧′𝑘′,𝑘(𝑡), 𝑎′0,𝑘′(𝑧) := 𝜕𝑧𝑘′𝑎0(𝑧),

𝜕𝑧𝑘𝑧𝑚
𝑎𝑡 =

∑︁
𝑘′

𝑎′0,𝑘′(𝑧𝑡)𝑧′′𝑘′,𝑘𝑚(𝑡) +
∑︁
𝑘′𝑚′

𝑎′′0,𝑘′𝑚′(𝑧𝑡)𝑧′𝑘′,𝑘(𝑡)𝑧′𝑚′,𝑚(𝑡),

𝜕𝑧𝑘𝑧𝑚𝑧𝑛
𝑎𝑡 =

∑︁
𝑘′

𝑎′0,𝑘′(𝑧𝑡)𝑧′′′𝑘′,𝑘𝑚𝑛(𝑡) +
∑︁
𝑘′𝑚′

𝑎′′0,𝑘′𝑚′(𝑧𝑡)𝑧′𝑘′,𝑘(𝑡)𝑧′′𝑚′,𝑚𝑛(𝑡)

+
∑︁
𝑘′𝑚′

𝑎′′0,𝑘′𝑚′(𝑧𝑡)𝑧′′𝑘′,𝑘𝑛(𝑡)𝑧′𝑚′,𝑚(𝑡) +
∑︁
𝑘′𝑛′

𝑎′′0,𝑘′𝑛′(𝑧𝑡)𝑧′′𝑘′,𝑘𝑚(𝑡)𝑧′𝑛′,𝑛(𝑡)

+
∑︁

𝑘′𝑚′𝑛′

𝑎′′′0,𝑘′𝑚′𝑛′(𝑧𝑡)𝑧′𝑘′,𝑘(𝑡)𝑧′𝑚′,𝑚(𝑡)𝑧′𝑛′,𝑛(𝑡), (4.20)

which together with (4.18) proves (4.16).
Similarly to verify that 𝑎𝑡 is a Schwartz function, we first extend both (4.17) (for 𝜕𝛼

𝑧0
𝑧𝑡(𝑧0)) and the repre-

sentation in (4.20) to order |𝛼| to obtain the bounds

|𝜕𝛼
𝑧 𝑎𝑡(𝑧)| < ∞, (4.21)

for all indices 𝛼. Then define the compact set L𝑐
𝑚 = {𝑧 ∈ R2𝑁 : ℎ(𝑧) ≤ 𝑚}. The property ℎ(𝑧) → ∞ as

|𝑧| → ∞, which is verified below (3.13), implies that 𝐿𝑐
𝑚 includes the support of 𝑎0 for 𝑚 sufficiently large and

the invariance ℎ(𝑧𝑡(𝑧0)) = ℎ(𝑧0), for all 𝑧0 ∈ R2𝑁 , establishes by (4.21)

sup
𝑧∈R2𝑁

|𝑧𝛾𝜕𝛼
𝑧 𝑎𝑡(𝑧)| = sup

𝑧∈𝐿𝑐
𝑚

|𝑧𝛾𝜕𝛼
𝑧 𝑎0(𝑧𝑡(𝑧))| < ∞,

for all indices 𝛾 and 𝛼. We conclude that 𝑎𝑡 is a Schwartz function. �

The constant in the right hand side of (4.18) grows typically exponentially with respect to 𝑡, i.e.,

max
𝑖𝑗

∑︁
|𝛼|≤2

⃦⃦
𝜕𝛼

𝑧0
𝜕𝑧𝑗

𝑧𝑖(𝑡, 𝑧0)
⃦⃦

𝐿∞(R2𝑁 )
≤ e𝑐′𝑡,

where 𝑐′ is the positive constant in the right hand side of (4.19). We note that the assumptions on ℎ and 𝑉 are
compatible with the assumption to have

∫︀
R2𝑁 Tr e−𝛽𝐻(𝑧) d𝑧 bounded.
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5. Numerical experiments

In this section we define a model problem that allows us to systematically study approximation of canonical
quantum correlation observables. The model problem is constructed so that we can accurately approximate the
quantum dynamics, thereby avoiding the computational challenges to accurately approximate realistic quantum
systems with many particles and excited electron states, cf. [24]. Section 5.1 includes the approximations of
equilibrium density function of position observable 𝑥̂, applying the mean-field molecular dynamics and the
electron ground state molecular dynamics, respectively. In Section 5.2, we compare time-dependent correlation
observables obtained from molecular dynamics evolving on the ground state, on the mean-field energy surface,
and on a weighted average of all eigenstates (denoted the excited state dynamics below). In particular, we study
whether the mean-field approximation can be more accurate than using only the ground state.

In order to demonstrate the proposed mean-field molecular dynamics approximation, we devise the model
problem as described by equations (1.12) to (1.14) in Section 1.2, where the difference between two eigenvalues
𝜆1(𝑥) − 𝜆0(𝑥) = 2𝑐

√
𝑥2 + 𝛿2 can be tuned by the two parameters 𝑐 and 𝛿. For 𝛿 small this model relates to

the avoided crossing phenomenon in quantum chemistry where the two potential surfaces get almost intersected
at a certain point, see [1]. The assumptions in Theorem 2.1 are satisfied for positive 𝛿 but not for 𝛿 = 0 and
therefore the approximation error is expected to vary with different 𝛿.

5.1. Equilibrium observables

At the inverse temperature 𝛽, the quantum canonical ensemble average of a time-independent observable 𝐴
is obtained from the normalized trace

Tr
(︁

e−𝛽𝐻̂𝐴
)︁

Tr
(︁

e−𝛽𝐻̂
)︁ =

∑︀
𝑛 e−𝛽𝐸𝑛

⟨
Φ𝑛, 𝐴Φ𝑛

⟩
∑︀

𝑛 e−𝛽𝐸𝑛
, (5.1)

where (𝐸𝑛, Φ𝑛)∞𝑛=1 are eigenvalues and the corresponding normalized eigenstates of the Hamiltonian operator̂︀𝐻. Consequently, for an observable depending only on the position 𝑥 with symbol 𝐴(𝑥), we have

Tr
(︁

e−𝛽𝐻̂𝐴
)︁

Tr
(︁

e−𝛽𝐻̂
)︁ =

∫︁
R𝑁

𝐴(𝑥) 𝜇qm(𝑥) d𝑥, where 𝜇qm(𝑥) =
∑︀

𝑛|Φ𝑛(𝑥)|2e−𝛽𝐸𝑛∑︀
𝑛 e−𝛽𝐸𝑛

· (5.2)

We apply a fourth-order finite difference scheme for the Laplacian operator in the Hamiltonian (1.12) to approx-
imate the equilibrium density 𝜇qm(𝑥) in (5.2). The numerical implementation is explained with more details in
Appendix A.1.

As an approximation to the quantum canonical ensemble average (5.1), we consider the normalized trace
Tr (ê−𝛽𝐻 ̂︀𝐴) / Tr (ê−𝛽𝐻) and apply the Lemma 2.2 and equation (1.16) to write the mean-field observable as

Tmd(0) = Tes(0) =
Tr
(︁

ê−𝛽𝐻 ̂︀𝐴)︁
Tr
(︁

ê−𝛽𝐻
)︁ =

∫︀
R2𝑁 Tr

(︀
e−𝛽𝐻(𝑥,𝑝)𝑎(𝑥, 𝑝)I

)︀
d𝑥 d𝑝∫︀

R2𝑁 Tr
(︀
e−𝛽𝐻(𝑥′,𝑝′)

)︀
d𝑥′ d𝑝′

=

∫︀
R2𝑁 𝑎(𝑥, 𝑝)

(︀
e−𝛽𝜆0(𝑥) + e−𝛽𝜆1(𝑥)

)︀
e−

𝛽|𝑝|2
2 d𝑥 d𝑝∫︀

R2𝑁

(︀
e−𝛽𝜆0(𝑥′) + e−𝛽𝜆1(𝑥′)

)︀
e−

𝛽|𝑝′|2
2 d𝑥′ d𝑝′

,

where 𝐻(𝑥, 𝑝) and 𝐴(𝑥, 𝑝) = 𝑎(𝑥, 𝑝)I with 𝑎 : R2𝑁 → C are the Weyl symbols corresponding to the operators
𝐻̂ and 𝐴, respectively.
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Figure 2. The density functions computed with the quantum mechanics formula (5.2), the
mean-field approximation formula (5.3), and using only the ground state in the classical formula
(5.5), with mass ratio 𝑀 = 1000. The mean-field density (the dashed yellow line) is quite close
to the quantum mechanics density curve (the solid blue line), implying a better accuracy than
the ground state density (the solid violet line).

Specifically for an observable depending only on the position 𝑥, we obtain

Tr
(︁

ê−𝛽𝐻 ̂︀𝐴)︁
Tr
(︁

ê−𝛽𝐻
)︁ =

∫︁
R𝑁

𝐴(𝑥) 𝜇mf(𝑥) d𝑥, where 𝜇mf(𝑥) =
e−𝛽𝜆0(𝑥) + e−𝛽𝜆1(𝑥)∫︀

R𝑁

(︀
e−𝛽𝜆0(𝑥′) + e−𝛽𝜆1(𝑥′)

)︀
d𝑥′

· (5.3)

The classical mean-field density 𝜇mf in (5.3) can also be rewritten as a weighted average

𝜇mf(𝑥) =
1∑︁

𝑗=0

𝑞𝑗
e−𝛽𝜆𝑗(𝑥)∫︀

R e−𝛽𝜆𝑗(𝑥′) d𝑥′
, where 𝑞𝑗 =

∫︀
R𝑁 e−𝛽𝜆𝑗(𝑥) d𝑥∑︀1

𝑘=0

∫︀
R𝑁 e−𝛽𝜆𝑘(𝑥) d𝑥

, 𝑗 = 0, 1. (5.4)

The weights 𝑞0 and 𝑞1 can be interpreted as the probability for the system to be in the corresponding electron
eigenstate 𝜆0 and 𝜆1, respectively obtained by integration with the corresponding Gibbs density.

We first plot the equilibrium quantum mechanics density 𝜇qm using the formula (5.2), and compare it with
the classical mean-field density 𝜇mf in (5.3). They are also compared with the density based only on the ground
state 𝜇gs, with the formula

𝜇gs(𝑥) =
e−𝛽𝜆0(𝑥)∫︀

R𝑁 e−𝛽𝜆0(𝑥) d𝑥
, (5.5)

which is obtained from the classical density formula (5.4) by taking the probability for the excited state as
𝑞1 = 0, and the probability for the ground state as 𝑞0 = 1.

In Figure 2 the first reference density curve with quantum mechanics formula (5.2) is plotted in blue colour
with a solid line. The density curve 𝜇mf(𝑥), obtained from the classical mean-field formula (5.3), is plotted as the
yellow dashed line and agrees well with the quantum mechanics density 𝜇qm(𝑥). Besides, the mean-field density
𝜇mf(𝑥) incurs much smaller error than the ground-state density 𝜇gs(𝑥) (the violet solid curve) in approximating
the 𝜇qm(𝑥) density. For Figure 2, we use the parameters 𝑀 = 1000, 𝑐 = 1, and 𝛽 = 1 such that with the
eigenvalue gap 𝛿 = 0.1, the system has a probability 𝑞1 = 0.16 to be in the excited state.

In Figure 3 we depict a point-wise difference between the classical mean-field density 𝜇mf(𝑥) and the quantum
mechanics density 𝜇qm(𝑥), for different values of the mass ratio 𝑀 . The inverse temperature is still taken as
𝛽 = 1 for the eigenvalue gap 𝛿 = 0.1 and 𝑐 = 1, so that the probability for the excited state is kept as 𝑞1 = 0.16.
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Figure 3. The point-wise difference between the quantum mechanics density 𝜇qm and the
mean-field density 𝜇mf with inverse temperature 𝛽 = 1. The dashed violet curve with 𝑀 = 100
has so small an error that it is almost indiscernible from the solid yellow curve with 𝑀 = 1000.

Figure 4. Dependence of the 𝐿1-error between the quantum density 𝜇qm and the classical
mean-field density approximation 𝜇mf , shown in log-log scale.

It is observed from Figure 3 that as 𝑀 increases the error in the classical mean-field density approximation
decreases.

In order to study the dependence of the approximation error ‖𝜇qm−𝜇mf‖𝐿1 on the mass ratio 𝑀 , we vary 𝑀
for three different inverse temperatures, with the corresponding eigenvalue gaps 𝛿 such that the probability to
be in the excited state remains to be 𝑞1 = 0.16. As seen from Figure 4, the 𝒪

(︀
𝑀−1

)︀
dependence of the error in

the equilibrium density using the classical mean-field approximation is in accordance with the theoretical result
of Theorem 2.1.

Besides the 𝑀 -dependence of the classical approximation, we also experiment with a relatively large inverse
temperature 𝛽 = 10 for mass ratio 𝑀 = 100, with parameters 𝑐 = 1, 𝛿 = 0.1. The quantum density 𝜇qm

together with its classical mean-field and ground state approximations 𝜇mf and 𝜇gs are plotted in the Figure 5.
The large value of 𝛽 implies a rather low temperature, which leads to a tiny probability for the electron excited
state as 𝑞1 = 7× 10−7. Consequently the density functions concentrate near the minimum of the ground state
eigenvalue, and there is almost no difference between the mean-field and the ground state density curves.
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Figure 5. Equilibrium density 𝜇qm with the classical mean-field and ground state approxima-
tions 𝜇mf and 𝜇gs, with inverse temperature 𝛽 = 10, mass ratio 𝑀 = 100. The probability of
electron excited state 𝑞1 = 7× 10−7 is tiny.

5.2. Time-correlated observables

5.2.1. The model problem

We apply the mean-field molecular dynamics to approximate the auto-correlation function between the
momentum observables ̂︀𝑝0 (at time 0) and ̂︀𝑝𝜏 (at time 𝜏). In the Heisenberg representation the time evolu-
tion of the momentum observable is given by

̂︀𝑝𝜏 := ei𝜏
√

𝑀 ̂︀𝐻̂︀𝑝0e−i𝜏
√

𝑀 ̂︀𝐻 .

We study the two-eigenvalue model with the potential matrix 𝑉 (𝑥) as defined by (1.13) in Section 1.2. For
computing the quantum correlation function, we approximate the initial position observable ̂︀𝑥0 and the initial
momentum observable ̂︀𝑝0 by the matrices

̂︀𝑥0 ≃

⎡⎢⎢⎢⎣
𝑥0 0

𝑥0
𝑥1

𝑥1

. . .
𝑥𝐾

0 𝑥𝐾

⎤⎥⎥⎥⎦ =: 𝑋, ̂︀𝑝0 ≃ i
√

𝑀(𝐻𝑑𝑋 −𝑋𝐻𝑑) =: 𝑃,

respectively, where we discretize a sufficiently large computational domain Ω = [𝑥0, 𝑥𝐾 ] with uniform grid points
𝑥𝑘 = 𝑥0 + 𝑘∆𝑥, for 𝑘 = 0, 1, · · · , 𝐾 and ∆𝑥 = |𝑥𝐾−𝑥0|

𝐾 . In the definition of the matrix 𝑃 , the real symmetric
matrix 𝐻𝑑 is of size 2(𝐾 + 1)× 2(𝐾 + 1), corresponding to a fourth order finite difference approximation of the
Hamiltonian operator ̂︀𝐻. More details about this approximation are provided in Section A.1, and the definition
of matrix 𝐻𝑑 is given in (A.2). The matrix 𝐻𝑑 generates the approximations

ei𝜏
√

𝑀 ̂︀𝐻 ≃ ei𝜏
√

𝑀𝐻𝑑 , e−𝛽 ̂︀𝐻 ≃ e−𝛽𝐻𝑑 .

We apply the eig function of Matlab to obtain the eigenpairs (𝑒𝑛, 𝜑𝑛) of the 𝐻𝑑 matrix, and rearrange them
to obtain the eigendecomposition

𝑄 :=
[︀
𝜑1 𝜑2 𝜑3 · · · 𝜑2(𝐾+1)

]︀
, and 𝐷 :=

⎡⎣ 𝑒1 0
𝑒2

. . .
0 𝑒2(𝐾+1)

⎤⎦,



CANONICAL MEAN-FIELD MOLECULAR DYNAMICS 2229

such that 𝐻𝑑 can be diagonalized with the orthogonal matrix 𝑄 as 𝐻𝑑 = 𝑄 𝐷 𝑄*, and hence

ei𝜏
√

𝑀𝐻𝑑 = 𝑄 ei𝜏
√

𝑀𝐷 𝑄*, and e−𝛽𝐻𝑑 = 𝑄 e−𝛽𝐷 𝑄*.

Thus the right-hand side of (1.3) with ̂︀𝐴𝜏 = ̂︀𝑝𝜏 and ̂︀𝐵0 = ̂︀𝑝0 can be approximated by

Tqm(𝜏) :=
Tr
(︁

(̂︀𝑝𝜏 ̂︀𝑝0 + ̂︀𝑝0 ̂︀𝑝𝜏 ) e−𝛽 ̂︀𝐻
)︁

2 Tr
(︁

e−𝛽 ̂︀𝐻
)︁ =

Tr
(︁̂︀𝑝𝜏

(︁̂︀𝑝0 e−𝛽 ̂︀𝐻 + e−𝛽 ̂︀𝐻 ̂︀𝑝0

)︁)︁
2 Tr

(︁
e−𝛽 ̂︀𝐻

)︁
≃

Tr
(︁
𝑄 ei𝜏

√
𝑀𝐷 𝑄* 𝑃 𝑄 e−i𝜏

√
𝑀𝐷 𝑄*

(︀
𝑃 𝑄 e−𝛽𝐷 𝑄* + 𝑄 e−𝛽𝐷 𝑄* 𝑃

)︀)︁
2 Tr (𝑄 e−𝛽𝐷 𝑄*)

, (5.6)

where in the second equality we use the cyclic property of the trace.
By applying the mean-field molecular dynamics formula (1.4) with momentum observables ̂︀𝑝0 and ̂︀𝑝𝜏 in the

model problem, we have the approximation for the time-correlation function as

Tmf(𝜏) =

∫︀
R2𝑁 𝑝𝜏𝑝0 Tr

(︀
e−𝛽𝐻(𝑧0)

)︀
d𝑧0∫︀

R2𝑁 Tr
(︀
e−𝛽𝐻(𝑧0)

)︀
d𝑧0

, (5.7)

where 𝑧𝑡 := (𝑥𝑡, 𝑝𝑡) solves the Hamiltonian system

𝑥̇𝑡 = ∇𝑝 ℎ(𝑥𝑡, 𝑝𝑡),
𝑝̇𝑡 = −∇𝑥 ℎ(𝑥𝑡, 𝑝𝑡), (5.8)

with an initial state 𝑧0 = (𝑥0, 𝑝0) ∈ R2.
The Hamiltonian system (5.8) is solved numerically with the second-order velocity Verlet scheme, see [25].

More details about this numerical implementation is in Appendix A.2.
We also apply the classical molecular dynamics formula for correlation functions introduced in Section 2.3.2

of [2], which considers the contribution from the ground state and the excited states. For our specific example
the excited state dynamics approximation of momentum correlation observable is given by

Tes(𝜏) :=
1∑︁

𝑗=0

∫︁
R2

𝑞𝑗 𝑝𝑗
𝜏 (𝑧0) 𝑝𝑗

0(𝑧0)
e
−𝛽

(︂
|𝑝0|

2

2 +𝜆𝑗(𝑥0)

)︂

∫︀
R2 e−𝛽

(︁
|𝑝|2
2 +𝜆𝑗(𝑥)

)︁

d𝑧

d𝑧0, , (5.9)

with the weights 𝑞0 and 𝑞1 as defined in (5.4), where 𝑧𝑗
𝜏 = (𝑥𝑗

𝜏 , 𝑝𝑗
𝜏 ), 𝑗 = 0, 1 solves the Hamiltonian dynamics

𝑥̇𝑗
𝜏 = 𝑝𝑗

𝜏 ,

𝑝̇𝑗
𝜏 = −∇𝜆𝑗(𝑥𝑗

𝜏 ),

with the initial condition 𝑧𝑗
0 = (𝑥0, 𝑝0) = 𝑧0 and 𝜆0(𝑥), 𝜆1(𝑥) as defined in (1.14).

In addition to these three expressions for time-correlation, Tqm (the quantum mechanics correlation), Tmf (the
mean-field approximation), and Tes (the classical excited state approximation), we also compute the approxi-
mation based only on the ground state contribution, Tgs, obtained by setting the probability 𝑞1 for the excited
state equal to be zero, i.e.,

Tgs(𝜏) =
∫︁

R2
𝑝𝜏 (𝑧0) 𝑝0(𝑧0)

e
−𝛽

(︂
|𝑝0|

2

2 +𝜆0(𝑥0)

)︂

∫︀
R2 e−𝛽

(︁
|𝑝|2
2 +𝜆0(𝑥)

)︁

d𝑧

d𝑧0, (5.10)
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where 𝑧𝜏 = (𝑥𝜏 , 𝑝𝜏 ) solves the Hamiltonian dynamics with the potential 𝜆0(𝑥)

𝑥̇𝜏 = 𝑝𝜏 ,

𝑝̇𝜏 = −∇𝜆0(𝑥𝜏 ),

with initial state 𝑧0 = (𝑥0, 𝑝0).
As discussed in (1.16), the approximations with mean-field dynamics or excited state dynamics at an initial

time 𝜏 = 0 are always identical, i.e., Tmf(0) = Tes(0). For position-related observables, the classical ground state
dynamics approximation Tgs(0) will be, in general, different from Tmf(0) and Tes(0), which is consistent with
our preceding observations on equilibrium density function in Section 5.1, and is confirmed in the upcoming
Figure 13.

The numerical approximations of Tmf(𝜏), Tes(𝜏), and Tgs(𝜏) are computed with the Verlet method in combina-
tion with Simpson’s formula. We use 𝒮mf(𝜏), 𝒮es(𝜏), 𝒮gs(𝜏), and 𝒮qm(𝜏), to denote the numerical approximations
of Tmf(𝜏), Tes(𝜏), Tgs(𝜏), and Tqm(𝜏), respectively.

In practise ground state molecular dynamics in the canonical ensemble is relatively well developed for realistic
molecular systems and successful mean-field approximations appear in centroid and ring-polymer molecular
dynamics [26]. Direct computations of excited state dynamics for realistic systems seem less attractive, due to
the challenge to efficiently compute excited electron states, cf. [24]. Here we compare these three alternatives
for a simple model problem in the hope of giving some information also on realistic systems.

5.2.2. Numerical results

Following the discussion on the variances 𝜖21 and 𝜖22 with equations (1.8), (1.10) and (1.11), we survey five
different cases with varying parameter settings of 𝑐, 𝛿, and inverse temperature 𝛽, and make a comparison
between the performances of different molecular dynamics approximations in each case. A summary of the
parameters in each case is given in the Table 1.

Case A: Low temperature with large eigenvalue gap, 𝛽 = 3.3, 𝑐 = 1, 𝛿 = 1, 𝜖21 = 9.95 × 10−4, 𝜖22 =
1.25× 10−4, the probability for the excited state 𝑞1 = 0.0002 is almost negligible.

Figure 6a presents the eigenvalues 𝜆0(𝑥), 𝜆1(𝑥) and the mean-field potential function 𝜆*(𝑥) as defined in
(1.9) for Case A. With the parameters 𝑐 = 1 and 𝛿 = 1, the system has a large eigenvalue gap. Particularly in
this low temperature setting, the mean-field potential 𝜆*(𝑥) is almost identical to the ground-state eigenvalue
𝜆0(𝑥). Since the probability for the excited state is very small (𝑞1 = 0.0002), the three molecular dynamics
approximations Tmf(𝜏), Tes(𝜏), and Tgs(𝜏) are similar.

In Figure 7a, the quantum mechanics correlation function curve 𝒮qm(𝜏) with mass ratio 𝑀 = 1000 is plotted
as a function of correlation time 𝜏 , together with the three molecular dynamics approximations 𝒮mf(𝜏), 𝒮es(𝜏),
and 𝒮gs(𝜏). The three molecular dynamics correlation function curves are almost on top of each other, as shown
in Figure 7b with similarly small errors. This case gives an example where all the three molecular dynamics
work analogously, since 𝑞1 ≪ 1, and we note that the error terms 𝜖21, 𝜖22 together with 1/𝑀 are all very small.

Case B: High temperature with small difference between eigenvalues, 𝛽 = 1, 𝑐 = 0.1, 𝛿 = 1, 𝜖21 =
1.9× 10−2, 𝜖22 = 3.5× 10−3, the probability for the excited state 𝑞1 = 0.43.

In Figure 6b we observe that with the parameter setting of case B, the mean-field potential 𝜆*(𝑥) lies in
between the ground state eigenvalue 𝜆0(𝑥) and the excited state eigenvalue 𝜆1(𝑥), indicating that by incorpo-
rating the effect of the excited state, the mean-field approximation Tmf(𝜏) can make a difference from simply
using the ground state molecular dynamics.

The improved accuracy of the mean-field molecular dynamics is verified by the Figure 8b, in which we observe
a smaller error of mean-field molecular dynamics approximation ‖𝒮qm−𝒮mf‖𝐿∞([0,𝜏 ]) (the red curve) compared
with the molecular dynamics using only the ground state ‖𝒮qm − 𝒮gs‖𝐿∞([0,𝜏 ]) (the violet curve). The excited
state molecular dynamics 𝒮es(𝜏) has the smallest error, manifesting an effective combination of the information
from both the ground and the excited eigenstates.
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Figure 6. Eigenvalues of the matrix-valued potential 𝑉 (𝑥) for test cases A to D. In the panel
(a), the mean-field potential 𝜆*(𝑥) (the red curve) is quite close to the ground state 𝜆0(𝑥) (the
violet curve). (a) Case A: low temperature, large difference between eigenvalues, large gap. (b)
Case B: high temperature, small difference between eigenvalues, small gap. (c) Case C: high
temperature, small difference between eigenvalues, smallest gap. (d) Case D: high temperature,
large difference between eigenvalues, medium gap.

Figure 7. Case A: (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ computed by quantum-mechanics for-
mula, 𝒮qm, with 𝑀 = 1000, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 𝜏 , ‖𝒮qm − 𝒮md‖𝐿∞([0,𝜏 ]).
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Figure 8. Case B: (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ computed by quantum-mechanics
formula, 𝒮qm, with 𝑀 = 100, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 𝜏 ‖𝒮qm − 𝒮md‖𝐿∞([0,𝜏 ]).

Figure 9. Case C: (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ computed by quantum-mechanics
formula, 𝒮qm, with 𝑀 = 100, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 𝜏 ‖𝒮qm − 𝒮md‖𝐿∞([0,𝜏 ]).

Case C: High temperature, small difference between eigenvalues with avoided crossing , 𝛽 = 1,
𝑐 = 0.1, 𝛿 = 0.01, 𝜖21 = 9.1× 10−3, 𝜖22 = 9.9× 10−3, the probability for the excited state 𝑞1 = 0.46.

The Case C has a similar parameter setting as the preceding Case B, with the only difference of a smaller
parameter 𝛿 = 0.01. The small parameter 𝛿 leads to a small eigenvalue gap at 𝑥 = 0, i.e., the two eigenvalues
𝜆0(𝑥) and 𝜆1(𝑥) almost intersect at this point, as can be seen in the Figure 6c. Compared with Case B, the
small eigenvalue gap also makes the probability for the excited state 𝑞1 increase from 0.43 to 0.46 in Case C,
with the same inverse temperature 𝛽 = 1.

The approximate 𝑝-auto-correlation function curves with their corresponding maximum errors up to time 𝜏
are plotted in the Figures 9a and 9b, respectively. These two figures are quite similar to their corresponding plots
in Case B, where the excited state approximation 𝒮es has the smallest error, and the mean-field approximation
𝒮mf achieves an improved accuracy compared to the ground state approximation 𝒮gs.

The similar approximation error of the three molecular dynamics in Case B and Case C can be understood
as a result of the relatively small difference between the two eigenvalues 𝜆0 and 𝜆1. For both cases the small
parameter 𝑐 = 0.1 leads to small 𝜖1 and 𝜖2 values, as summarized in Table 1.

Case D: High temperature, large difference between eigenvalues with large gap, 𝛽 = 0.28, 𝑐 = 1,
𝛿 = 1, 𝜖21 = 2.01, 𝜖22 = 0.42, the probability for the excited state 𝑞1 = 0.30.
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Figure 10. Case D: (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ computed by quantum-mechanics
formula, 𝒮qm, with 𝑀 = 100, and by three molecular dynamics formulae. (b) The corresponding
maximum errors up to time 𝜏 ‖𝒮qm − 𝒮md‖𝐿∞([0,𝜏 ]).

For this case, we observe from Figure 6d that although the mean-field potential 𝜆*(𝑥) is still in between
the ground state 𝜆0(𝑥) and the excited state 𝜆1(𝑥), the distance between 𝜆*(𝑥) and 𝜆1(𝑥) is much larger than
that in the previous Case B. Also 𝜆*(𝑥) is much closer to the ground state 𝜆0(𝑥) than to the excited state
𝜆1(𝑥). The parameter 𝛽 = 0.28 implies a relatively high temperature, with a considerable contribution from
the excited state. Hence we cannot expect the mean-field molecular dynamics to be much better than ground
state molecular dynamics. This is also verified by Figure 10b which shows that the error of mean-field molecular
dynamics is of the same order as that of ground state molecular dynamics, while the excited state molecular
dynamics remains accurate.

The mean-field and ground state molecular dynamics correlations include two approximations: replacing the
matrix-valued potential 𝑉 (𝑥) by a scalar potential 𝜆*(𝑥) or 𝜆0(𝑥) respectively, and replacing quantum dynamics
with classical dynamics,

𝒮qm(𝜏)− 𝒮mf(𝜏) = (𝒮qm(𝜏)− 𝒮qm,𝜆*(𝜏)) + (𝒮qm,𝜆*(𝜏)− 𝒮mf(𝜏))
𝒮qm(𝜏)− 𝒮gs(𝜏) = (𝒮qm(𝜏)− 𝒮qm,𝜆0(𝜏)) + (𝒮qm,𝜆0(𝜏)− 𝒮gs(𝜏))

(5.11)

where 𝒮qm,𝜆* and 𝒮qm,𝜆0 denote the approximation of auto-correlation function computed with quantum dynam-
ics but using scalar-valued potentials 𝜆*(𝑥) and 𝜆0(𝑥), respectively. In the right hand side of (5.11), the first
terms (𝒮qm(𝜏)− 𝒮qm,𝜆*(𝜏)) and (𝒮qm(𝜏)− 𝒮qm,𝜆0(𝜏)) correspond to the potential approximations in quantum
dynamics, while the second terms (𝒮qm,𝜆*(𝜏)− 𝒮mf(𝜏)) and (𝒮qm,𝜆0(𝜏)− 𝒮gs(𝜏)) are related to classical approx-
imations of quantum dynamics using scalar potentials.

To investigate these two error contributions we compute the correlation function 𝒮qm,𝜆*(𝜏) and 𝒮qm,𝜆0(𝜏) for
Case D, using the scalar-valued potential 𝜆*(𝑥) or 𝜆0(𝑥) to replace the potential matrix 𝑉 (𝑥) in the quantum
dynamics. The corresponding auto-correlation curves and their maximum error up to time 𝜏 are shown in
Figures 11a and 11b.

From Figure 11b, we clearly see that the errors ‖𝒮qm − 𝒮qm,𝜆*‖𝐿∞([0,𝜏 ]) and ‖𝒮qm − 𝒮qm,𝜆0‖𝐿∞([0,𝜏 ]) caused
by substituting the potential matrix 𝑉 (𝑥) with the scalar-valued potentials 𝜆*(𝑥) or 𝜆0(𝑥) is of the same order
as the total errors ‖𝒮qm − 𝒮mf‖𝐿∞([0,𝜏 ]) and ‖𝒮qm − 𝒮gs‖𝐿∞([0,𝜏 ]) in Figure 10b. Hence we conclude that the
main source of error in this case is the simplification by replacing the potential matrix 𝑉 (𝑥) with a scalar-valued
potential, and not the approximation of scalar potential quantum mechanics correlation by classical molecular
dynamics.

We also vary the mass ratio 𝑀 between the heavy particle and the light particle, in order to study the corre-
sponding behaviour of the approximation errors ‖𝒮qm(𝜏)−𝒮qm,𝜆*(𝜏)‖𝐿∞([0,𝜏 ]) and ‖𝒮qm(𝜏)−𝒮qm,𝜆0(𝜏)‖𝐿∞([0,𝜏 ])

up to time 𝜏 = 20 for the mean-field molecular dynamics and ground state molecular dynamics in Case D. As
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Figure 11. (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ curves 𝒮qm, 𝒮qm,𝜆0 , and 𝒮qm,𝜆* computed
by using matrix valued potential 𝑉 (𝑥), and using scalar-valued potential 𝜆0(𝑥) or 𝜆*(𝑥) in the
quantum mechanics formula (5.6) in Case D. (b) Maximum error up to time 𝜏 in the 𝑝-auto-
correlation curves computed with quantum mechanics formula using scalar-valued potential
𝜆*(𝑥) or 𝜆0(𝑥), by comparing them with the correlation computed from quantum mechanics
formula using matrix-valued potential 𝑉 (𝑥), and with their corresponding molecular dynamics
approximations.

Table 2. Case D: Dependence of the error on the mass ratio 𝑀 at time 𝜏 = 20.

𝑀 ‖𝒮qm − 𝒮qm,𝜆*‖ ‖𝒮qm,𝜆* − 𝒮mf‖ ‖𝒮qm − 𝒮qm,𝜆0‖ ‖𝒮qm,𝜆0 − 𝒮gs‖ ‖𝒮qm − 𝒮es‖

100 0.2004 0.0387 0.2099 0.0081 0.0062
50 0.1985 0.0384 0.2080 0.0201 0.0220
20 0.1944 0.0375 0.2033 0.0377 0.0330

can be seen from the second and fourth column of Table 2, the main error caused by substitution of the potential
matrix 𝑉 with the scalar valued potential 𝜆* or 𝜆0 varies slightly as the 𝑀 value changes.

Case E: High temperature, large difference between eigenvalues with avoided crossing , with 𝛽 = 1,
𝑐 = 1, 𝛿 = 0.1, 𝜖21 = 0.29, 𝜖22 = 0.50, the probability for the excited state 𝑞1 = 0.16.

This case has the same parameters as in Section 5.1. In Figure 1 we observe a pattern of the two eigenvalues
𝜆0(𝑥) and 𝜆1(𝑥) related to avoided crossing of potential surfaces. Our numerical results suggest that for this
case all three molecular dynamics are only accurate for short time, as can be seen in Figure 12a. Compared to
Case C and Case D, where the excited state dynamics is accurate, the diminished eigenvalue regularity at the
avoided crossing may explain the loss of accuracy in Case E.

Apart from the momentum auto-correlation function, we also computed in Case E the correlation function
between position observables ̂︀𝑥0 and ̂︀𝑥𝜏 , as plotted in Figure 13. We observe that for short time range (e.g.,
0 ≤ 𝜏 ≤ 0.1), the error of the ground state molecular dynamics is larger than the error of the mean-field
molecular dynamics, which is consistent with the result for equilibrium observables in Section 5.1, in which the
ground state molecular dynamics has larger error in approximating the density function 𝜇qm(𝑥) than the mean-
field formula. Therefore the mean-field molecular dynamics can improve short-time approximation of position
auto-correlation function compared to the ground state molecular dynamics.

We also changed the mass ratio 𝑀 in this case for the momentum auto-correlation function, from 𝑀 = 100
to 𝑀 = 50 and to smaller value 𝑀 = 20. When 𝑀 becomes smaller, we can expect the error of molecular
dynamics approximation becomes larger, since the error includes the 𝒪

(︀
𝑀−1

)︀
term. For Case E, since we are

only interested in the short time approximation, the time-dependent error term is not much larger than the
𝒪
(︀
𝑀−1

)︀
term. Hence the effect of varying the mass ratio 𝑀 will be considerable. The dependence of the 𝐿∞-
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Figure 12. (a) Auto-correlation function ⟨𝑃0𝑃𝜏 ⟩ curves 𝒮qm, 𝒮qm,𝜆0 , and 𝒮qm,𝜆* computed
by using matrix valued potential 𝑉 (𝑥) and using scalar-valued potential 𝜆0(𝑥) or 𝜆*(𝑥) in the
quantum mechanics formula (5.6) in Case E. (b) Maximum error up to time 𝜏 in the 𝑝-auto-
correlation curves computed with quantum mechanics formula using scalar-valued potential
𝜆*(𝑥) or 𝜆0(𝑥), by comparing them with the correlation computed from quantum mechanics
formula using matrix-valued potential 𝑉 (𝑥), and with their corresponding molecular dynamics
approximations.

Figure 13. Case E: Auto-correlation function ⟨𝑋0𝑋𝜏 ⟩ computed by quantum-mechanics for-
mula with 𝑀 = 100 and by three molecular dynamics formulae.

Table 3. Case E: Dependence of the error on the mass ratio 𝑀 at different correlation times 𝜏 .

𝜏 𝑀 ‖𝒮qm − 𝒮mf‖𝐿∞([0,𝜏 ]) ‖𝒮qm − 𝒮es‖𝐿∞([0,𝜏 ]) ‖𝒮qm − 𝒮gs‖𝐿∞([0,𝜏 ])

1 20 0.1375 0.0816 0.0564
1 50 0.1324 0.0766 0.0513
1 100 0.1270 0.0712 0.0460
2 20 0.1657 0.1515 0.1043
2 50 0.1533 0.1356 0.0884
2 100 0.1425 0.1226 0.0759

error in momentum auto-correlation approximation on the mass ratio 𝑀 is summarized in Table 3, from which
we observe an improved accuracy in all the three molecular dynamics approximations with an increased 𝑀
value.
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5.3. Conclusion from numerical comparisons

From the study with equilibrium observables in Section 5.1, we see that by considering the contributions
of excited states the classical mean-field approximation of quantum mechanics density at equilibrium achieves
a substantial improvement from the approximation which uses only the information from the ground state.
The error of the mean-field approximation will decrease as the mass ratio 𝑀 increases, following the 𝒪

(︀
𝑀−1

)︀
relation.

For the time-dependent observables, specifically by studying the momentum auto-correlation function, we
know from Case A that for a low temperature setting with a large eigenvalue gap, where the probability
for an excited state is small, all three molecular dynamics with the mean-field approximation, excited state
approximation, or ground state approximation work similarly well.

From Case B and Case D, we observe that the error of the mean-field approximation decreases as the difference
between two eigenvalues diminishes (i.e., parameter 𝑐 becomes small). Furthermore, for Case B with a small
difference between two eigenvalues, the mean-field approximation improves the accuracy of molecular dynamics
compared to using the ground state only.

With a small eigenvalue difference, even including the avoided crossing in Case C the result is similar to Case
B, that is the mean-field approximation is still more accurate than the ground state approximation.

From Case D we know that when the system temperature is high and the difference between two eigenvalues
is not small, the excited state approximation outperforms both the mean-field and the ground state molecular
dynamics.

From Case E we see that when the difference between the eigenvalues are sufficiently large and when the
potential matrix includes avoided crossings, all three molecular dynamics approximations are accurate for a
short time range only.

The small error terms 𝜖21 and 𝜖22, in Table 1, for the Cases A, B and C is consistent with the actual error
being small for the mean-field approximation, while in Cases D and E where the mean-field approximation error
is large these error terms are in fact large. Therefore the experiments indicate that the error estimate could be
useful to estimate the mean-field approximation error also for realistic problems when the quantum observable
is not computable.

Figures 11b and 12b together with Table 2 show that in Case D and Case E, where mean-field and ground
state approximations are not accurate, the error of the mean-field and ground state molecular dynamics are
dominated by the matrix valued potential replaced by a scalar potential on the quantum level, since the classical
approximation error of the quantum dynamics for the corresponding scalar potential is clearly smaller.

Appendix A. Numerical implementations

A.1. Finite difference approximation of the equilibrium density

To approximate the quantum mechanics density formula (5.2), we use a fourth-order finite difference approx-
imation of the Laplacian in the Hamiltonian operator ̂︀𝐻 (5.1), with the formula

𝑓 ′′(𝑥) =
−𝑓(𝑥− 2ℎ) + 16𝑓(𝑥− ℎ)− 30𝑓(𝑥) + 16𝑓(𝑥 + ℎ)− 𝑓(𝑥 + 2ℎ)

12ℎ2
+𝒪(ℎ4).

This discretization is performed on the computational domain Ω = [−6, 6] with a uniform mesh 𝑥𝑘 = −6+𝑘∆𝑥,
for 𝑘 = 0, 1, · · · , 𝐾, with ∆𝑥 = 12

𝐾 . The choice of this computational domain is obtained by checking that
the quantum mechanics density 𝜇qm(𝑥) approximately vanishes on the boundary of this domain, so that the
homogeneous Dirichlet boundary condition can be assumed. By applying this discretization, we approximate
the eigenvalue problem ̂︀𝐻Φ𝑛 = 𝐸𝑛Φ𝑛,

with the following algebraic eigenvalue problem

𝐻𝑑𝜑𝑛 = 𝑒𝑛𝜑𝑛, (A.1)
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where the 2(𝐾 + 1)× 2(𝐾 + 1) matrix 𝐻𝑑 is given by

𝐻𝑑 :=
1

2𝑀 · 12(∆𝑥)2

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ11,0+30 ℎ12,0 −16 0 1
ℎ21,0 ℎ22,0+30 0 −16 0 1
−16 0 ℎ11,1+30 ℎ12,1 −16 0 1
0 −16 ℎ21,1 ℎ22,1+30 0 −16 0 1
1 0 −16 0 ℎ11,2+30 ℎ12,2 −16 0 1

1 0 −16 ℎ21,2 ℎ22,2+30 0 −16 0 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 −16 0 ℎ11,𝐾−1+30 ℎ12,𝐾−1 −16 0

1 0 −16 ℎ21,𝐾−1 ℎ22,𝐾−1+30 0 −16
1 0 −16 0 ℎ11,𝐾+30 ℎ12,𝐾

1 0 −16 ℎ21,𝐾 ℎ22,𝐾+30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2)

and the eigenfunctions Φ𝑛 are approximated with the 2(𝐾 + 1)-length vector 𝜑𝑛, as

𝜑𝑛 = [𝜑𝑛,0,1, 𝜑𝑛,0,2, 𝜑𝑛,1,1, 𝜑𝑛,1,2, · · · , 𝜑𝑛,𝐾,1, 𝜑𝑛,𝐾,2]𝑇 .

Here, the entry terms ℎ𝑖𝑗,𝑘 of the 𝐻𝑑 matrix are given by

ℎ𝑖𝑗,𝑘 = 2𝑀
(︀
12∆𝑥2

)︀
𝑉𝑖𝑗(𝑥𝑘), for 𝑖, 𝑗 = 1, 2, and 𝑘 = 0, 1, · · · , 𝐾.

In practice, based on the finite difference scheme (A.1), we approximate the quantum mechanics density 𝜇qm in
(5.2) by ∑︀

𝑛

(︁
|𝜑𝑛,𝑘,1|2 + |𝜑𝑛,𝑘,2|2

)︁
e−𝛽𝑒𝑛∑︀

𝑘

∑︀
𝑛

(︁
|𝜑𝑛,𝑘,1|2 + |𝜑𝑛,𝑘,2|2

)︁
e−𝛽𝑒𝑛∆𝑥

, for 𝑘 = 0, 1, · · · , 𝐾, (A.3)

and the eigenvalues 𝑒𝑛 and eigenvectors 𝜑𝑛 here are obtained by using the Matlab function eig.

A.2. Numerical solution of the mean-field Hamiltonian system

In the mean-field trace formula (5.7) for time correlation function 𝒮mf(𝜏), we need to solve the Hamiltonian
system

𝑥̇𝑡 = ∇𝑝ℎ(𝑥𝑡, 𝑝𝑡),
𝑝̇𝑡 = −∇𝑥ℎ(𝑥𝑡, 𝑝𝑡),

to obtain the state variable 𝑥𝜏 at time 𝑡 = 𝜏 . Specifically, given the initial state (𝑥0, 𝑝0) at time 𝑡0 = 0, we apply
the velocity Verlet method, where for each discrete time point 𝑡𝑛 := 𝑡0 + 𝑛∆𝑡, the dynamics of state variables
(𝑥, 𝑝) in (1.5) is approximated by

𝑝𝑛+ 1
2

= 𝑝𝑛 +
∆𝑡

2
· (−∇𝑥ℎ(𝑥𝑛, 𝑝𝑛)),

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡 · 𝑝𝑛+ 1
2
,

𝑝𝑛+1 = 𝑝𝑛+ 1
2

+
∆𝑡

2
·
(︁
−∇𝑥ℎ

(︁
𝑥𝑛+1, 𝑝𝑛+ 1

2

)︁)︁
.

The integrals in molecular dynamics formulas (5.7), (5.9), and (5.10) are computed with a fourth-order composite
Simpson’s method, with a discretized mesh 𝑥𝑙 = 𝑥0 + 𝑙∆𝑥, 𝑝𝑙 = 𝑝0 + 𝑙∆𝑝, for 𝑙 = 0, 1, · · ·𝐿 on the phase
space (𝑥, 𝑝) and the computational domain Ω = [𝑥0, 𝑥𝐿] × [𝑝0, 𝑝𝐿] is taken to be sufficiently large, with ∆𝑥 =
(𝑥𝐿 − 𝑥0)/𝐿, ∆𝑝 = (𝑝𝐿 − 𝑝0)/𝐿.
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